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Abstract

In this paper we study the precise behavior of the transition density functions of censored
(resurrected) α-stable-like processes in C1,1 open sets in Rd, where d ≥ 1 and α ∈ (1, 2). We
first show that the semigroup of the censored α-stable-like process in any bounded Lipschitz
open set is intrinsically ultracontractive. We then establish sharp two-sided estimates for the
transition density functions of a large class of censored α-stable-like processes in C1,1 open
sets. We further obtain sharp two-sided estimates for the Green functions of these censored
α-stable-like processes in bounded C1,1 open sets.
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1 Introduction

There are close relationships between second order elliptic differential operators and diffusion pro-
cesses. For a large class of second order elliptic differential operators L on Rd that satisfy the
maximum principle, there is a diffusion process X on Rd associated with it so that L is the in-
finitesimal generator of X. A prototype is the celebrated interplay between Laplacian 1

2∆ on Rd

and Brownian motion on Rd. The fundamental solution of ∂tu = Lu (also called the heat kernel
of L) is the transition density function p(t, x, y) of X. Thus obtaining sharp two-sided estimates
for p(t, x, y) is a fundamental problem in both analysis and probability theory. In fact, two-sided
heat kernel estimates for diffusions in Rd have a long history and many beautiful results have
been established. See [10, 12] and the references therein. But, due to the complication near the
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boundary, two-sided estimates for the transition density functions of killed diffusions in a domain
D (equivalently, the Dirichlet heat kernels) have been established only recently. See [11, 12, 13]
for upper bound estimates and [21] for the lower bound estimates of the Dirichlet heat kernels in
bounded C1,1 domains.

Markov processes with discontinuous sample paths constitute an important family of stochastic
processes in probability theory and they have been widely used in various applications. One of the
most important and most widely used family of discontinuous Markov processes is the family of
(rotationally) symmetric α-stable process on Rd, 0 < α < 2. A (rotationally) symmetric α-stable
process Y = {Yt,Px} on Rd is a Lévy process such that

Ex
[
eiξ·(Yt−Y0)

]
= e−t|ξ|

α
for every x ∈ Rd and ξ ∈ Rd.

The infinitesimal generator of a symmetric α-stable process Y in Rd is the fractional Laplacian
∆α/2 := −(−∆)α/2, which is a prototype of nonlocal operators. The fractional Laplacian can be
written in the form

∆α/2u(x) = lim
ε↓0

∫
{y∈Rd: |y−x|>ε}

(u(y)− u(x))
A(d, α)
|x− y|d+α

dy for u ∈ C∞c (Rd),

where

A(d, α) :=
αΓ(d+α2 )

21−α πd/2Γ(1− α
2 )
. (1.1)

In a recent paper [5], we succeeded in establishing sharp two-sided estimates for the heat kernel of
the fractional Laplacian ∆α/2 with zero exterior condition on Dc (or equivalently, the transition
density function of the killed α-stable process) in any C1,1 open set.

Another important family of discontinuous Markov processes is the family of censored α-stable-
like processes studied in [3] (see Section 2 for the precise definition). For any open subset D of Rd,
a censored α-stable-like process X in D is a strong Markov process whose infinitesimal generator
is given by

LαDu(x) := lim
ε↓0

∫
{y∈D: |y−x|>ε}

(u(y)− u(x))
C(x, y)
|x− y|d+α

dy for u ∈ C2
c (D),

where C(x, y) is a measurable symmetric function on D ×D that is bounded between two positive
constants. When C(x, y) = A(d, α), X is called the censored α-stable process in D.

The objective of this paper is to investigate the precise behavior of the transition density func-
tions pD(t, x, y) of censored α-stable-like processes. We first discuss the intrinsic ultracontractivity
of the semigroups of censored stable-like processes. Intrinsic ultracontractivity was introduced by
Davies and Simon in [13]. It is concerned with the “boundary” behavior of the transition density
function of the semigroup when the semigroup has discrete spectrum. The intrinsic ultracontrac-
tivity gives sharp two-sided estimates of the transition density function for each fixed t > 0. The
intrinsic ultracontractivity of semigroups of killed jump processes was first considered in [8], where
it was shown that the semigroup of the killed symmetric α-stable process on a bounded C1,1 domain
is intrinsically ultracontractive. In [19] it was shown that the semigroup of the killed symmetric
α-stable process on any bounded open set is intrinsically ultracontractive. In this paper, we show
that, when D is an open d-set in Rd with finite Lebesgue measure and ∂D has positive r-dimensional
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Hausdorff measure for some r > d − α, the semigroup of of a censored stable-like process in D is
intrinsically ultracontractive. In particular, for α ∈ (1, 2), the semigroup of a censored α-stable-like
process in any bounded Lipschitz open set is intrinsically ultracontractive.

The main goal of this paper is to establish sharp two-sided estimates for the transition density
functions pD(t, x, y) (as functions of (t, x, y)) of a large class of censored α-stable-like processes in
every C1,1 open set D ⊂ Rd for d ≥ 1 and α ∈ (1, 2). A precise definition of C1,1 open set in Rd

will be given in Section 3. The transition density function pD(t, x, y) is also the heat kernel of the
operator LαD with zero boundary condition on the boundary D, i.e., for any bounded continuous
function f on D, u(t, x) :=

∫
D p(t, x, y)f(y)dy is the solution to LαDu = ∂tu, u(0, x) = f(x) on D

and u = 0 on ∂D. Note that in contrast to the killed symmetric α-stable processes, a censored
α-stable-like process X in a C1,1 open set D with d ≥ 1 and α ∈ (1, 2) approaches the boundary ∂D
in a continuous way (see [3, Theorem 1.1]) so its infinitesimal generator has zero Dirichlet boundary
condition as opposed to zero exterior condition. This indicates that censored processes are natural
and important for boundary problems in analysis (cf. [16, 17]).

Now we state the main result of this paper. We assume the censored stable-like processes under
consideration enjoy the dilation invariant boundary Harnack principle (BHP) (see Section 3 for
the precise statement). This assumption automatically satisfied for any censored stable process in
a C1,1 open set, and it is also satisfied for censored stable-like processes in C1,1 open sets when
C(x, y) satisfies certain regularity conditions; see Section 3 for details. It is an open problem to
find the minimal condition on C(x, y) so that BHP holds for the corresponding censored stable-like
process in every C1,1 open sets.

Theorem 1.1 Suppose that d ≥ 1, α ∈ (1, 2) and D is a C1,1 open subset of Rd. Let δD(x) be
the Euclidean distance between x and Dc. Suppose that the censored stable-like process X satisfies
BHP (see Section 3 for a precise definition and sufficient conditions for it to be true).

(i) For every T > 0, on (0, T ]×D ×D

pD(t, x, y) � t−d/α
(

1 ∧ t1/α

|x− y|

)d+α(
1 ∧ δD(x)

t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1

.

(ii) Suppose in addition that D is bounded. For every T > 0, there exist positive constants c1 < c2
such that for all (t, x, y) ∈ [T,∞)×D ×D,

c1e
−λ1tδD(x)α−1δD(y)α−1 ≤ pD(t, x, y) ≤ c2e−λ1tδD(x)α−1δD(y)α−1,

where −λ1 < 0 is the largest eigenvalue of LαD.

Here and in the sequel, for two non-negative functions f and g, the notation f � g means that
there are positive constants c1 and c2 so that c1g(x) ≤ f(x) ≤ c2g(x) in the common domain of
definition for f and g. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}.

By integrating the above two-sided heat kernel estimates in Theorem 1.1 with respect to t,
one can easily obtain the following sharp two-sided estimate on the Green function GD(x, y) =∫∞
0 pD(t, x, y)dt of a censored stable-like process in a bounded C1,1 open set D.
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Corollary 1.2 Suppose that d ≥ 1, α ∈ (1, 2) and D is a bounded C1,1 open set in Rd. Assume
that the censored stable-like process X satisfies BHP. Then on D ×D, we have

GD(x, y) �


1

|x−y|d−α

(
1 ∧ δD(x)δD(y)

|x−y|2

)α−1
when d ≥ 2,(

δD(x)δD(y)
)(α−1)/2 ∧

(
δD(x)δD(y)
|x−y|

)α−1
when d = 1.

Sharp two-sided estimates of the Green function are very important in understanding deep
potential theoretic properties of Markov processes. Such two-sided estimates for the Green functions
of symmetric stable processes were obtained in [9, 19]. In [4], sharp two-sided estimates for the
Green functions of censored stable processes (i.e. when C(x, y) is a constant) in bounded C1,1

connected open sets in Rd were obtained for d ≥ 2 and α ∈ (1, 2). Corollary 1.2 is a significant
generalization of the Green function estimates in [4] in that (i) C(x, y) need not be constant, (ii)
the C1,1-open set D here does not need to be connected, and (iii) d = 1 is allowed. We emphasize
here that the Green function estimates for censored stable processes obtained in [4] will not be used
in this paper.

Theorem 1.1(i) will be established through Theorems 3.5 and 4.9, which give the upper bound
and lower bound estimates, respectively. Theorem 1.1(ii) is an easy consequence of Theorem 1.1(i)
and the intrinsic ultracontractivity of X in a bounded C1,1 open set D, which will be established
in Section 2. The proofs of Theorem 1.1(ii) and Corollary 1.2 will be given in Section 5.

The approach of this paper is adapted from that of [5], which deals with two-sided sharp heat
kernel estimates for symmetric α-stable processes killed upon exiting a C1,1 open set. In [5], the
following domain monotonicity for the killed symmetric stable processes is used in a crucial way.
Let Z be a symmetric α-stable process and ZD be the subprocess of Z killed upon leaving an open
set D. If U is an open subset of D, then ZU is a subprocess of ZD killed upon leaving U . However
censored stable-like processes do not have this kind of domain monotonicity. This lack of domain
monotonicity produces new difficulties, which can be seen, for example, from the proofs of the
estimate given in Lemma 4.5 of this paper and its exact analog in [5, Lemma 3.6] for symmetric α-
stable processes. The proof of [5, Lemma 3.6], which is a key step in deriving the sharp lower bound
estimate for the killed symmetric α-stable process in a bounded C1,1-open set D, is established by
comparing with a suitably chosen interior ball. But such an approach breaks down even for the
censored α-stable process. We use a new probabilistic approach together with a crucial application
of BHP to establish the estimate in Lemma 4.5. The intrinsic ultracontractivity of the censored
α-stable-like process is also used in our proof.

Another tool that we use in this paper is the reflected stable-like process X on D, whose
subprocess killed upon leaving D is the censored stable-like process X. The reflected α-stable-like
processes have been studied in [3] and [6]. In particular, two-sided heat kernel estimates have been
obtained in [6] for reflected stable-like processes on open d-sets (including globally Lipschitz open
sets) in Rd—see (2.4) below. When D is a globally Lipschitz open set, it is proved in [3] that the
censored α-stable-like process in D coincides with the corresponding reflected α-stable-like process
if (and only if) α ∈ (0, 1]. That is why we focus on the case of α ∈ (1, 2) in this paper.

