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RICCATI-BASED BOUNDARY FEEDBACK STABILIZATION

OF INCOMPRESSIBLE NAVIER–STOKES FLOWS∗
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Abstract. In this article a boundary feedback stabilization approach for incompressible Navier–
Stokes flows is studied. One of the main difficulties encountered is the fact that after space discretiza-
tion by a mixed finite element method (because of the solenoidal condition) one ends up with a
differential algebraic system of index 2. The remedy here is to use a discrete realization of the Leray
projection used by Raymond [J.-P. Raymond, SIAM J. Control Optim., 45 (2006), pp. 790–828]
to analyze and stabilize the continuous problem. Using the discrete projection, a linear quadratic
regulator (LQR) approach can be applied to stabilize the (discrete) linearized flow field with respect
to small perturbations from a stationary trajectory. We provide a novel argument that the discrete
Leray projector is nothing else but the numerical projection method proposed by Heinkenschloss and
colleagues in [M. Heinkenschloss, D. C. Sorensen, and K. Sun, SIAM J. Sci. Comput., 30 (2008),
pp. 1038–1063]. The nested iteration resulting from applying this approach within the Newton-ADI
method to solve the LQR algebraic Riccati equation is the key to compute a feedback matrix that
in turn can be applied within a closed-loop simulation. Numerical examples for various parameters
influencing the different levels of the nested iteration are given. Finally, the stabilizing property of
the computed feedback matrix is demonstrated using the von Kármán vortex street within a finite
element based flow solver.
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1. Introduction. Incompressible flow problems are encountered in many tech-
nical fields such as chemical engineering, biological research, or microfluids in micro-
and nanosystems. These flow fields often deal with systems with moderate Reynolds
numbers that do not require turbulence models. Many applications require a stable
and controlled velocity field that is the basis for an ongoing reaction or production
process. The widely used open-loop control approach [31] is not stable regarding small
perturbations, which notoriously occur in real-life processes. Distributed control that
basically would require the interaction of the controller on every point of the flow field
(or in parts of it) is often impractical. In contrast, the approach of boundary feed-
back stabilization avoids both problems. Although the feedback stabilization cannot
manipulate flow fields in their general behavior, it can be used to stabilize existing
open-loop controllers. This approach makes the open-loop controllers robust with
respect to occurring perturbations. In [39, 40, 41] Raymond established the func-
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tional analytical setting and results for a linear quadratic regulator (LQR) approach;
see, e.g., [17, 35]. With this approach Raymond was able to stabilize Stokes and
Navier–Stokes equations regarding small perturbations from a stationary trajectory.
Raymond’s approach differs from most other ones (and consequently requires a much
more involved analysis) in that the feedback contributes via the boundary (in contrast
to distributed control), which is the natural procedure in most technical applications.

The main difficulty for the feedback stabilization of flow problems is the solenoidal
condition, i.e., the local mass conservation. To this end, Raymond uses the Leray
projector to project the whole system onto the space of divergence-free velocities in
L2 with vanishing normal components (in a weak sense). Using this projection, one
ends up with an evolution equation, where well-known techniques for Riccati-based
feedback stabilization can be applied.

The Riccati-based boundary feedback stabilization of incompressible Stokes flows
has been treated in [15]. There, the major interest was the efficient solution of the aris-
ing large-scale saddle point systems. In the present article, these techniques and ideas
are expanded to the more general case of the Navier–Stokes equations and numerical
results are shown. Most of the formulations in [15] can be extended straightforwardly
to the Navier–Stokes case as well. We will upgrade some ideas and show more efficient
realizations in the numerical treatment. Furthermore, we will describe the extension
of the finite element flow solver NAVIER [6] regarding a closed-loop simulation.

In what follows, the incompressible Navier–Stokes equations are considered, read-
ing in dimensionless form

∂

∂t
�v(t, �x)− 1

Re
∆�v(t, �x) + (�v(t, �x) · ∇)�v(t, �x) +∇χ(t, �x) = �f(t, �x)ext,(1.1a)

div�v(t, �x) = 0,(1.1b)

where both the velocity field, denoted by �v(t, �x) =
[
vx1(t, �x) vx2(t, �x)

]T ∈ R
2, and

the pressure, denoted by χ(t, �x) ∈ R, are defined for t ∈ [0,∞) and �x =
[
x1 x2

]T ∈
Ω ⊂ R2. Here, Ω is a bounded domain with boundary Γ = ∂Ω. The Reynolds number
Re ∈ R+ describes the ratio of inertial and viscous forces within the fluid and is
defined as

Re :=
ρ · vref · dref

η
(1.2)

with the fluid density ρ ∈ R+, the fluid viscosity η ∈ R+, the reference velocity
vref ∈ R+, and the reference length dref ∈ R+. Considering an inflow-outflow prob-
lem, the boundary can be partitioned as Γ = Γin ∪ Γout ∪Γwall ∪ Γfeed. Thus, on the
respective parts of the boundary Dirichlet boundary conditions are imposed

�v(t, �x) =

⎧

⎪⎨

⎪⎩

�gfeed(t, �x) on Γfeed,

�gin(�x) on Γin,

0 on Γwall.