The approach of this paper is mainly probabilistic. It is based on the following four key ingre-
dients:
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(i) Lévy system of X that describes how the process jumps—see (2.3) below;

(ii) the two-sided heat kernel estimates (2.4) for the reflected α-stable process X on D obtained
in [6] and a scaling property of X—see (3.2) below;

(iii) the boundary Harnack principle of X in C1,1 open sets (see Section 3) and the parabolic
Harnack principle of X obtained in [6];

(iv) inequality (2.9) and the intrinsic ultracontractivity of X in bounded open sets—established
in Theorem 2.2 below.

Even though the intrinsic ultracontractivity gives sharp two-sided estimates of the transition
density function p(t, x, y) for each fixed t > 0, the estimates are far from sharp as a function of
(t, x, y). But the inequality (2.9), which implies the intrinsic ultracontractivity, plays an important
role in our approach.

Throughout this paper, unless otherwise specified, we assume d ≥ 1. The Euclidean distance
between x and y will be denoted as |x − y|. For any open set D, δD(x) := dist(x,Dc). We will
use dx to denote the Lebesgue measure in Rd. Throughout this paper, we use c1, c2, · · · to denote
generic constants, whose exact values are not important and can change from one appearance to
another. The labeling of the constants c1, c2, · · · starts anew in the statement of each result. The
values of the constants M1,M2, . . . will remain the same throughout this paper and the dependence
of the constant c on the dimension d and the constants M1,M2, . . . will not be mentioned explicitly.
We will use “:=” to denote a definition, which is read as “is defined to be”. We will use ∂ to denote
a cemetery point and for every function f , we extend its definition to ∂ by setting f(∂) = 0. For a
Borel set A ⊂ Rd, we also use |A| to denote the Lebesgue measure of A.

2 Censored stable-like process and intrinsic ultracontractivity

Censored α-stable-like processes in open subsets of Rd were studied by Bogdan, Burdzy and Chen
in [3] (see also [18]). Fix an open set D in Rd with d ≥ 1. Define a bilinear form E on C∞c (D) by

E(u, v) :=
1
2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))
C(x, y)
|x− y|d+α

dxdy, u, v ∈ C∞c (D), (2.1)

where C(x, y) is a measurable symmetric function on D ×D satisfying

M1 ≤ C(x, y) ≤M2 (2.2)

for some positive constants M1 and M2. Using Fatou’s lemma, it is easy to check that the bilinear
form (E , C∞c (D)) is closable in L2(D, dx). Let F be the closure of C∞c (D) under the Hilbert
inner product E1 := E + ( · , · )L2(D,dx). As noted in [3], (E ,F) is Markovian and hence a regular
symmetric Dirichlet form on L2(D, dx), and therefore there is an associated symmetric Hunt process
X = {Xt, t ≥ 0,Px, x ∈ D} taking values in D (cf. Theorem 3.1.1 of [14]). The process X is called
a censored α-stable-like process in D.

We fix an arbitrary symmetric measurable extension of C(·, ·) onto Rd×Rd satisfying (2.2) and
we still denote it by C(·, ·). It is well known (see, for instance, [6]) that the bilinear form (Q,FRd)
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defined by

Q(u, v) =
1
2

∫
Rd

∫
Rd

(u(x)− u(y))(v(x)− v(y))
C(x, y)
|x− y|d+α

dxdy,

FRd =
{
u ∈ L2(Rd) :

∫
Rd

∫
Rd

(u(x)− u(y))2

|x− y|d+α
dxdy <∞

}
,

is a regular symmetric Dirichlet form on L2(Rd, dx) and hence there is an associated symmetric
Hunt process Y = {Yt, Px} on Rd. The process Y is called an α-stable-like process in Rd, which
is studied in [6]. Among other things, it is shown in [6] that Y is conservative and has a Hölder
continuous transition density function. The latter in particular implies that Y can be modified to
start from every point x ∈ Rd and the modified process is a Feller process on Rd. Note that if
C(x, y) is equal to the constant A(d, α), Y is the symmetric α-stable process on Rd.

For any open subset D of Rd, we use Y D to denote the subprocess of Y killed upon exiting from
D. The following result gives two other ways of constructing a censored α-stable-like process.

Theorem 2.1 ([3, Theorem 2.1 and Remark 2.4]) The following processes have the same distri-
bution:

(i) the symmetric Hunt process X associated with the regular symmetric Dirichlet form (E ,F) on
L2(D, dx);

(ii) the strong Markov process X obtained from the killed symmetric α-stable-like process Y D in
D through the Ikeda–Nagasawa–Watanabe piecing together procedure;

(iii) the process X obtained from Y D through the Feynman-Kac transform e
R t
0 κD(Y Ds )ds with

κD(x) :=
∫
Dc

C(x, y)
|x− y|d+α

dy.

The Ikeda–Nagasawa–Watanabe piecing together procedure mentioned in (ii) goes as follows.
Let Xt(ω) = Y D

t (ω) for t < τD(ω). If Y D
τD−(ω) /∈ D, set Xt(ω) = ∂ for t ≥ τD(ω). If Y D

τD−(ω) ∈ D,
let XτD(ω) = Y D

τD−(ω) and glue an independent copy of Y D starting from Y D
τD−(ω) to XτD(ω).

Iterating this procedure countably many times, we obtain a process on D which is a version of
the strong Markov process X; the procedure works for every starting point in D. Because of this
procedure, a censored stable-like process is also called a resurrected stable-like process.

By (2.1), the jump function J(x, y) of the censored α-stable-like process X is given by

J(x, y) =
C(x, y)
|x− y|d+α

for x, y ∈ D.

It determines a Lévy system for X, which describes the jumps of the process X: for any non-
negative measurable function f on R+ ×D ×D, t ≥ 0, x ∈ D and stopping time T (with respect
to the filtration of X),

Ex

∑
s≤T

f(s,Xs−, Xs)

 = Ex
[∫ T

0

(∫
D
f(s,Xs, y)J(Xs, y)dy

)
ds

]
, (2.3)
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(see, for example [7, Appendix A]).
Recall that an open set D ⊂ Rd is said to be a d-set if there exist two positive constants c1, c2

so that for every x ∈ D and 0 < r ≤ 1,

c1r
d ≤ |D ∩B(x, r)| ≤ c2rd.

Clearly any globally Lipschitz open set in Rd is a d-set. See [3] for examples of non-smooth open
d-sets in Rd.

For any open d-set D in Rd, define

F ref :=
{
u ∈ L2(D) :

∫
D

∫
D

(u(x)− u(y))2

|x− y|d+α
dxdy <∞

}
and

Eref(u, v) :=
1
2

∫
D

∫
D

(u(x)− u(y))(v(x)− v(y))
C(x, y)
|x− y|d+α

dxdy, u, v ∈ F ref .

It is shown in [3, Remark 2.1] that the bilinear form (Eref ,F ref) is a regular symmetric Dirichlet
form on L2(D, dx). The process X on D associated with (Eref ,F ref) is called a reflected α-stable-
like process on D. It is shown in [6, Theorem 1.1] that X has a Hölder continuous transition density
function p̄(t, x, y) on (0,∞) × D × D and for every T0 > 0, there are positive constants c1, c2 so
that for t ∈ (0, T0] and x, y ∈ D,

c1 t
−d/α

(
1 ∧ t1/α

|x− y|

)d+α
≤ p̄(t, x, y) ≤ c2 t−d/α

(
1 ∧ t1/α

|x− y|

)d+α
. (2.4)

The Hölder continuity of p(t, x, y) in particular implies that X can be refined to start from every
point x in D and the refined process is a Feller process on D. When D is an open d-set in Rd, the
censored α-stable-like process X can be realized as a subprocess of X killed upon leaving D (see
[3, Remark 2.1]).

In the remainder of this paper, we will fix an open d-set in Rd and a symmetric measurable
function C(·, ·) on D×D satisfying (2.2) and a symmetric measurable extension of it onto Rd×Rd.
Unless explicitly mentioned otherwise, whenever we speak of a censored α-stable-like process X we
mean the symmetric Hunt process associated with the Dirichlet form (E ,F) above on L2(D, dx),
and whenever we speak of an α-stable-like process Y on Rd (resp. a reflected α-stable-like process
X on D) we mean the symmetric Hunt process associated with the Dirichlet form (Q,F) above on
L2(Rd, dx) (resp. (Eref ,F ref) above on L2(D, dx)).

We will use {Pt, t ≥ 0} to denote the transition semigroup of X. Since X is the subprocess of X
killed upon exiting D, X has a transition density function pD(t, x, y) with respect to the Lebesgue
measure on D, which is also called the heat kernel of X. It follows from (2.4) that for every T0 > 0,
there is a constant c > 0 so that

pD(t, x, y) ≤ c
(
t−d/α ∧ t

|x− y|d+α

)
on (0, T0]×D ×D. (2.5)

For any open set U ⊂ D, we define τU := inf {t > 0 : Xt /∈ U} and we will use XU to denote the
subprocess of X killed upon exiting U . Let {PUt : t ≥ 0} be the transition semigroup of XU and
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pUD(t, x, y) be the transition density function of XU . We will use GUD to denote the Green function
of XU :

GUD(x, y) :=
∫ ∞

0
pUD(t, x, y)dt.

When U = D, GDD(x, y) will simply be denoted by GD(x, y) and called the Green function of X.
We now show that for any bounded open subset U of D that has the property

Px(τU <∞) = 1 for every x ∈ U, (2.6)

the semigroup {PUt , t > 0} is intrinsically ultracontractive. Note that condition (2.6) is satisfied if

(i) D \U has positive Lebesgue measure in view of (2.4) and the strong Markov property of X; or

(ii) U = D is a bounded Lipschitz open set and α ∈ (1, 2) in view of [3, Theorem 1.1].

The intrinsic ultracontractivity for the case U = D when D is a bounded C1,1 open set will be used
to derive Theorem 1.1(ii) and the intrinsic ultracontractivity for the case U 6= D will be used to
derive Theorem 1.1(i).

By (2.5), we know that for any bounded open subset U of D, the semigroup {PUt , t > 0} is
a semigroup of Hilbert-Schmidt operators and hence is compact. Let −λU1 < 0 be the largest
eigenvalue of the generator of XU and let φU1 (x) be the positive eigenfunction of PU1 corresponding
to e−λ

U
1 with ‖φU1 ‖L2(U) = 1. When D is bounded and U = D, λU1 and φU1 will be denoted as λ1

and φ1, respectively. The semigroup {PUt , t > 0} is said to be intrinsically ultracontractive if for
any t > 0 there exists a positive constant Ct > 1 such that

pUD(t, x, y) ≤ Ct φU1 (x)φU1 (y) for x, y ∈ U. (2.7)

It follows from [13, Theorem 3.2] that if {PUt , t > 0} is intrinsically ultracontractive then for any
t > 0 there exists a positive constant ct > 1 such that

pUD(t, x, y) ≥ c−1
t φU1 (x)φU1 (y) for x, y ∈ U. (2.8)

The proof of the following result is adapted from an argument given in [20].