(1.3a)

The control variable �gfeed realizes the boundary control and will be explained in more
detail in section 2.4. As outflow condition, the so-called do-nothing condition [19, 30]
is assumed:

− 1

Re
∇�v(t, �x)�n(�x) + χ(t, �x)�n(�x) = 0 on Γout(1.3b)
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with �n(�x) the outward normal to Γout. Notice that (1.3b) ensures that the correct
physical behavior does not significantly depend on the length of the channel, as shown
in [30]. Finally, the initial condition

�v(0, ·) = 0 in Ω(1.3c)

is prescribed. Hereafter the arguments t, �x are skipped for better readability.
The convection of the velocity field is a nonlinear operator defined as

(�v · ∇)�v =

[

vx1

∂vx1

∂x1
+ vx2

∂vx1

∂x2

vx1

∂vx2

∂x1
+ vx2

∂vx2

∂x2

]

∈ R
2;

see, e.g., [23].
The main idea of feedback stabilization is to stabilize stationary, but possibly

unstable, solutions of the flow field. Such solutions may result from an open-loop
control problem [31]. Usually, these solutions are not robust with respect to small
perturbations. The feedback controller measures the deviation that occurs due to per-
turbations and pushes the system back to the desired stationary trajectory. If these
perturbations are small enough, one can show that the Riccati-based feedback stabi-
lization is able to exponentially stabilize unstable solution trajectories, as described
in, e.g., [7]. To this end, an LQR approach is used and the unique stabilizing solution
of the LQR problem is determined by solving the corresponding Riccati equation; see,
e.g., [17, 35].

The rest of this paper is organized as follows. The complete work flow to compute
the feedback is described in the next section. In section 3 some special properties of
the arising nested iteration are discussed, and the usability of the resulting algorithm
is illustrated by numerical experiments in section 4. Section 5 concludes the paper
and gives an outlook on open problems and future investigations.

2. Riccati-based feedback stabilization. We follow the analytic approaches
for boundary feedback stabilization by Raymond [40] and seek a numerical realization
of those. Raymond applies the Leray projector that projects the velocity field onto
the space of divergence-free functions in L2 to the linearized flow problem; as a result,
(1.1b) is fulfilled automatically. This means that one can apply an LQR approach
to the projected evolution equation. Raymond shows that one can find a stabilizing
feedback that also stabilizes the nonlinear system (1.1) via boundary control influence;
see, e.g, [40]. In [15], the numerical realization of this approach is shown for the Stokes
equation. In contrast to the Stokes case, the Navier–Stokes equations are nonlinear.
The linearization approach is explained in the next subsection.

2.1. Linearization of the NSE. Before applying the LQR approach to the
(nonlinear) Navier–Stokes equations (1.1), consider (�w(�x), χs(�x)) as a velocity and
pressure pair that fulfills the stationary Navier–Stokes equations

− 1

Re
∆�w + (�w · ∇)�w +∇χs = �fext,(2.1a)

div �w = 0,(2.1b)

defined in Ω with the same boundary conditions as in (1.3a)–(1.3b) and �gfeed = 0. The
pair (�w, χs) represents the desired stationary, although (possibly) unstable, solution of
(1.1) that should be stabilized against perturbations. The goal of the LQR approach
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is to force the solution (�v, χ) of (1.1) toward (�w, χs). That implies that the difference
state �z(t, �x) := �v(t, �x)− �w(�x) is asymptotically stabilized and p(t, �x) := χ(t, �x)−χs(�x)
up to a constant, respectively. This yields the linearized Navier–Stokes equations

∂

∂t
�z − 1

Re
∆�z + (�w · ∇)�z + (�z · ∇)�w +∇p = 0,(2.2a)

div �z = 0,(2.2b)

defined for t ∈ [0,∞) and �x ∈ Ω ⊂ R2 with Dirichlet boundary conditions

�z(t, �x) =

{

�gfeed(t, �x) on Γfeed,

0 on Γin ∪ Γwall,
(2.3a)

the do-nothing condition

− 1

Re
∇�z(t, �x)�n(�x) + p(t, �x)�n(�x) = 0 on Γout,(2.3b)

and the initial condition

�z(0, ·) = 0 in Ω.(2.3c)

The present LQR approach is based on finite dimensional matrix equations. To
derive those equations, the linearized Navier–Stokes equations (2.2) are discretized in
space with the boundary and initial conditions (2.3) and the finite dimensional LQR
approach is introduced in detail in the next subsections.

2.2. Discretization. A common way of discretizing instationary control prob-
lems [3, 4, 20, 29] is the method of lines [45]. In our case a mixed finite element method
[32] is used to discretize the linearized Navier–Stokes equations (2.2) in space, leaving
the time variable untouched. This yields the system of differential-algebraic equations:

M
d

dt
z(t) = Az(t) +Gp(t) + f(t),(2.4a)

0 = GT z(t),(2.4b)

where z(t) ∈ Rnv denotes the nodal vector of the discretized velocity, p(t) ∈ Rnp

denotes the discretized pressure, and f(t) ∈ Rnv contains the boundary control influ-
ence. We substitute f(t) = Bu(t) by the input operator B and the optimal control
u(t) that will be described in more detail in subsection 2.4. Furthermore, denote by
M = MT ≻ 0 ∈ Rnv×nv the mass matrix, by A ∈ Rnv×nv the system matrix [23,
section 7.3], and by G ∈ R

nv×np the discretized gradient. The system matrix can be
split as follows:

A = − 1

Re
S −K −R

with −Sz the discrete counterpart of the Laplacian ∆�z, −Kz the discrete convection
resulting from (�w · ∇)�z, and −Rz a discrete reaction process associated to (�z · ∇)�w.
Notice that the system matrix and the gradient in the setting for the system theoretic
framework are usually written on the right-hand side of the equation, which leads to
a switch of the sign in contrast to the convention in the finite element community.
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Furthermore, it is assumed that the velocity can be observed only in parts of the
domain and, therefore, the output equation

y(t) = Cz(t)(2.4c)

is added with the output y(t) ∈ Rna and the output operator C ∈ Rna×nv that
measures the behavior of the velocity by using the information of the inner nodes.
The particular properties of C are discussed in section 4.5.

Using inf-sup stable finite elements (like P2 −P1 Taylor-Hood finite elements [32]
in our case) for an inflow-outflow problem, it holds that nv > np and the discretized
gradient G is of rank np [23, section 5.3].

Considering the structure of (2.4a)–(2.4b), one gets a DAE of differential index 2
[48] defined by the matrix pencil

⎛

⎜
⎜
⎜
⎝

[
A G
GT 0

]

︸ ︷︷ ︸

=:A

,

[
M 0
0 0

]

︸ ︷︷ ︸

=:M

⎞

⎟
⎟
⎟
⎠

.(2.5)

Here, the right-hand side coefficient matrix M is singular and the matrix pencil has
nv − np finite eigenvalues λi ∈ C \ {0} and 2np infinite eigenvalues λ∞ = ∞ [21,
Theorem 2.1].

DAEs are more involved than ordinary differential equations, since the solution
set of the DAE lies on a (usually hidden) manifold. In the case of incompressible flows
this manifold is the space of (discretely) divergence-free functions. We use the index
reduction idea described in [29, section 3] to avoid this problem and demonstrate the
feasibility of this idea for descriptor systems like (2.4) in the next subsection.

Notice that the whole system (2.4) is a descriptor system with multiple inputs
(nr) (see section 2.4 below) and multiple outputs (na) (in short, a MIMO system). It
is well known that such systems are getting more complicated if the number of inputs
nr or outputs na gets larger.

After defining all components in the descriptor system (2.4), an index reduction
technique that is a numerical realization of the Leray projection is presented in the
next subsection.

2.3. Projection method. In [7], Bänsch and Benner proposed to use the index
reduction method defined in [29] as numerical realization of the Leray projection in
the case of linearized Navier–Stokes equations. In [15] it is shown that the projector

ΠT := Inv
−M−1G(GTM−1G)−1GT(2.6)

used in [29] turns out to be nothing else but the discrete Leray operator (as needed
for our LQR approach) in our setting. To this end, it is necessary to view ΠT as an
orthogonal projector in the appropriate setting, i.e., the discrete L2 inner product,
in contrast to the interpretation of ΠT as oblique projection in the Euclidean inner
product as in [29]. In this section, the proof of this fact is recalled. Notice that
one can use the one-sided projection using ΠT from (2.6) since in the Galerkin FEM
the discretized gradient operator on the pressure space and the discrete divergence
operator are transposed to each other. For a more general discretization that does
not provide this feature, however, the basic projection idea stays valid, but requires
using the more general two-sided projection approach discussed in the interpolatory
model reduction framework in [27, section 6].
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Following the description in [22, 25], L2(Ω)2 can be decomposed into

L2(Ω)2 = H(div, 0) ⊥ H(div, 0)⊥,

where the spaces H(div, 0) and H(div, 0)⊥ are characterized by

H(div, 0) := {�v ∈ L2(Ω)2 | div�v = 0, �v · �n|Γ = 0}, H(div, 0)⊥ := {∇p | p ∈ H1(Ω)}.

This splitting is equivalent to �v = �vdiv +∇p, where �vdiv and p fulfill

�vdiv +∇p = �v in Ω,

div�vdiv = 0 in Ω,

�vdiv · �n = 0 on Γ.

The operator P : L2(Ω)2 → H(div, 0) with P : �v 
→ �vdiv is called the Leray projection.
The discrete version of the above splitting for the finite element discretization can

be written in terms of nodal value vectors as

Mvdiv +Gp = Mv,(2.7a)

GTvdiv = 0(2.7b)

with the discrete velocity field v ∈ Rnv , the discretely divergence-free velocity field
vdiv ∈ Rnv , and the discrete pressure p ∈ Rnp . M,G are defined as above. Multiplying
(2.7a) from the left by GTM−1 and using (2.7b) reveals

p = (GTM−1G)−1GTv.

Using this expression for p in (2.7a) yields

vdiv = (Inv
−M−1G(GTM−1G)−1GT )v ⇔ vdiv = ΠTv.

This shows, together with the properties described in [15], that multiplication of a
discretized velocity field from the left by ΠT is equivalent to applying the discretized
Leray projection to a discretized vector function. Of course, building ΠT explicitly
is prohibitive, since the matrix would become dense. A numerically suitable way to
apply ΠT is to write the system (2.7) as saddle point problem

[
M G
GT 0

] [
vdiv

p

]

=

[
Mv

0

]

that has to be solved for a given velocity field v to get the (discretely) divergence-free
velocity field vdiv. Nevertheless, we want to avoid the projection in general in the
process of computing the optimal control u(t), as shown next.