Theorem 2.2 Suppose that D is an open d-set in Rd and U is a bounded open subset of D satisfying
condition (2.6). Then the semigroup {PUt , t > 0} is intrinsically ultracontractive. Moreover, for
every B(x0, 2r) ⊂ U there exists a constant c = c(α, r, diam(U)) > 0 which is independent of D
and depends on the function C(·, ·) only via the constants M1,M2 in (2.2) such that

Ex
[∫ τU

0
1B(x0,r)(X

U
t )dt

]
≥ cEx [τU ] for every x ∈ U. (2.9)

Proof. Fix a ball B(x0, 2r) ⊂ U and put

B0 := B(x0, r/4), C1 := B(x0, r/2) and B2 := B(x0, r).
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Let {θt, t > 0} be the time-shift operators of X and we define stopping times Sn and Tn recursively
by

S1(ω) := 0,

Tn(ω) := Sn(ω) + τU\C1
◦ θSn(ω) for Sn(ω) < τU

and Sn+1(ω) := Tn(ω) + τB2 ◦ θTn(ω) for Tn(ω) < τU .

Clearly Sn ≤ τU . Let S := limn→∞ Sn ≤ τU . On {S < τU}, we must have Sn < Tn < Sn+1 for
every n ≥ 0. Using (2.6) and the quasi-left continuity of XU , we have Px(S < τU ) = 0. Therefore,
for every x ∈ U ,

Px
(

lim
n→∞

Sn = lim
n→∞

Tn = τU

)
= 1. (2.10)

We claim that there exists a constant c1 = c1(α, r) > 0 depending on the function C(·, ·) only
via the constants M1 and M2 in (2.2) such that

Ex[τB2 ] ≥ c1 for every x ∈ C1. (2.11)

In fact, for any x ∈ C1, we have

Ex[τB2 ] ≥ Ex[τB(x,r/2)] ≥ Ex[τYB(x,r/2)] ≥ c1,

where in the second inequality above, we used Theorem 2.1 and in the third inequality above, we
used [6, Proposition 4.1]. Here Y denotes the symmetric α-stable-like process in Rd (corresponding
to a fixed symmetric measurable extension of C(·, ·) satisfying (2.2)) and τYB(x,r/2) the exit time from
the ball B(x, r/2) by Y . Now it follows from the strong Markov property that

Ex [Sn+1 − Tn] = Ex
[
EXU

Tn
[τB2 ]; Tn < τU

]
≥ c1Px(XU

Tn ∈ B0) = c1Ex
[
PXU

Sn
(XU

τU\C1
∈ B0)

]
.

Note that for any x ∈ U \B2, by Lévy system of X in (2.3), we have

Px
(
XU
τU\C1

∈ B0

)
=

∫
U\C1

G
U\C1

D (x, y)
∫
B0

(
C(y, z)
|y − z|d+α

dz

)
dy

≥ M1

∫
U\C1

G
U\C1

D (x, y)
∫
B0

(
dz

(diam(U))d+α

)
dy

= c2Ex[τU\C1
]

for some constant c2 = c2(α, r,diam(U)) > 0. It follows then

Ex [Sn+1 − Tn] ≥ c1c2Ex
[
EXU

Sn
[τU\C1

]
]

= c1c2Ex[Tn − Sn]. (2.12)

Since XU
t ∈ B2 for Tn < t < Sn+1, we have

Ex
[∫ τU

0
1B2(XU

t )dt
]

= Ex

[ ∞∑
n=1

(∫ Tn

Sn

1B2(XU
t )dt+

∫ Sn+1

Tn

1B2(XU
t )dt

)]

≥ Ex

[ ∞∑
n=1

(∫ Sn+1

Tn

1B2(XU
t )dt

)]

= Ex

[ ∞∑
n=1

(Sn+1 − Tn)

]
.
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Using (2.12) and noting that XU
t /∈ U \B2 for t ∈ [Tn, Sn+1), we get

Ex
[∫ τU

0
1B2(XU

t )dt
]
≥ c1c2Ex

[ ∞∑
n=1

(Tn − Sn)

]

≥ c1c2Ex

[ ∞∑
n=1

(∫ Tn

Sn

1U\B2
(XU

t )dt+
∫ Sn+1

Tn

1U\B2
(XU

t )dt
)]

= c1c2Ex
[∫ τU

0
1U\B2

(XU
t )dt

]
.

Thus

Ex
[∫ τU

0
1B2(XU

t )dt
]
≥ c1 c2

1 + c1 c2
Ex [τU ] .

Since φU1 = eλ
U
1 PU1 φ

U
1 , it follows that φU1 is strictly positive and continuous in U (see, e.g. [19]).

The above inequality implies that

Ex[τU ] ≤ c3
∫
B2

GUD(x, z)φU1 (z)dz ≤ c3
∫
U
GUD(x, z)φU1 (z)dz =

c3

λU1
φU1 (x). (2.13)

By the semigroup property and (2.5),

pUD(t, x, y) =
∫
U
pUD(t/3, x, z)

∫
U
pUD(t/3, z, w)pUD(t/3, w, y)dwdz

≤ c4t
−d/α

∫
U
pUD(t/3, x, z)dz

∫
U
pUD(t/3, w, y)dw

= c4t
−d/α Px(τU > t/3) Py(τU > t/3)

≤ (9c4/t2) t−d/α Ex[τU ] Ey[τU ]. (2.14)

This together with (2.13) establishes the intrinsic ultracontractivity of XU . 2

Remark 2.3 (i) When U = D, sufficient conditions for (2.6) to hold can be found in [3, Theorem
2.4 and Theorem 2.7]. In particular, we know from there that if D is an open d-set in Rd with
finite Lebesgue measure and ∂D has positive r-dimensional Hausdorff measure, then condition
(2.6) holds when α > d − r. In this case, by Theorem 2.2, the semigroup of the censored
α-stable-like process in D is intrinsically ultracontractive. Clearly the latter assertion holds
for any bounded Lipschitz domain D ⊂ Rd and α ∈ (1, 2).

(ii) By considering D = Rd, we get the intrinsic ultracontractivity of the killed symmetric α-
stable-like process Y U for every bounded open subset U , first proved in [20].

3 Upper bound estimate

In this section, we establish sharp upper bound heat kernel estimates for X in a C1,1 open subset
D ⊂ Rd.

Recall that an open set D in Rd (when d ≥ 2) is said to be a C1,1 open set if there exist
a localization radius R0 > 0 and a constant Λ0 > 0 such that for every z ∈ ∂D, there exist a
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C1,1-function φ = φz : Rd−1 → R satisfying φ(0) = ∇φ(0) = 0, ‖∇φ‖∞ ≤ Λ0, |∇φ(x) −∇φ(z)| ≤
Λ0|x − z|, and an orthonormal coordinate system CSz: y = (y1, · · · , yd−1, yd) := (ỹ, yd) with its
origin at z such that

B(z, r0) ∩D = {y ∈ CSz : |y| < r0, yd > φ(ỹ)}.

By a C1,1 open set in R we mean an open set which can be written as the union of disjoint intervals
so that the minimum of the lengths of all these intervals is positive and the minimum of the
distances between these intervals is positive. It is well known that any C1,1 open set D satisfies the
uniform interior and exterior ball conditions: there exists r0 < R0, that depends only on (R0,Λ0),
such that (i) for any x ∈ D with δD(x) ≤ r0, there is a unique zx ∈ ∂D such that |x− zx| = δD(x)
and (ii) for any z ∈ ∂D and r ∈ (0, r0] there exist two balls Bz

1 and Bz
2 of radius r such that

Bz
1 ⊂ D, Bz

2 ⊂ Rd \D and ∂Bz
1 ∩ ∂Bz

2 = {z}. For simplicity, in this paper we call the pair (r0,Λ0)
the characteristics of the C1,1 open set D. Note that for a C1,1 open set D with characteristics
(r0,Λ0), for every T > 0 and every λ ∈ (0, T ], λ−1D is a C1,1 open set with (uniform) characteristics
(r0/T, TΛ0). This trivial but important fact will be used several times in this paper.

When D is a bounded Lipschitz open set in Rd, by [3, Theorem 1.1] the censored α-stable-like
process X in D is recurrent if and only if α ≤ 1. In this case as well as the case D = Rd, X is the
same as the reflected α-stable-like process X, and so the sharp two-sided estimates (2.4) holds for
the transition density function of X.

In the remainder of this section, we assume α ∈ (1, 2). In this case, every censored α-stable-like
process in a C1,1 open proper subset of Rd is transient by [3, Theorem 2.7 and Remark 2.4]. The
following scaling property will be used several times in the rest of this paper: If {Xt, t ≥ 0} is a
censored α-stable-like process in D with the jump function

J(x, y) =
C(x, y)
|x− y|d+α

, x, y ∈ D,

then {X(λ)
t , t ≥ 0} := {λ−1Xλαt, t ≥ 0} is a censored α-stable-like process in λ−1D with jump

function
J (λ)(x, y) :=

C(λx, λy)
|x− y|d+α

for x, y ∈ λ−1D. (3.1)

For any λ > 0, we define

pλ−1D(t, x, y) := λdpD(λαt, λx, λy) for t > 0 and x, y ∈ λ−1D. (3.2)

Clearly pλ−1D(t, x, y) is the transition density function of the censored α-stable-like process {X(λ)
t , t ≥

0} with the jump function J (λ)(x, y). We shall denote the lifetime of X(λ) by ζ(λ).
A key ingredient in proving our main result is a scale invariant boundary Harnack principle.

We formulate this as an assumption and then we will discuss when it is satisfied. Recall that
a nonnegative function u defined on D is said to be harmonic in U ⊂ D with respect to X if
u(x) = Ex[u(XτB )] for every x ∈ B and every open set B whose closure is a compact subset of U .

The next result is proved in [3, Theorem 1.2].

Theorem 3.1 Let D be a C1,1 open set in Rd with characteristics (r0,Λ0) and X the censored
α-stable process in D. Then there exists a positive constant c = c(α,Λ0) such that for r ∈ (0, r0],
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Q ∈ ∂D and any nonnegative function u in D which is harmonic in D ∩B(Q, r) with respect to X
and vanishes continuously on ∂D ∩B(Q, r), we have

u(x)
u(y)

≤ c δD(x)α−1

δD(y)α−1
for every x, y ∈ D ∩B(Q, r/2).

If X is the censored α-stable process in C1,1 open set D with characteristics (r0,Λ0), then for
every T > 0 and every λ ∈ (0, T ], {X(λ)

t , t ≥ 0} := {λ−1Xλαt, t ≥ 0} is a censored α-stable process
in λ−1D, which is a C1,1 open set with characteristics (r0/T, TΛ0). Thus Theorem 3.1 is applicable
with the comparison constant invariant under the domain dilation λ−1D for every λ ≤ T . To
prove Theorem 1.1 for the censored α-stable-like process X, we need the following version of the
boundary Harnack principle with the comparison constant invariant under the domain dilation
λ−1D for λ ≤ T .