Following the projection steps in [15, section 2.1] with the identical notation
together with the substitution ΠT z = z and the projector decomposition Π = ΘlΘ

T
r ,

the descriptor system (2.4) can be written in terms of z̃ = ΘT
l z ∈ Rnv−np as the

generalized state space system

M d

dt
z̃(t) = Az̃(t) + Bu(t),(2.8a)

y(t) = Cz̃(t)(2.8b)

with M = MT ≻ 0 ∈ R(nv−np)×(nv−np) that fits the scheme of [29, equation (4.1)].
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Γfeed,i

ui(t)�qi(�x)

Fig. 1. The parabolic inflow profile at the control boundary part Γfeed,i.

2.4. Boundary control. In this section the incorporation of normal boundary
control for system (2.8) is described. Notice that z̃ has zero normal components in a
discrete sense.

We mimic the approach in [42], where an operator was constructed that dis-
tributed the boundary control into the interior of Ω. This construction was necessary,
since Raymond worked with the space H(div, 0). Notice that functions in H(div, 0)
have vanishing normal components on the boundary.

Consider nr different parts of the control boundary Γfeed , i.e.,

�gfeed(t, �x) =

nr∑

i=1

ui(t)�qi(�x),

where �qi has support on Γfeed,i and
⋃nr

i=1 Γfeed,i = Γfeed. In the example in section 4,
a parabolic in-/outflow �qi is considered and its intensity is controlled by ui(t); see
Figure 1.

The control operator B := ΘT
r B in (2.8) is the projected version of B that has nr

columns, each of which is computed in the following way.
For i = 1, . . . , nr do:
1. Solve the linearized Navier–Stokes equations (2.4) with homogeneous Dirichlet

boundary condition except for �gfeed on Γfeed,i, where the Dirichlet condition
1 · �qi(�x) is imposed. Denote the resulting velocity field by vi.

2. Project ṽi := ΠTvi.
3. Multiply ṽi = ΠTvi by the discrete linearized Navier–Stokes operator A to

get v̂i.
4. Set the ith column bi of B to bi := ΠT v̂i.

In the next subsection, the LQR approach for the projected system (2.8) is for-
mulated and an algorithm to compute the optimal control u(t) is shown. In contrast
to the Stokes formulation in [15], the system matrix A is nonsymmetric. This yields
minor changes in the procedure but does not change the work flow.

2.5. The LQR approach. The LQR approach is supposed to minimize a given
quadratic cost functional subject to a given linear system as described, e.g., in
Locatelli’s introduction about LQR in [37]. Because the generalized state space sys-
tem (2.8) with a mass matrix M �= I on the left-hand side is considered, the procedure
changes a little bit, as shown in [43, Chapter 5.2].
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The cost functional for our problem setting is defined as

J (z̃(t),u(t)) :=
1

2

∫ ∞

0

λ
(
z̃(t)T CTCz̃(t)

)
+ u(t)Tu(t) dt,(2.9)

which measures the output y = Cz̃ and the cost of the optimal control u in the square
of the Euclidean norm ||x||2 :=

√
xTx. To minimize this integral over the infinite

time horizon, the output, as well as the control, has to converge asymptotically to
zero for t → ∞. The output y measures the velocity field �z on the discrete level.
In subsection 2.1, �z is defined as perturbation of the flow field �v from the desired
stationary flow field �w. A zero output for t → ∞ implies that �v approximates �w for
t → ∞; the flow field �v achieves the properties of the desired stationary flow field.

The factor λ in the first term of (2.9) is used as regularization. By varying λ one
may also achieve qualitatively different results. For ease of notation, the value of λ is
set to λ = 1 in the theoretical derivations. In the actual implementation reported in
section 3, variations of λ are of course allowed, and the influence of these variations
is investigated in the numerical experiments in section 4.

Following the LQR approach, the optimal control

u∗(t) = −BTXM
︸ ︷︷ ︸

=:K

z̃∗(t) = −Kz̃∗(t)

minimizes the cost functional (2.9) subject to (2.8) with z̃∗(t) as the optimal trajec-
tory and X = XT � 0 ∈ R(nv−np)×(nv−np) as the unique stabilizing solution of the
generalized algebraic Riccati equation (GARE)

0 = CTC +ATXM+MXA−MXBBTXM =: R(X).(2.10)

The key ingredient to compute the feedback K ∈ R
nr×(nv−np) that asymptotically

stabilizes the generalized state space system (2.8) is to solve the GARE (2.10). A
solution approach is shown in the next subsection.

2.6. Solving the GARE. The GARE (2.10) is a quadratic matrix equation
for the unknown matrix X ∈ R(nv−np)×(nv−np) that can be solved by a Newton-type
iteration. At step m, this iteration is given by

X(m+1) = X(m) +N (m)

with the update N (m) computed via

R
′|X(m)(N (m)) = −R(X(m)),

R
′|X(m) being the Frchet derivative of the Riccati operator (2.10) at X(m) defined as

R
′|X(m) : N (m) 
→ (A− BBTX(m)M)TN (m)M+MN (m)(A− BBTX(m)M);

see, e.g., [2, 34]. Following the procedure in [15, section 2.3], the main task to compute
the iterate X(m+1) in the Newton step m + 1 is to solve a generalized Lyapunov
equation

(A(m))TX(m+1)M+MX(m+1)A(m) = −(W(m))TW(m).(2.11)

The closed-loop system matrix A(m) = A − BK(m) includes the previous computed
feedback K(m) = BTX(m)M from step m, and the low-rank right-hand side factor
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Algorithm 1. Generalized low-rank Cholesky factor ADI iteration.