BHP: For any C1,1 open set D in Rd with characteristics (r0,Λ0) and every T > 0, there exists
a positive constant c = c(α,Λ0, T, C) independent of λ such that for λ ∈ (0, T ], r ∈ (0, r0/λ],
Q ∈ ∂(λ−1D) and any nonnegative function u in λ−1D that is harmonic in (λ−1D)∩B(Q, r)
with respect to X(λ)

t and vanishes continuously on ∂(λ−1D) ∩B(Q, r), we have

u(x)
u(y)

≤ c δD(x)α−1

δD(y)α−1
for every x, y ∈ (λ−1D) ∩B(Q, r/2).

As we discussed above, censored α-stable processes have the above property. Under some
assumptions on C(x, y), censored stable-like processes also have this property. We now present
some sufficient condition for BHP to hold.

Assume that the (symmetric) function C(x, y) satisfies the following conditions: there exist
positive bounded functions ψ1, ψ2 ∈ C1(D ×D) and positive constants c and δ < r0 such that∣∣∣∣C(x, y)− ψ1(x, y)− ψ2(x, y)

|x− y|d+α

|x− y|d+α

∣∣∣∣ ≤ c|x− y| for every x, y ∈ {z ∈ D : δD(z) < δ} (3.3)

and
|C(x, y)− C(x, x)| ≤ c|x− y| for every x, y ∈ {z ∈ D : δD(z) > δ}. (3.4)

Here y := 2zy − y is the reflection of y with respect to ∂D; more precisely, zy ∈ ∂D is the unique
point such that δD(y) = |y − zy|. Put

M3 := c+ sup
x,y∈D,|x−y|<r0

(|∇yψ1(x, y)|+ |∇yψ2(x, y)|) (3.5)

with c being the constant in (3.3) and (3.4). It is proved in [15] that under the assumptions
(3.3) and (3.4), the boundary Harnack principle holds for the censored stable-like process X in
a C1,1 open set D with the characteristics (r0,Λ0) and the comparison constant depends only on
α,Λ0,M1,M2,M3 and d.

In particular, if C(x, y) is in C1(D × D) with bounded derivatives, the assumptions (3.3) and
(3.4) hold with ψ1(x, y) = C(x, y) and ψ2(x, y) ≡ 0. The reason for the general form of (3.3) is to
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cover cases where the derivatives of C are not bounded. For example, let D = Rd
+ be the upper half

space and C(x, y) = A(d, α)
(

1 + |x−y|d+α
|x−y|d+α

)
. Then the conditions (3.3) and (3.4) are satisfied.

Recall the fact that for a C1,1 open set D with characteristics (r0,Λ0), for every T > 0 and
every λ ∈ (0, T ], λ−1D is a C1,1 open set with characteristics (r0/T, TΛ0). Thus it is easy to see
that under the assumptions (3.3) and (3.4) on C(x, y), such a censored α-stable-like process enjoys
BHP with a comparison constant c independent of λ ∈ (0, T ]. Recall that that the dependence of
the constant c on C will not be shown in notation.

The next lemma and its proof are similar to [2, Lemma 6] and its proof.

Lemma 3.2 Suppose that D is a C1,1 open set in Rd with characteristics (r0,Λ0) and X is the
censored α-stable-like process in D ⊂ Rd where d ≥ 1 and α ∈ (0, 2). For every r ≤ r0, z ∈ ∂D and
U := D ∩B(z, r)

Px(τU < ζ and XτU ∈ ∂U) = 0 for every x ∈ U.

Proof. Let Y be the symmetric stable-like process in Rd with the jump function

JY (x, y) = C(x, y)|x− y|−d−α for x, y ∈ Rd.

For any open set V ⊂ Rd, let τYV := inf{t > 0 : Yt /∈ V }. By Theorem 2.1(iii), we have for every
x ∈ D,

Px(τU < ζ and XτU ∈ ∂U) = Ex

[
exp

(∫ τYU

0
κD(Ys)ds

)
; τYU < τYD and YτYU

∈ ∂U

]
.

Thus it suffices to show that Px(YτYU ∈ ∂U) = 0 for every x ∈ U.
For each x ∈ U , let Bx := B(x, δU (x)/3). By the Lévy system for Y , we have

Px
(
YτYBx

∈ U c
)

=
∫
Bx

GYBx(x, y)
(∫

Uc

C(y, z)
|y − z|d+α

dz

)
dy,

where GYBx is the Green function of Y Bx . By the changes of variables a = y/δD(x) and b = z/δD(x),

Px
(
YτYBx

∈ U c
)

=
∫
B(δU (x)−1x,1/3)

GYBx(x, δU (x)a)

(∫
(δU (x)−1U)c

δU (x)d−α
C(δU (x)a, δU (x)b)
|a− b|d+α

db

)
da.

(3.6)
Let Ŷt := δU (x)−1YδU (x)αt, which is the symmetric stable-like process with the jump function
Ĵ(a, b) := C(δU (x)a, δU (x)b)|a− b|−d−α. Since

Ĝ
bY
B(δU (x)−1x,1/3)(w, a) := δU (x)d−αGYBx(δU (x)w, δU (x)a)

is the Green function of the subprocess of Ŷ killed upon exiting B(δU (x)−1x, 1/3), we have by (3.6)

Px
(
YτYBx

∈ U c
)

=
∫
B(δU (x)−1x,1/3)

Ĝ
bY
B(δU (x)−1x,1/3)(δU (x)−1x, a)

(∫
(δU (x)−1U)c

C(δU (x)a, δU (x)b)
|a− b|d+α

db

)
da

≥M1

∫
B(δU (x)−1x,1/3)

Ĝ
bY
B(δU (x)−1x,1/3)(δU (x)−1x, a)

(∫
(δU (x)−1U)c

1
|a− b|d+α

db

)
da. (3.7)
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Let zx ∈ ∂U be such that δU (x) = |x− zx|. Since D is C1,1, there exists η > 0 such that, under an
appropriate coordinate system, we have zx + Ĉ ⊂ (δU (x)−1U)c where

Ĉ :=
{
y = (y1, · · · , yd) ∈ Rd : 0 < yd < η and

√
y2
1 + · · ·+ y2

d−1 < ηyd

}
.

Thus there is a constant c1 > 0 such that∫
(δU (x)−1U)c

1
|a− b|d+α

db ≥ c1 > 0 for every a ∈ B(δU (x)−1x, 1/3).

So we deduce from (3.7)

inf
x∈U

Px
(
YτYBx

∈ U c
)
≥M1c1 inf

w∈Rd
Ew
[
τ

bY
B(w,1/3)

]
≥ c2 > 0. (3.8)

In the second inequality above, we used [6, Proposition 4.1]. On the other hand, by the Lévy system
for Y ,

Px
(
YτYBx

∈ ∂U
)

= 0 for every x ∈ U.

So

Px
(
YτYU
∈ ∂U

)
= Ex

[
PY

τY
Bx

(YτYU ∈ ∂U);YτYBx
∈ U

]
.

Inductively, we have
Px
(
YτYU
∈ ∂U

)
= lim

k→∞
pk(x),

where

p0(x) := Px
(
YτYU
∈ ∂U

)
and pk(x) := Ex

[
pk−1(YτYBx

); YτYBx
∈ U

]
for k ≥ 1.

By (3.8),
sup
x∈U

pk+1(x) ≤ (1− c2) sup
x∈U

pk(x) ≤ (1− c2)k+1 → 0.

Therefore
Px
(
YτYU
∈ ∂U

)
= 0 for every x ∈ U.

2

The goal of the rest of this section is to prove the upper bound in Theorem 1.1(i). [6, Theorem
1.1] and the fact that, for every λ ∈ (0, T ], λ−1D is a C1,1 open set with characteristics (r0/T, TΛ0)
imply that, for every T, T1 > 0, there exists a constant c = c(α, r0, T, T1) > 0 such that for every
λ ∈ (0, T ],

pλ−1D(t, x, y) ≤ c
(
t−d/α ∧ t

|x− y|d+α

)
on (0, T1]× (λ−1D)× (λ−1D). (3.9)

For the rest of this paper, we put r1 = r0/10.

Lemma 3.3 Suppose that α ∈ (1, 2) and that D is a C1,1 open set in Rd with characteristics
(r0,Λ0). For every T > 0, there is a constant c = c(r0, α,Λ0, T, r) > 0 such that for all λ ∈ (0, T ],
t ∈ (0, T ] and all x, y ∈ λ−1D with δλ−1D(x) < r1/(4T ) and |x− y| ≥ 10r1/T ,

pλ−1D(t, x, y) ≤ c δλ−1D(x)α−1

|x− y|d+α
.
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Proof. Fix T > 0, λ ∈ (0, T ] and t ∈ (0, T ]. Let x, y ∈ λ−1D be such that δλ−1D(x) < r1/(4T ) and
|x− y| ≥ 10r1/T , and choose zx ∈ ∂(λ−1D) such that δλ−1D(x) = |x− zx|. Define U := (λ−1D) ∩
B(zx, r1/(2T )) and let pUλ−1D(t, x, y) denote the transition density function of the subprocess Xλ,U

of X(λ) killed upon exiting U . By the strong Markov property,

pλ−1D(t, x, y) = Ex
[
pλ−1D(t− τ (λ)

U , X
(λ)

τ
(λ)
U

, y) : τ (λ)
U < t < ζ(λ)

]
(3.10)

where τ (λ)
U := inf{t > 0 : X(λ)

t /∈ U}. Define V1 := {w ∈ λ−1D : r1/(2T ) < |w − zx| ≤ 3|x − y|/4}
and V2 := {w ∈ λ−1D : |w − zx| > 3|x− y|/4}. It follows from (2.3), (3.10) and Lemma 3.2 that

pλ−1D(t, x, y)

=
∫ t

0

(∫
U
pUλ−1D(s, x, z)

(∫
{w∈λ−1D:|w−zx|>r1/(2T )}

J (λ)(z, w)pλ−1D(t− s, w, y)dw

)
dz

)
ds

=
∫ t

0

(∫
U
pUλ−1D(s, x, z)

(∫
V1

J (λ)(z, w)pλ−1D(t− s, w, y)dw
)
dz

)
ds

+
∫ t

0

(∫
U
pUλ−1D(s, x, z)

(∫
V2

J (λ)(z, w)pλ−1D(t− s, w, y)dw
)
dz

)
ds.

= I + II. (3.11)

Note that for w ∈ V1,

|w − y| ≥ |y − x| − |w − zx| − |x− zx| ≥
|x− y|

4
− r1

4T
≥ 3|x− y|

20
. (3.12)

By (3.9) and (3.12), there exist positive constants c = c(α, r0, T ) and c1 = c1(α, r0, T ) such that

I ≤
∫ t

0

(∫
U
pUλ−1D(s, x, z)

(∫
V1

J (λ)(z, w)
c T

|w − y|d+α
dw

)
dz

)
ds

≤ c1 T

|x− y|d+α

∫ t

0

(∫
U
pUλ−1D(s, x, z)

(∫
V1

J (λ)(z, w)dw
)
dz

)
ds

=
c1 T

|x− y|d+α
Px
(
X

(λ)

τ
(λ)
U

∈ V1 and τ
(λ)
U < t

)
≤ c1 T

|x− y|d+α
Px
(
X

(λ)

τ
(λ)
U

∈ V1

)
.

Let n(zx) be the unit inward normal of λ−1D at the point zx. Put x0 = zx + r1
4T n(zx). Note that

x0 ∈ (λ−1D) ∩ B(zx, r1/(4T )) ⊂ U and δλ−1D(x0) = r1/(4T ). It follows from BHP that there
exists a constant c2 = c2(r0, α, T,Λ0) > 0 such that

Px
(
X

(λ)

τ
(λ)
U

∈ V1

)
≤ c2 Px0

(
X

(λ)

τ
(λ)
U

∈ V1

)
δλ−1D(x)α−1

δλ−1D(x0)α−1
≤ c2 δλ−1D(x)α−1.

Thus we have

I ≤ c3 (T ∨ 1)
δλ−1D(x)α−1

|x− y|d+α
(3.13)

for some c3 = c3(r0, α, T,Λ0) > 0. On the other hand, for z ∈ U and w ∈ V2,

|z − w| ≥ |w − zx| − |z − zx| ≥
3|x− y|

4
− r1

2T
≥ 7|x− y|

20
.

15



Thus by the symmetry of pλ−1D(t− s, w, y) in (w, y) and (2.9) of Xλ,U , we have

II ≤
∫ t

0

(∫
U
pUλ−1D(s, x, z)

(∫
V2

c4
|x− y|d+α

pλ−1D(t− s, y, w)dw
)
dz

)
ds

≤ c4
|x− y|d+α

∫ ∞
0

(∫
U
pUλ−1D(s, x, z)dz

)
ds

≤ c5
|x− y|d+α

Ex

[∫ τ
(λ)
U

0
1B(x0,r1/(16T ))(X

(λ)
s )ds

]

for some positive constants c4 and c5 = c5(r0, α). Take x1 = zx + r1
16T n(zx). By BHP, the last

expectation above is bounded by

c6Ex1

[∫ τ
(λ)
U

0
1B(x0,r1/(16T ))(X

(λ)
s )ds

]
δλ−1D(x)α−1

δλ−1D(x1)α−1

for some c6 = c6(r0, α, T,Λ0) > 0.
To bound the expectation in the last display, let (E(λ),F (λ)) be the Dirichlet form of X(λ)

and (E(λ),F (λ)
U ) be the Dirichlet form of the subprocess Xλ,U . The transition semigroup of the

subprocess Xλ,U will be denoted as {P λ,Ut , t ≥ 0}. The killing density of this subprocess is given
by

κU (x) :=
∫

(λ−1D\U)

C(λx, λy)
|x− y|d+α

dy, x ∈ U.

By the C1,1 assumption on D, there is a constant c7 = c7(d, α, r0, T ) > 0 independent of λ > 0 and
x such that κU ≥ 2c7 > 0 on U . Then for every u ∈ F (λ)

U ,

E(λ)
−c7(u, u) ≥ 1

2
E(λ)(u, u) ≥ c8

(∫
U×U

(u(x)− u(y))2

|x− y|d+α
dxdy +

∫
U
u(x)2dx

)
for some c8 = c8(d, α, r0, T ) > 0 independent of λ, where

E(λ)
−c7(u, u) := E(λ)(u, u)− c7

∫
U
u(x)2dx.

It is known (see, for instance, [6, Section 3] or [7]) that there is a constant c9 > 0 independent
of λ such that for every u ∈ F (λ)

U with ‖u‖L1(U) = 1,

‖u‖2+2α/2
L2(U)

≤ c9
(∫

U×U

(u(x)− u(y))2

|x− y|d+α
dxdy +

∫
U
u(x)2dx

)
.

So we have for every u ∈ F (λ)
U with ‖u‖L1(U) = 1,

‖u‖2+2α/2
L2(U)

≤ c10 E(λ)
−c7(u, u).

Observe that (E(λ)
−c7 ,F

(λ)
U ) is the quadratic form for the semigroup {ec7tP λ,Ut , t ≥ 0}.

Thus by [12, Theorem 2.4.6], there exists a positive constant independent of λ, such that

ec7tpUλ−1D(t, x, y) ≤ c11t
−d/α for every t > 0.
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Therefore

Ex1

[∫ τ
(λ)
U

0
1B(x0,r1/(16T ))(X

(λ)
s )ds

]
≤ 1 +

∫ ∞
1

c11e
−c7tdt |B(0, r1/(16T ))| <∞.

The proof of the lemma is now complete. 2

Lemma 3.4 Let D be a C1,1 open set in Rd with characteristics (r0,Λ0). For every T > 0, there
is a constant c = c(r0,Λ0, T, α) > 0 such that for every λ ∈ (0, T ] and x, y ∈ λ−1D,

pλ−1D(1, x, y) ≤ c
(

1 ∧ |x− y|−d−α
)
δλ−1D(x)α−1.

Proof. Note that for every λ ∈ (0, T ], λ−1D is a C1,1 open set with characteristics (r0/T, TΛ0).
Take x, y ∈ λ−1D. In view of (3.9), it suffices to prove the theorem for x ∈ λ−1D with δλ−1D(x) <
r1/(4T ). When δλ−1D(x) < r1/(4T ) and |x − y| ≥ 10r1/T , by Lemma 3.3, there is a constant
c1 = c1(r0, T, α,Λ0) > 0 such that

pλ−1D(t, x, y) ≤ c1
δλ−1D(x)α−1

|x− y|d+α
for every t ∈ (0, 1]. (3.14)

So it remains to show that when δλ−1D(x) < r1/(4T ) and |x− y| < 10r1/T ,

pλ−1D(1, x, y) ≤ c2 δλ−1D(x)α−1 (3.15)

for some positive constant c2 = c2(r0, T, α,Λ0) > 0. Define U := (λ−1D) ∩ B(x, 8r1/T ). Note
that x, y ∈ U and δU (x) = δλ−1D(x). Let pUλ−1D(t, z, w) be the transition density function of the
subprocess Xλ,U of X(λ) killed upon leaving U and let pλ−1D(t, x, y) be the transition density
function of X(λ). By the strong Markov property of X(λ) and the symmetry of pλ−1D(1, x, y) in x

and y, we have

pλ−1D(1, x, y) = pUλ−1D(1, x, y) + Ey
[
pλ−1D(1− τ (λ)

U , X
(λ)

τ
(λ)
U

, x); τ (λ)
U < 1 < ζ(λ)

]
where τ (λ)

U := inf{t > 0 : X(λ)
t /∈ U}. Let zx ∈ ∂(λ−1D) be such that |x − zx| = δλ−1D(x) and let

n(zx) be unit inward normal vector of λ−1D at zx. Put x0 = zx + (r1/T )n(zx). By the semigroup
property, (3.9) and (2.9),

pUλ−1D(1, x, y) =
∫
U
pUλ−1D(1/2, x, z)pUλ−1D(1/2, z, y)dz

≤ ‖pλ−1D(1/2, ·, ·)‖∞ Px
(
τ

(λ)
U > 1/2

)
≤ c3 Ex

[
τ

(λ)
U

]
≤ c4Ex

[∫ τ
(λ)
U

0
1B(x0,r1/(4T ))(X

(λ)
s )ds

]
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for some positive constants ci = ci(α, r0, T ), i = 3, 4. Put x1 = zx + r1
4T n(zx). By BHP and the

last part of the proof of Lemma 3.3, the above is bounded by

c5Ex1

[∫ τ
(λ)
U

0
1B(x0,r1/(4T ))(X

(λ)
s )ds

]
δD(x)α−1

δD(x1)α−1
≤ c6δD(x)α−1

for some positive constants ci = ci(α, r0,Λ0, T ) with i = 5, 6.
On the other hand, X(λ)

τ
(λ)
U

∈ (λ−1D) \ U on {τ (λ)
U < 1 < ζ(λ)} and so

|X(λ)

τ
(λ)
U

− x| ≥ 7r1/T on {τ (λ)
U < 1 < ζ(λ)}.

Consequently by (3.14) for pλ−1D(1− τ (λ)
U , X

(λ)

τ
(λ)
U

, x),

Ey
[
pλ−1D(1− τU , X(λ)

τU
, x); τ (λ)

U < 1 < ζ(λ)
]

≤ Ey

[
c1

δλ−1D(x)α−1

|X(λ)
τU − x|d+α

; τ (λ)
U < 1 < ζ(λ)

]
≤ c7 δλ−1D(x)α−1 Py

(
τ

(λ)
U < 1 < ζ(λ)

)
≤ c7 δλ−1D(x)α−1

for some positive constant c7 = c7(α, r0,Λ0, T ). This completes the proof for (3.15) and hence the
theorem. 2

Theorem 3.5 Let D be a C1,1 open set with characteristics (r0,Λ0). For every T > 0, there exists
a positive constant c = c(T, r0, α,Λ0) such that for t ∈ (0, T ] and x, y ∈ D,

pD(t, x, y) ≤ c
(

1 ∧ δD(x)
t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1(
t−d/α ∧ t

|x− y|d+α

)
. (3.16)

Proof. Fix T > 0. By Lemma 3.4 there exists a positive constant c1 = c1(T, r0, α,Λ0) such that
for every λ ∈ (0, T 1/α],

pλ−1D(1, x, y) ≤ c1

(
1 ∧ |x− y|−d−α

)
δλ−1D(x)α−1. (3.17)

Thus by (3.2) and (3.17), for every t ≤ T ,

pD(t, x, y) = t−d/αpt−1/αD(1, t−1/αx, t−1/αy)

≤ c1 t
−d/α

(
1 ∧ |t−1/α(x− y)|−d−α

)
δt−1/αD(t−1/αx)α−1

= c1

(
t−d/α ∧ t

|x− y|d+α

)
δD(x)α−1

t1−1/α

≤ c2 pRd(t, x, y)
(
δD(x)
t1/α

)α−1

(3.18)

for some positive constant c2 = c2(T, r0, α,Λ0). Here pRd(t, x, y) is the transition density function
of the symmetric α-stable process in Rd and it is known (cf. [1, 6]) that

pRd(t, x, y) �
(
t−d/α ∧ t

|x− y|d+α

)
on R+ × Rd × Rd. (3.19)
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By symmetry, the inequality (3.18) for pD(t, x, y) holds with role of x and y interchanged. Using
the Chapman-Kolmogorov’s equation and (3.18), for t ≤ T ,

pD(t, x, y) =
∫
D
pD(t/2, x, z)pD(t/2, z, y)dz

≤ c3

(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1 ∫
D
pRd(t/2, x, z)pRd(t/2, z, y)dz

≤ c3

(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1

pRd(t, x, y) (3.20)

for some positive constant c2 = c2(T, r0, α,Λ0). Combining (3.19) and (3.20), we prove the upper
bound (3.16) by noting that

(1 ∧ a)(1 ∧ b) = min{1, a, b, ab} for a, b > 0.