Input: A(m),M,W(m), and shift parameters qi ∈ C− : i = 1, . . . , imax

Output: Z = Zimax ∈ Cn×timax , such that ZZH ≈ X(m+1)

1: V1 =
√

−2Re (q1)
(
(A(m))T + q1M

)−1
(W(m))T

2: Z1 = V1

3: for i = 2, 3, . . . , imax do

4: Vi =
√

Re (qi) /Re (qi−1)
(

Vi−1 − (qi + qi−1)
(
(A(m))T + qiM

)−1
(MVi−1)

)

5: Zi = [Zi−1 Vi]
6: end for

(W(m))T =
[
CT (K(m))T

]
; see, e.g., [33]. The linear matrix equation (2.11) has to

be solved in every Newton step.
Applying the low-rank ADI iteration [13, 36], more precisely, using the extended

formulation for the generalized case as described in [10], the iterate X(m+1) in (2.11)
is computed. The above notation yields Algorithm 1. Details about the ADI shift
parameters qi ∈ C− are described in section 3.2.

The spectrum of the projected state space system (2.8) is equivalent to the fi-
nite spectrum of the DAE (2.5). The major part of this finite spectrum lies in the
open left complex half plane C−, but with increasing Reynolds number a few finite
eigenvalues with positive real part occur [1]. Because of this fact, the system is not
asymptotically stable [37], which is, however, necessary to guarantee that the solu-
tion of the Lyapunov equation yields a stable closed-loop matrix which is necessary
for convergence of Newton’s method to the desired solution [10]. Therefore, an initial
stabilizing feedback K0 needs to be computed such that the finite spectrum of the
closed-loop system

([
A−BK0 G

GT 0

]

,

[
M 0
0 0

])

(2.12)

is a subset of C−, as shown in subsection 2.7.
The combination of the Newton iteration, as an outer iteration, with the

G-LRCF-ADI (Algorithm 1), as an inner iteration, is known as the generalized low-
rank Cholesky factor Newton method [13, 14]. The main computational work is done
in lines 1 and 4 of Algorithm 1 by solving linear systems of equations with large-scale
and projected matrices of the form

(

(A(m))T + qiM
)

Λ = Y.

Solving these linear systems for different right-hand sides Y would involve the dense
decomposition of the dense projection matrix ΠT that we want to avoid using the
main results of [29, section 5]. There it is shown that Λ = ΠTΛ can be computed as
the solution of

Π
(

(A−BK(m))T + qiM
)

ΠTΛ = ΠY,

which is equivalent to the solution of the saddle point system

[
(A−BK(m))T + qiM G

GT 0

]

︸ ︷︷ ︸

=:(A(m))T+qiM=:F̂i

[
Λ
∗

]

=

[
Y
0

]

(2.13)
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Algorithm 2. Generalized low-rank Cholesky factor Newton method

for Navier–Stokes
Input: M,A,G,B,C, initial feedback K0, and ADI shift parameters

qi ∈ C− : i = 1, . . . , nADI, tolADI, tolNewton, λ
Output: feedback operator K
1: for m = 1, 2, . . . , nNewton do

2: (W (m))T =
[√

λ CT (K(m−1))T
]

3: Get V1 by solving

[
AT − (K(m−1))TBT + q1M G

GT 0

] [
V1

∗

]

=

[√

−2Re (q1) (W
(m))T

0

]

4: K
(m)
1 = BTV1V

T

1 M
5: for i = 2, 3, . . . , nADI do

6: Get Ṽ by solving

[
AT − (K(m−1))TBT + qiM G

GT 0

] [

Ṽ
∗

]

=

[
MVi−1

0

]

7: Vi =
√

Re (qi) /Re (qi−1)
(

Vi−1 − (qi + qi−1)Ṽ
)

8: K
(m)
i = K

(m)
i−1 +BTViV

T

i M

9: if

(
||K

(m)
i

−K
(m)
i−1 ||F

||K
(m)
i

||F
< tolADI

)

then

10: break
11: end if

12: end for

13: K(m) = K
(m)
nADI

14: if
(

||K(m)−K(m−1)||F
||K(m)||F

< tolNewton

)

then

15: break
16: end if

17: end for

18: K = K(nNewton)

with K(m) = BTX(m)M ; see [29, Lemma 5.2]. Notice that the Newton step index m
is dropped for better readability in all further considerations.

The saddle point system (2.13) consists of the original matrices and does not
include any projection. The entire work flow to compute the feedback matrix K via
the generalized low-rank Cholesky factor Newton method avoiding the use of any
projection is summarized in Algorithm 2.

After a short note about the initial feedback in the next subsection, the important
properties of the nested iteration in Algorithm 2 will be discussed in section 3.