2

4 Lower bound estimate

The goal of this section is to prove the lower bound for the heat kernel of X. We start with the
following result for a general open d-set in Rd.

Lemma 4.1 Suppose that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in Rd and X the censored
α-stable-like process in D. For any positive constants c and a, there exists c1 = c1(c, a, α, d) > 0
such that for every z ∈ D and λ > 0 with B(z, 2cλ1/α) ⊂ D ,

inf
y∈D

|y−z|≤cλ1/α

Py
(
τB(z,2cλ1/α) > aλ

)
≥ c1 > 0.

Proof. Let Y = {Yt, t ≥ 0} be the symmetric α-stable-like process in Rd (corresponding to a
fixed symmetric measurable extension of C(·, ·) satisfying (2.2)). For any open set U ⊂ Rd, let
τYU := inf{t > 0 : Yt /∈ U}. Then by Theorem 2.1(iii)

inf
y∈D

|y−z|≤cλ1/α

Py
(
τB(z,2cλ1/α) > aλ

)
≥ inf

y∈D
|y−z|≤cλ1/α

Py
(
τY
B(z,2cλ1/α)

> aλ
)

≥ inf
y∈Rd

Py
(
τY
B(y,cλ1/α)

> aλ
)
.

By [6, Proposition 4.1], there exists ε > 0 such that

inf
y∈Rd

Py
(
τY
B(y,cλ1/α/2)

> ελ
)
≥ 1

2
.

Let pYU (t, x, y) be the transition density function of Y U . Suppose a > ε. Then by the parabolic
Harnack principle in [6, Proposition 4.3]

c1 p
Y
B(y,cλ1/α)

(ελ, y, w) ≤ pY
B(y,cλ1/α)

(aλ, y, w) for w ∈ B(y, cλ1/α/2)
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where the constant c1 > 0 is independent of y and λ. Thus

Py
(
τY
B(y,cλ1/α)

> aλ
)

=
∫
B(y,cλ1/α)

pY
B(y,cλ1/α)

(aλ, y, w)dw

≥
∫
B(y,cλ1/α/2)

pY
B(y,cλ1/α)

(aλ, y, w)dw

≥ c1

∫
B(y,ελ1/α/2)

pY
B(y,ελ1/α/2)

(ελ, y, w)dw

≥ c1/2.

This proves the lemma. 2

Proposition 4.2 Assume that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in Rd, X the
censored α-stable-like process in D and pD(t, x, y) the transition density function of X. Suppose
(t, x, y) ∈ (0,∞) × D × D with δD(x) ≥ t1/α ≥ 2|x − y|. Then there exists a positive constant
c = c(α, r0) such that

pD(t, x, y) ≥ c t−d/α. (4.1)

Proof. This proof is the same as that for [5, Proposition 3.3]. We reproduce it here for reader’s
convenience. Let t > 0 and x, y ∈ D with δD(x) ≥ t1/α ≥ 2|x − y|. By the parabolic Harnack
principle in [6, Proposition 4.3],

pD(t/2, x, w) ≤ c1 pD(t, x, y) for w ∈ B(x, 2t1/α/3),

where the constant c1 > 0 is independent of x, y and t. This together with Lemma 4.1 yields that

pD(t, x, y) ≥ 1
c1 |B(x, t1/α/2)|

∫
B(x,t1/α/2)

pD(t/2, x, w)dw

≥ c2t
−d/α

∫
B(x,t1/α/2)

pB(x,t1/α/2)(t/2, x, w)dw

= c2t
−d/α Px

(
τB(x,t1/α/2) > t/2

)
≥ c3 t

−d/α,

where ci = ci(r0, α) > 0 for i = 2, 3. 2

Lemma 4.3 Assume that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in Rd, X the censored
α-stable-like process in D. Suppose that (t, x, y) ∈ (0,∞) ×D ×D with δD(x) ∧ δD(y) ≥ t1/α and
|x− y| ≥ 2−1t1/α. There exists a constant c = c(α, d) > 0, independent of t > 0 and x and y, such
that

Px
(
Xt ∈ B

(
y, 2−1t1/α

))
≥ c

td/α+1

|x− y|d+α
.
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Proof. The proof is a simple modification of that of Proposition 4.11 in [7]. For reader’s conve-
nience, we spell out the details here.

By Lemma 4.1, starting at z ∈ B(y, 4−1t1/α), with probability at least c1 = c1(α) > 0 the
process X does not move more than 6−1t1/α by time t. Thus, it is sufficient to show for some
constant c2 = c2(α, d) > 0,

Px
(
X hits the ball B(y, 4−1t1/α) by time t

)
≥ c2

td/α+1

|x− y|d+α
(4.2)

for all |x − y| ≥ 2−1t1/α and t > 0. Now with Bx := B(x, 6−1t1/α), By := B(y, 6−1t1/α) and
τx := τBx , it follows from Lemma 4.1, there exists c3 = c3(α, d) > 0 such that

Ex [t ∧ τx] ≥ t

2
Px (τx ≥ t/2) ≥ c3t, for t > 0. (4.3)

Thus by using the Lévy system of X in (2.3),

Px
(
X hits the ball B(y, 4−1t1/α) by time t

)
≥ Px

(
Xt∧τx ∈ B(y, 4−1t1/α) and t ∧ τx is a jumping time

)
≥ Ex

[∫ t∧τx

0

∫
By

M1

|Xs − u|d+α
duds

]

≥ c4Ex [t ∧ τx]
∫
By

1
|x− y|d+α

du

≥ c5 t |By| |x− y|−d−α

≥ c6
td/α+1

|x− y|d+α
,

for some positive constants ci = ci(α, d), i = 4, 5, 6. Here in the fourth inequality, we used (4.3).
The lemma is now proved. 2

Proposition 4.4 Assume that d ≥ 1 and α ∈ (0, 2). Let D be an open d-set in Rd, X the
censored α-stable-like process in D and pD(t, x, y) the transition density function of X. Suppose
that (t, x, y) ∈ (0,∞)×D×D with δD(x)∧ δD(y) ≥ (t/2)1/α and |x− y| ≥ 2−1(t/2)1/α. Then there
exists a constant c = c(α, r0,Λ0) > 0 such that

pD(t, x, y) ≥ c
t

|x− y|d+α
. (4.4)

Proof. By the semigroup property, Proposition 4.2 and Lemma 4.3, there exist positive constants
c1 = c1(α, r0,Λ0) and c2 = c3(α, r0,Λ0) such that

pD(t, x, y) =
∫
D
pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫
B(y, 2−1(t/2)1/α)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c1t
−d/αPx

(
Xt/2 ∈ B(y, 2−1(t/2)1/α)

)
≥ c2

t

|x− y|d+α
.
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2

In the remainder of this section, we assume thatD is a C1,1 open subset in Rd with characteristics
(r0,Λ0) and X is the censored α-stable-like process in D with d ≥ 1 and α ∈ (1, 2). Let

T0 :=
( r0

16

)α
. (4.5)

We will first establish the lower bound for the heat kernel of X for t ≤ T0.
The next lemma is a key step in deriving the precise boundary decay rate for the transition

density function pD(t, x, y).

Lemma 4.5 Suppose that (t, x) ∈ (0, T0] × D with δD(x) ≤ 3t1/α < r0/4 and κ ∈ (0, 1). Let
zx ∈ ∂D be such that |zx − x| = δD(x) and let B be a ball of radius 3t1/α such that B ⊂ D and
∂B ∩ ∂D = {zx}. Suppose B(x0, 2κt1/α) ⊂ B \ {x}. Then for any a > 0, there exists a constant
c1 = c1(κ, α, r0,Λ0, a) > 0 such that

Px
(
Xat ∈ B(x0, κt

1/α)
)
≥ c1

(
δD(x)
t1/α

)α−1

. (4.6)

Proof. Let 0 < κ1 ≤ κ and assume first that 2−4κ1t
1/α < δD(x) ≤ 3t1/α. Note that δD(x) ∧

δD(x0) > 2−4κ1t
1/α. By the convexity of the ball B, every point on the line segment lx0,x joining x0

to x is at least of distance 2−4κ1t
1/α away from the boundary of D. For a > 0, denote by k the small-

est integer that is larger than max
{

(36α/a)1/(α−1), 6 · 27/κ1, a(27/(7κ1))α
}

. Let x0, x1, · · · , xk = x

be (k + 1) equally spaced points on lx0,x, and set r := |x1 − x0|. Since 2κt1/α ≤ |x − x0| ≤ 6t1/α,
by our choice of k, we have

2κt1/α/k ≤ r ≤ 6t1/α/k ≤ 2−7κ1t
1/α and 6r ≤ (at/k)1/α ≤ 7 · 2−7κ1t

1/α.

Since the above inequalities imply that for every i = 0, . . . k − 1, z ∈ B(xi, r) and w ∈ B(xi+1, r)

2|z − w| ≤ 6r ≤ (at/k)1/α ≤ 7 · 2−7κ1t
1/α ≤ δD(z) ∧ δD(w),

by Proposition 4.2 and the semigroup property,

Px
(
Xat ∈ B(x0, κt

1/α)
)
≥
∫
B(x0,r)

pD(at, x, y)dy

≥
∫
B(xk−1,r)

∫
B(xk−2,r)

· · ·
∫
B(x0,r)

pD(at/k, x, yk−1)pD(at/k, yk−1, yk−2)

· · · pD(at/k, y1, y) dydy1 · · · dyk−1

≥ ck1

(
(at/k)−d/αrd

)k
≥ c2 > 0. (4.7)

By taking κ1 = κ, this shows that (4.6) holds for every a > 0 and for every x ∈ D with 2−4κt1/α <

δD(x) ≤ 3t1/α. So it suffices to consider the case that δD(x) ≤ 2−4κt1/α. We now show that there
is some a0 > 1 so that (4.6) holds for every a ≥ a0 and δD(x) ≤ 2−4κt1/α. For simplicity, we
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assume without loss of generality that x0 = 0 and let B̂ := B(x0, κt
1/α). By the scaling property

for censored α-stable-like processes (see (3.2) and the line following it),

Px(Xat ∈ B̂) = Pt−1/αx

(
Za ∈ t−1/αB̂

)
= Pt−1/αx (Za ∈ B(0, κ)) , (4.8)

where Z is the censored α-stable-like process in t−1/αD with jumping function J (t−1/α) of (3.1), and,
by a slight abuse of notation, the law of Z starting from a point z ∈ t−1/αD is also denoted as Pz. Let
B0 := B(t−1/αzx, κ/2)∩ (t−1/αD). Observe that since B(0, 2κ) ⊂ t−1/α(B \ {x}) ⊂ t−1/α(D \ {x}),

κ/2 ≤ |y − z| ≤ 6 for y ∈ B0 and z ∈ B(0, κ). (4.9)

By the strong Markov property of Z at the first exit time τB0 from B0 and Lemma 4.1,

Pt−1/αx (Za ∈ B(0, κ))

≥ Pt−1/αx

(
τZB0

< a, ZτB0
∈ B(0, κ/2) and |Zt − ZτB0

| < κ/2 for t ∈ [τZB0
, τZB0

+ a]
)

≥ c3 Pt−1/αx

(
τZB0

< a and ZτB0
∈ B(0, κ/2)

)
. (4.10)

Here, τZB0
denotes the first exit time from B0 by Z.