2.7. Initial feedback. As mentioned above, the matrix pencil (2.5) is not stable
in general. But in order to use the ADI method for solving the Lyapunov equation
(2.11), a stable pencil is needed. Following the ideas in [28], we show how to construct
an initial feedback K0. Notice that this concept is also used in [1] as a numerical
method to stabilize the Navier–Stokes equations.
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The majority of the nv − np finite eigenvalues of the pencil (2.5) are stable and
only nus eigenvalues are unstable with nus ≪ nv. First, all unstable finite eigenvalues

λ
(i)
us ∈ C+ of the pencil (2.5) are needed together with their corresponding left and right

eigenvectors ωi, ηi ∈ Cnv+np for i = 1, . . . , nus. Solving these large-scale generalized
eigenvalue problems in an efficient way is not within the scope of this paper. We
use the implicitly restarted shift-and-invert Arnoldi method as implemented in the
eigs function of MATLAB with the matrix shifting strategy described in [21]; using
this strategy all infinite eigenvalues are transformed to a fixed finite eigenvalue and
the eigenvectors corresponding to the original finite eigenvalues stay unchanged. This
technique to calculate all finite and unstable eigenvalues is not the most robust method
for unknown problem settings but it is sufficient in our case.

Using the left and right eigenvectors, the following matrices are defined as

W :=
[
ω(1), . . . , ω(nus)

]
∈ C

(nv+np)×nus and

H :=
[
η(1), . . . , η(nus)

]
∈ C

(nv+np)×nus .

These matrices are used to project the system onto the subspace spanned by the
eigenvectors of the unstable eigenvalues λus:

M̃ := W ∗

[
M 0
0 0

]

H, Ã := W ∗

[
A G
GT 0

]

H, B̃ := W ∗

[
B
0

]

.

After solving the nus-dimensional generalized Bernoulli equation

Ã∗X0M̃+ M̃∗X0Ã− M̃∗X0B̃B̃
∗
X0M̃ = 0,(2.14)

the initial feedback K0 ∈ R
nr×nv can be defined as first nv columns of

[
K0 0

]
:=
[
BT 0

]
WX0W

T

[
M 0
0 0

]

.

We solve the (generalized) Bernoulli equation (2.14) with an algorithm based on [9].
Using the initial feedback K0, the resulting closed-loop pencil

([
A G
GT 0

]

−
[
B
0

]

·
[
K0 0

]
,

[
M 0
0 0

])

is stable and all initially unstable eigenvalues λ
(i)
us appear as stabilized eigenvalues

λ
(i)
stab := −Re

(

λ(i)
us

)

+ j Im
(

λ(i)
us

)

∈ C
− ∀i = 1, . . . , nus

that are mirrored at jR [9] (with j as the imaginary unit j2 = −1).

Notice that some algorithms compute the eigenvectors in such a way that
M̃ = I, which means V and W are orthogonal w.r.t. the inner product (., .)

M̃
. For

this constellation one has to solve an ordinary Bernoulli equation.

Using the initial feedback K0, the nested Algorithm 2 can be used to compute
the feedback K that defines u(t) minimizing the cost functional (2.9). Some details
of the nested iteration are shown in the next section.
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3. Nested iteration. The iterative process to compute the feedback matrix K
is described in Algorithm 2. It is a nested iteration embedded in a Newton type
method, as outermost iteration, an ADI iteration, as central iteration, and a method
to solve the large-scale and sparse saddle point systems (2.13), as innermost iteration.

For moderate problem sizes of n = nv + np = O(106) a direct solver is the
best choice to solve the saddle point systems (3.2). However, if the dimension of the
underlying finite element discretization gets larger or one deals with three-dimensional
problems, direct solvers generate a considerable fill-in such that the use of iterative
methods is imperative; see, e.g., [15]. For the problem size of the numerical example
in section 4 a direct solver is suitable. Extending the iterative solution techniques of
[15] to the more general Navier–Stokes flows is part of our current research.

In the next subsection, some properties of the saddle point matrix F̂i in (2.13)
are shown and different parameters of the nested iteration are discussed.

3.1. Properties of the saddle point system. Although the matrices A,M,G
in F̂i are sparse, the low-rank product KTBT is a dense block such that nearly the
whole matrix F̂i becomes dense. To avoid this problem, (2.13) is written in the form
of a low-rank update

([
AT + qiM G

GT 0

]

︸ ︷︷ ︸

Fi

−
[
KT

0

]

︸ ︷︷ ︸

KT

[
BT 0

]

︸ ︷︷ ︸

BT

)[
Λ
∗

]

︸︷︷︸

Λ

=

[
Y
0

]

︸︷︷︸

Y

,

that is (in a compact notation),

(Fi −KTBT )Λ = Y.(3.1)

To evaluate (3.1), [15, section 3.1] is recalled, where the Sherman–Morrison–Woodbury
formula (see, e.g., [26])

(Fi −KTBT )−1 = (Inv
+ Fi

−1KT (Inr
−BTFi

−1KT )−1BT )Fi
−1

is used. In addition to solving with Fi, one needs to solve with a small dense matrix
Inr

−BTFi
−1KT of dimension nr ≪ nv to perform the solve with F̂i. The extra solve

for Fi with the right-hand-side KT can be easily done by adding KT as nr additional
columns to the matrixY, such that the new right-hand side becomes

[
Y KT

0 0

]
=:
[
Ỹ
0

]
.

In the configuration with two boundary control parameters, nr = 2. The resulting
saddle point system that has to be solved in every ADI step during each Newton step
then is of the form

[
AT + qiM G

GT 0

] [
Λ
∗

]

=

[

Ỹ
0

]

,(3.2)

where M = MT ≻ 0, qi ∈ C−, and a nonsymmetric matrix A with eigenvalues in
C\{0}. Notice that for |qi| large enough all eigenvalues of AT +qiM are located in C−,
which is relevant for some preconditioning techniques of the iterative solver. Details
concerning these influences will be skipped in this paper and the reader is referred to
[15]. Notice that the whole saddle point matrix Fi will usually have eigenvalues in all
of C independent of qi ∈ C−.
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3.2. ADI shifts. The ADI shifts qi influence the eigenvalues of the matrix Fi

and their proper choice is crucial for the convergence of the ADI method. Among the
many different ways and methods to choose qi, we focused on the use of the heuristic
Penzl shifts [38]. A basic ADI result tells us that (optimal) ADI shifts qi have to be
included in the convex hull of the finite spectrum of the closed-loop DAE (2.12) as
described in, e.g., [46]. Using the efficient implementation to compute qi ∈ C− as
described in [43], we run into problems, because the infinite eigenvalues of the pencil
(2.12) destroy the convergence for eigenvalues with large, although finite, magnitude.
This difficulty can be avoided with the matrix shifting techniques of [21] as used in
subsection 2.7. Using the shifts qi in a cyclic way provides acceptable convergence
results in our cases. Further investigations to improve the convergence by an optimized
selection of the ADI shifts qi is part of our current research.

3.3. Reynolds number. The second parameter that influences the matrices
and, as a result, the convergence behavior of the nested iteration is the Reynolds
number. For high Reynolds numbers the system gets more convection dominated and
stable finite eigenvalues are getting closer to the imaginary axis. At a certain point,
the so-called critical Reynolds number, a few eigenvalues cross the imaginary axis and
end up as unstable eigenvalues. In [44] it is pointed out that the critical Reynolds
number changes only slightly during refinement if one starts with a sufficiently fine
initial discretization.

In the numerical examples in section 4 the critical Reynolds number lies between
Re = 200 and Re = 300 for all refinement levels. The determination of the exact
critical Reynolds number for each refinement level is a numerically challenging task
and not within the scope of this work.

As described in subsection 2.7, one needs to compute an initial feedback to ensure
the convergence of the ADI algorithm, Algorithm 1, if the Reynolds number is higher
than the critical Reynolds number.

The eigenvalue behavior is depicted in Figure 2 for different Reynolds numbers,
where a selection of the eigenvalues close to the imaginary axis jR of the matrix pencil
(2.5) is plotted for the numerical example of section 4 using the initial mesh of Level 1
in Table 1.

4. Numerical examples. In order to test our numerical method for boundary
feedback stabilization of Navier–Stokes flows, the von Kármán vortex street is used as
depicted in Figure 3. The flow through a channel Ω ⊂ R

2 with diameter din = 1 and
around an obstacle of elliptic shape centered at the coordinates (1, 0.5), 1

5din wide,
and 1

3din high is considered. The boundary conditions of the Navier–Stokes equations
(1.1) are taken as described in section 1. The parabolic inflow condition from (1.3a)
is defined as

�v(t, �x) = �gin(�x) :=

[
4 · (1− x2) · x2

0

]

on Γin

with a maximum of vmax = 1.0 at �x =
[
0 0.5

]T
. This condition is consistent with the

no-slip condition (1.3a) at (0, 0) and (0, 1) that are parts of Γwall as well. Furthermore,
we set vref = vmax and dref = din in the definition of the Reynolds number (1.2).

We use the finite element flow solver NAVIER [6] for the numerical tests to assemble
the matrices. NAVIER uses a standard mixed finite element discretization of Ω (i.e., P2-
P1 Taylor–Hood elements [32]) as shown in Figure 4. NAVIER is implemented in FOR-

TRAN90 and the matrices are stored using the so-called matrix market format [18].
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Fig. 2. Eigenvalues of matrix pencil (2.5) that are close to jR for different Reynolds numbers
(refinement: Level 1).
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Γin Γfeed,1 Γfeed,2 Γwall Γout Pobs,i

Fig. 3. Initial triangulation of von Kármán vortex street with coordinates, boundary conditions,
and observation points.
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Fig. 4. P2-P1 Taylor–Hood element.

Starting from an initial triangulation, the mesh was refined using bisection refine-
ment [5]. In the subsequent computations, six triangulations of different refinement
levels were used; see Table 1 and Figure 5.

The computations for the resulting matrix equations are performed with
MATLAB on a 64-bit server with Intel Xeon X5650 at 2.67GHz, with 2 CPUs, 12 cores
(6 cores per CPU), and 48 GB main memory available.
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á
rm

á
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Table 1

Levels of refinement.

Level nv np

1 4796 672
2 12,292 1650
3 28,914 3784
4 64,634 8318
5 140,110 17,878
6 296,888 37,601

1 2 3 4 5 6 7 8 9 10 11

100

10−2

10−4

10−6

10−8

10−10

10−12

Newton step m

||
K

(
m

)
−

K
(
m

−
1
)
||
F

||
K

(
m

)
||
F

Re = 100 Re = 200 Re = 300

Re = 400 Re = 500

(a) Convergence behavior of Newton iteration for dif-
ferent Reynolds numbers.