Let z1 := t−1/αzx ∈ ∂(t−1/αD) and set y1 := z1 + 2−2κn(z1), where n(z1) denotes the unit
inward normal vector at z1 for t−1/αD. Note that t−1/αD is a C1,1-open set with characteristics
(T−1/α

0 r0, T
1/α
0 Λ0). So by BHP, the Lévy system of Z and (4.9),

Pt−1/αx

(
ZτB0

∈ B(0, κ/2)
)

≥c4
δt−1/αD(t−1/αx)α−1

δt−1/αD(y1)α−1
Py1

(
ZτB0

∈ B(0, κ/2)
)

≥c4
(

4
κ

)α−1 (δD(x)
t1/α

)α−1 ∫ ∞
0

(∫
B0

pZB0
(t, y1, y)

(∫
B(0,κ/2)

C(t−1/αy, t−1/αz)
|y − z|d+α

dz

)
dy

)
dt

≥c5
(
δD(x)
t1/α

)α−1

Ey1 [τZB0
].

It follows from Theorem 2.1(iii), and [6, Proposition 4.1],

Ey1 [τZB0
] ≥ Ey1 [τYB0

] ≥ Ey1 [τYB(y1,κ/4)] ≥ c5

where Y is the α-stable-like process in t−1/αD with jumping function J (t−1/α) of (3.1), and so

Pt−1/αx

(
ZτB0

∈ B(0, κ/2)
)
≥ c5c6

(
δD(x)
t1/α

)α−1

. (4.11)

The above constants ck, k = 4, · · · , 6 do not depend on a. On the other hand, by Theorem 2.2 and
BHP

Pt−1/αx(τZB0
≥ a) ≤ a−1 Et−1/αx[τZB0

]

≤ a−1c7 Et−1/αx

[∫ τB0

0
1B(y1,κ/8)(Zs)ds

]
≤ a−1c8

(
δD(x)
t1/α

)α−1

Ey2
[∫ τB0

0
1B(y1,κ/8)(Zs)ds

]
,
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where y2 := z1 + 2−4κn(z1). Now by the same argument as in last part of the proof of Lemma 3.3,
we have

Pt−1/αx(τZB0
≥ a) ≤ a−1c9

(
δD(x)
t1/α

)α−1

, (4.12)

where constant c9 does not depend on a. Define a0 = 2c9/(c5c6). We have by (4.8) and (4.10)-(4.12)
that for a ≥ a0,

Px(Xat ∈ B̂) ≥ c2

(
Pt−1/αx(ZτB0

∈ B(0, κ/2))− Pt−1/αx

(
τZB0
≥ a

))
≥ c2 (c5c6/2)

(
δD(x)
t1/α

)α−1

. (4.13)

(4.7) and (4.13) show that (4.6) holds for every a ≥ a0 and for every x ∈ D with δD(x) ≤ 3t1/α.
Now we deal with the case 0 < a < a0 and δD(x) ≤ 2−4κt1/α. If δD(x) ≤ 3(at/a0)1/α, we have

from (4.6) for the case of a = a0 that

Px
(
Xat ∈ B(x0, κt

1/α)
)
≥ Px

(
Xa0(at/a0) ∈ B(x0, κ(at/a0)1/α)

)
≥ c10

(
δD(x)

(at/a0)1/α

)α−1

= c11

(
δD(x)
t1/α

)α−1

.

If 3(at/a0)1/α < δD(x) ≤ 2−4κt1/α (in this case κ > 3 · 24(a/a0)1/α), we get (4.6) from (4.7) by
taking κ1 = (a/a0)1/α. The proof of the lemma is now complete. 2

The next three propositions and their proofs are similar to [5, Propositions 3.7–3.9] and their
proofs, we give the details for readers’ convenience.

Proposition 4.6 Suppose that (t, x, y) ∈ (0, T0] ×D ×D with |x − y| ≤ t1/α and δD(x) ≤ 2t1/α.
Then there exists a constant c = (α, r0,Λ0) > 0 such that

pD(t, x, y) ≥ ct−d/α
(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1

. (4.14)

Proof. For z ∈ ∂D, let n(z) be the unit inward normal vector of ∂D at the point z. By the
assumptions,

δD(y) ≤ |x− y|+ δD(x) ≤ 3t1/α < r0/5.

So there are unique points zx, zy ∈ ∂D such that δD(x) = |x− zx| and δD(y) = |y − zy|. Let

x0 = zx + 4t1/αn(zx) and y0 = zy + 4t1/αn(zy).

Observe that

δD(x0) = δD(y0) = 4t1/α and |x− x0|, |y − y0| ∈ [t1/α, 4t1/α).
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Define B := B(x0, 4−1t1/α) and B̃ := B(y0, 4−1t1/α). Observe that x /∈ B(x0, 2−1t1/α) and y /∈
B(y0, 2−1t1/α). By the semigroup property,

pD(t, x, y) =
∫
D
pD(t/3, x, z)

(∫
D
pD(t/3, z, w)pD(t/3, w, y)dw

)
dz

≥
∫
B
pD(t/3, x, z)

(∫
eB pD(t/3, z, w)pD(t/3, w, y)dw

)
dz

≥

(
inf

(z,w)∈B× eB pD(t/3, z, w)

)(∫
B
pD(t/3, x, z)dz

)(∫
eB pD(t/3, w, y)dw

)
.

Since for z ∈ B and w ∈ B̃,

δD(z) ≥ δD(x0)− |x0 − z| ≥ t1/α, δD(w) ≥ δD(y0)− |y0 − w| ≥ t1/α

and
|z − w| ≤ |z − x0|+ |x0 − x|+ |x− y|+ |y − y0|+ |y0 − w| < 10t1/α,

by combining Proposition 4.2 and Proposition 4.4, we have that there exists c1 = c1(α, r0,Λ0) > 0
such that

inf
(z,w)∈B× eB pD(t/3, z, w) ≥ c1t

−d/α.

Since δD(x) ≤ 2t1/α < r0/8 and δD(y) ≤ 3t1/α, we deduce from Lemma 4.5

pD(t, x, y) ≥ c2t
−d/α

(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1

for some positive constant c2 = c2(α, r0,Λ0). 2

Proposition 4.7 Suppose that (t, x, y) ∈ (0, T0]×D ×D with δD(x) ≤ t1/α and (t/2)1/α ≤ δD(y)
and |x− y| ≥ t1/α. Then there exists a constant c = c(α, r0,Λ0) > 0 such that

pD(t, x, y) ≥ c
t

|x− y|d+α

(
δD(x)
t1/α

)α−1

. (4.15)

Proof. Recall that for z ∈ ∂D, n(z) is the unit inward normal vector of ∂D at point z. Since
δD(x) ≤ t1/α ≤ r0/16, there is a unique zx ∈ ∂D such that δD(x) = |x−zx|. Let z0 = zx+2t1/αn(zx).
Now choose x0 in B(z0, 2t1/α) and κ = κ(α) ∈ (0, 1) such that

B(x0, 2κt1/α) ⊂ B(z0, (2− 2−2/α)t1/α) ∩B(x, (1− 2−1−2/α)t1/α).

Such a ball B(x0, 2κt1/α) always exists because

2 < (2− 2−1) + (1− 2−2) < (2− 2−2/α) + (1− 2−1−2/α).

Note that x /∈ B(x0, 2κt1/α) and

δD(z) ≥ (t/4)1/α and |y − z| ≥ 2−1(t/4)1/α for every z ∈ B(x0, κt
1/α).
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On the other hand, for every z ∈ B(x0, κt
1/α),

|z − y| ≤ |z − x|+ |x− y| ≤ (1− 2−1−2/α)t1/α + |x− y| < 2|x− y|.

Thus by the semigroup property and Proposition 4.4, there exist positive constants ci = ci(α, r0,Λ0), i =
1, 2, such that

pD(t, x, y) =
∫
D
pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫
B(x0,κt1/α)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c1

∫
B(x0,κt1/α)

pD(t/2, x, z)
t

|z − y|d+α
dz

≥ c2
t

|x− y|d+α

∫
B(x0,κt1/α)

pD(t/2, x, z)dz

= c2
t

|x− y|d+α
Px
(
Xt/2 ∈ B(x0, κt

1/α)
)
.

Applying Lemma 4.5, we arrive at the conclusion of the proposition. 2

Proposition 4.8 Suppose that (t, x, y) ∈ (0, T0]×D ×D with

δD(x) ∨ δD(y) ≤ (t/2)1/α ≤ |x− y|.

Then there exists a constant c = c(α, r0,Λ0) > 0 such that

pD(t, x, y) ≥ c t

|x− y|d+α

(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1

. (4.16)

Proof. As in the first paragraph of the proof of Proposition 4.6, let zx ∈ ∂D so that |x−zx| = δD(x)
and set x0 := zx + 3t1/αn(zx). Let κ := 1− 2−1/α. Note that we have

δD(z) ≥ 2(t/2)1/α and |y − z| ≥ δD(z)− δD(y) ≥ (t/2)1/α for every z ∈ B(x0, κt
1/α).

On the other hand, for every z ∈ B(x0, κt
1/α),

|z − y| ≤ |z − x0|+ |x0 − x|+ |x− y| ≤ κt1/α + 3t1/α + |x− y| ≤ (2α(κ+ 3) + 1) |x− y|.

Thus, by the semigroup property and Proposition 4.7, there exist positive constants ci = ci(α, r0,Λ0), i =
1, 2, such that

pD(t, x, y) =
∫
D
pD(t/2, x, z)pD(t/2, z, y)dz

≥
∫
B(x0,κt1/α)

pD(t/2, x, z)pD(t/2, z, y)dz

≥ c1

∫
B(x0,κt1/α)

pD(t/2, x, z)
t

|z − y|d+α

(
δD(y)
t1/α

)α−1

dz

≥ c2
t

|x− y|d+α

(
δD(y)
t1/α

)α−1 ∫
B(x0,κt1/α)

pD(t/2, x, z)dz

= c2
t

|x− y|d+α

(
δD(y)
t1/α

)α−1

Px
(
Xt/2 ∈ B(x0, κt

1/α)
)
.
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Applying Lemma 4.5, we arrive at the conclusion of the proposition. 2

Now we are ready to prove the main result of this section.

Theorem 4.9 For every T > 0 there exists a positive constant c = c(α, r0,Λ0, T ) such that for all
(t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≥ c
(

1 ∧ δD(x)
t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1(
t−d/α ∧ t

|x− y|d+α

)
. (4.17)

Proof. Assume first that t ≤ T0.

1. We first consider the case |x− y| ≤ t1/α. We claim that in this case

pD(t, x, y) ≥ ct−d/α
(

1 ∧ δD(x)
t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1

. (4.18)

This will be proved by considering the following two possibilities.

(a) max{δD(x), δD(y), |x− y|} ≤ t1/α: Proposition 4.6 and symmetric yield (4.18)

(b) max{δD(x), δD(y)} ≥ t1/α ≥ |x− y|:
If max{δD(x), δD(y)} ≥ t1/α ≥ 2|x− y|, (4.18) follows from Proposition 4.2.

If min{δD(x), δD(y)} ≥ t1/α and |x− y| ≤ t1/α < 2|x− y|,

t

|x− y|d+α
� t−d/α

(
1 ∧ δD(x)

t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1

.

If max{δD(x), δD(y)} ≥ t1/α, min{δD(x), δD(y)} < t1/α and |x− y| ≤ t1/α < 2|x− y|,(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1

�
(

1 ∧ δD(x)
t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1

Thus by combining Proposition 4.4 and Proposition 4.6, we get (4.18) for the case of
max{δD(x), δD(y)} ≥ t1/α and |x− y| ≤ t1/α < 2|x− y|.

2. Now we consider the case |x− y| ≥ t1/α and claim that

pD(t, x, y) ≥ c
(

1 ∧ δD(x)
t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1( t

|x− y|d+α

)
. (4.19)

(a) min{δD(x), δD(y)} ≤ (t/2)1/α and |x− y| ≥ t1/α: By symmetry we can assume δD(x) ≤
(t/2)1/α. Thus Combining Propositions 4.7 and 4.8, we have (4.19) for this case.

(b) min{δD(x), δD(y)} ≥ (t/2)1/α and |x− y| ≥ t1/α. In this case, clearly(
1 ∧ δD(x)

t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1

�
(
δD(x)
t1/α

)α−1(δD(y)
t1/α

)α−1

.

Thus Proposition 4.4 yields (4.19).

We have arrived at the conclusion of Theorem 4.9 for t ≤ T0.
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We now consider t > T0 case: Let

qD(t, x, y) :=
(

1 ∧ δD(x)
t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1(
t−d/α ∧ t

|x− y|d+α

)
.

First we observe that for any t > 0 and x, y ∈ D,

qD(t, x, y) � qD(t/2, x, y). (4.20)

Then by using the semigroup property and (4.20) twice we get, for any (t, x, y) ∈ (0, T0]×D ×D,

pD(2t, x, y) =
∫
D
pD(t, x, z)pD(t, z, y)dz

≥ c1

∫
D
qD(t, x, z)qD(t, z, y)dz

≥ c2

∫
D
qD(t/2, x, z)qD(t/2, z, y)dz

≥ c3

∫
D
pD(t/2, x, z)pD(t/2, z, y)dz

= c3 pD(t, x, y) ≥ c4 qD(t, x, y) ≥ c5 qD(2t, x, y)

for some positive constants ci, i = 1, . . . , 5. Here in the first and fourth inequalities we used
Theorem 4.9 for t ≤ T0 and in the third inequality we used Theorem 3.5. 2

5 Large time heat kernel estimates and Green function estimates

In this section, we present proofs for Theorem 1.1 (ii) and Corollary 1.2. Throughout this section,
we assume that α ∈ (1, 2) and that D is a bounded C1,1 open set in Rd.

Proof of Theorem 1.1 (ii). By Theorem 2.2, the semigroup {PDt , t > 0} is intrinsically ul-
tracontractive. It follows from Theorem 4.2.5 of [12] that there exists T1 > 0 such that for all
(t, x, y) ∈ [T1,∞)×D ×D,

1
2
e−λ1tφ1(x)φ1(y) ≤ pD(t, x, y) ≤ 3

2
e−λ1tφ1(x)φ1(y).

Since φ1 = eλ1P1φ1, we have from Theorem 1.1(i) that on D,

φ1(x) �
(
1 ∧ δD(x)α−1

) ∫
D

(
1 ∧ δD(y)α−1

)(
1 ∧ 1
|x− y|d+α

)
φ1(y)dy � δD(x)α−1. (5.1)

Thus there exist positive constants c6, c7 such that for all (t, x, y) ∈ [T1,∞)×D ×D,

c6e
−λ1tδD(x)α−1δD(y)α−1 ≤ pD(t, x, y) ≤ c7e−λ1tδD(x)α−1δD(y)α−1.

If T < T1, by Theorem 1.1(i), there exist positive constants c8, c9 such that for (t, x, y) ∈ [T, T1]×
D ×D,

c8δD(x)α−1δD(y)α−1 ≤ pD(t, x, y) ≤ c9δD(x)α−1δD(y)α−1.
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This gives the conclusion of Theorem 1.1(ii). 2

Proof of Corollary 1.2. First note that by Theorem 1.1(i), we have∫ ∞
T

pD(t, x, y) � δD(x)α−1δD(y)α−1. (5.2)

Let diam(D) be the diameter of D and T := diam(D)α. By a change of variable u = |x−y|α
t , we

have ∫ T

0
t−d/α

(
1 ∧ t1/α

|x− y|

)d+α(
1 ∧ δD(x)

t1/α

)α−1(
1 ∧ δD(y)

t1/α

)α−1

dt

=
1

|x− y|d−α

∫ ∞
|x−y|α
T

(
u
d
α
−2 ∧ u−3

)(
1 ∧ u

1/αδD(x)
|x− y|

)α−1(
1 ∧ u

1/αδD(y)
|x− y|

)α−1

du. (5.3)

Note that

1
|x− y|d−α

∫ ∞
1

(
u
d
α
−2 ∧ u−3

)(
1 ∧ u

1/αδD(x)
|x− y|

)α−1(
1 ∧ u

1/αδD(y)
|x− y|

)α−1

du

≥ 1
|x− y|d−α

∫ ∞
1

u−3

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

du

=
1

2|x− y|d−α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

, (5.4)

while

1
|x− y|d−α

∫ ∞
1

(
u
d
α
−2 ∧ u−3

)(
1 ∧ u

1/αδD(x)
|x− y|

)α−1(
1 ∧ u

1/αδD(y)
|x− y|

)α−1

du

=
1

|x− y|d−α

∫ ∞
1

u−1−2/α

(
u−1/α ∧ δD(x)

|x− y|

)α−1(
u−1/α ∧ δD(y)

|x− y|

)α−1

du

≤ 1
|x− y|d−α

∫ ∞
1

u−1−2/α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

du

=
α

2
1

|x− y|d−α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

. (5.5)

(i) Assume that d ≥ 2. Observe that

1
|x− y|d−α

∫ 1

|x−y|α
T

(
u
d
α
−2 ∧ u−3

)(
1 ∧ u

1/αδD(x)
|x− y|

)α−1(
1 ∧ u

1/αδD(y)
|x− y|

)α−1

du

≤ 1
|x− y|d−α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1 ∫ 1

0
u
d
α
−2du

≤ α

d− α
1

|x− y|d−α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

. (5.6)
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So by (5.2)–(5.6), we have

GD(x, y) =
∫ T

0
pD(t, x, y)dt+

∫ ∞
T

pD(t, x, y)dt

� 1
|x− y|d−α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

+ δD(x)α−1δD(y)α−1

� 1
|x− y|d−α

(
1 ∧ δD(x)
|x− y|

)α−1(
1 ∧ δD(y)
|x− y|

)α−1

.

In the last estimate, we used the fact that D is bounded. Since δD(x) ≤ δD(y) + |x− y| for every
x, y ∈ D, it is easy to see that for every r ∈ (0, 1],(

1 ∧ rδD(x)
|x− y|

) (
1 ∧ rδD(y)
|x− y|

)
≤ 1 ∧ r

2δD(x)δD(y)
|x− y|2

≤ 2
(

1 ∧ rδD(x)
|x− y|

) (
1 ∧ rδD(y)
|x− y|

)
. (5.7)

So on D ×D,

GD(x, y) � 1
|x− y|d−α

(
1 ∧ δD(x)δD(y)

|x− y|2

)α−1

.

(ii) Now we consider the case d = 1 < α < 2 and let

u0 :=
δD(x)δD(y)
|x− y|2

. (5.8)

Clearly

u
−α/2
0 ≥ |x− y|α

diam(D)α
=
|x− y|α

T
.

By (5.7)–(5.8),

1
|x− y|d−α

∫ 1

|x−y|α
T

(
u
d
α
−2 ∧ u−3

)(
1 ∧ u

1/αδD(x)
|x− y|

)α−1(
1 ∧ u

1/αδD(y)
|x− y|

)α−1

du

� 1
|x− y|1−α

∫ 1

|x−y|α
T

u(1/α)−2

(
1 ∧ u

2/αδD(x)δD(y)
|x− y|2

)α−1

du

=
1

|x− y|1−α

(∫ 1

|x−y|α
T

u(1/α)−21{u≥u−α/20 }du+
∫ 1

|x−y|α
T

uα−1
0 u−1/α1{u<u−α/20 }du

)

=
1

|x− y|1−α

(
α

α− 1

(
(uα/20 ∨ 1)1−(1/α) − 1

)
+

α

α− 1
uα−1

0

(
(u0 ∨ 1)−(α−1)/2 −

(
|x− y|α

T

)(α−1)/α
))

.
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So by (5.2)–(5.5), (5.7)–(5.8) and the last display, we have

GD(x, y)

=
∫ ∞
T

pD(t, x, y) +
∫ T

0
pD(t, x, y)dt

� δD(x)α−1δD(y)α−1 +
1

|x− y|1−α
(1 ∧ u0)α−1

+
1

|x− y|1−α

((
(u0 ∨ 1)(α−1)/2 − 1

)
+ uα−1

0

(
(u0 ∨ 1)−(α−1)/2 −

(
|x− y|α

T

)(α−1)/α
))

� δD(x)α−1δD(y)α−1 +
1

|x− y|1−α
(
uα−1

0 ∧ u(α−1)/2
0

)
= δD(x)α−1δD(y)α−1 +

1
|x− y|1−α

(
δD(x)α−1δD(y)α−1

|x− y|2α−2
∧ δD(x)(α−1)/2δD(y)(α−1)/2

|x− y|α−1

)

� (δD(x)δD(y))(α−1)/2 ∧ δD(x)α−1δD(y)α−1

|x− y|α−1
.

In the last estimate, we used the fact that D is bounded. This proves the corollary. 2

Remark 5.1 As in [4], estimates of the Green functions can be used to show that the Martin
boundaries and minimal Martin boundaries of a large class of censored stable-like processes can
all be identified with the Euclidean boundary ∂D of D. Sharp two-sided estimates for the Martin
kernel is easy consequence of our estimates of the Green functions.
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