(b) Number of ADI steps per Newton step
(small bars) and average over all Newton
steps (wide bars).

Fig. 6. Influence of Reynolds number for Newton and ADI convergence (λ = 100, tolNewton =
10−8, tolADI = 10−7; refinement: Level 1).

In section 3, various parameters and properties of the nested iteration are dis-
cussed. Using the above configuration, we show different results regarding these pa-
rameters and properties for the refinement levels in Table 1. At the end of this section,
the realization of a closed-loop simulation within NAVIER is shown.

4.1. Parameters in the nested iteration. The influence of the different pa-
rameters is shown by comparing the convergence behavior for different problem set-
tings. Unless otherwise stated, only one parameter is changed in each configuration.
The two parameters that mostly influence the convergence of the outer Newton-ADI
are the Reynolds number Re ∈ R+ and the regularization parameter λ ∈ R+. The
convergence influence of the ADI shifts is not discussed further, because the Penzl
shifts are used for all configurations. However, the ADI shifts play a certain role
within the iterative solution process for the saddle point systems (3.2), as shown for
Stokes flows in [15] and for coupled flow problems in [16].

4.1.1. Reynolds number. Five different Reynolds numbers are used for the
tests and the regularization parameter λ is fixed at λ = 1. Notice that for Re < 100,
the influence of the convection term (�v · ∇)�v in (1.1a) is negligible and the flow
behaves like a Stokes flow [15].
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F
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λ = 103
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λ = 100 λ = 102
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(a) Convergence behavior of Newton iteration for dif-
ferent λ and Re = 100.
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(b) Average number of ADI steps per New-
ton step.

Fig. 7. Influence of regularization parameter λ for Newton and ADI convergence (tolNewton =
10−8, tolADI = 10−7; refinement: Level 1).

Figure 6 shows the influence of the Reynolds number on the Newton-ADI iter-
ation. From Figure 6(a) one can see that the number of Newton steps increases for
increasing Reynolds numbers. However, there is an upper bound at m = 9. Although
the number of Newton steps remains constant for Re ≥ 400, the number of ADI steps
per Newton step still increases, as depicted in Figure 6(b), which shows details about
the number of ADI steps per Newton steps depicted as small bars clustered for the
different Reynolds numbers. A wider and slightly transparent block denotes the av-
erage number of ADI steps for each Reynolds number. Thus, the computing time to
evaluate the Newton-ADI iteration increases for increasing Reynolds numbers. Notice
that the initial feedback K0 needs to be computed additionally for Re ≥ 300. This
is represented by one additional Newton step in Figure 6(a). Hence, the system with
Re = 300 needs fewer ADI steps on average but the Newton convergence is slower than
for Re = 200. To summarize, the nested iteration is able to compute the feedback
K for all considered Reynolds numbers with a reasonable computational effort. This
behavior does not qualitatively change if one changes the regularization parameter λ.
The quantitative influence of λ is shown below.

4.1.2. Regularization parameter λ. The regularization parameter λ is intro-
duced in the cost functional (2.9). For λ > 1 the output y = Cz̃ is penalized; the
feedback K should force the system with more effort to the desired state. It is natural
that we need higher control costs to achieve this.

In contrast, for λ < 1 the influence of the output is reduced compared to the
control cost. The control cost uTu is penalized in an indirect way in that the controller
K tries to force the system to the desired state, but with a reduced amount of control
effort.

The convergence behavior of the Newton-ADI is illustrated for 10−3 ≤ λ ≤ 103 in
Figure 7. Figure 7(a) shows the convergence of the Newton iteration for Re = 100.
The number of Newton steps increases monotonically with respect to λ. This seems
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(a) Convergence behavior of Newton iteration for dif-
ferent refinement levels (Re = 500).
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(b) Average number of ADI steps per New-
ton step during Newton-ADI iteration.

Fig. 8. Influence of refinement level for Newton and ADI convergence (λ = 100, tolNewton =
10−8, tolADI = 10−7).

to be natural, because the feedback K has to work more effectively if the output
is more penalized; the feedback K has to provide more “information” to achieve
its aim in a shorter amount of time. For small λ there exists a lower bound at
m = 3. The Newton convergence for different λ stays qualitatively the same for
different Reynolds numbers. The number of steps varies quantitatively, as shown
in Figure 6(a). Figure 7(b) illustrates the average number of ADI steps within the
Newton iteration for a varying Reynolds number and regularization parameter λ. The
number of ADI steps is nearly constant for Re = 100 and Re = 200, except for the
configuration Re = 200, λ = 10−3.

For Re ≥ 300 the number of steps increases as λ gets larger. For Re = 500 there
are two configurations that do not perfectly fit into this scheme. The influence of the
initial feedback K0 for Re > 200 influences the number of steps as well, such that
some configurations with supposedly higher complexity need fewer ADI steps, because
one starts with a quite good initial guess.

The best choice of λ in the closed-loop simulation is not obvious. Moreover, the
underlying finite element discretization gives us natural bounds for the input u and,
hence, for λ as well. Furthermore, the best choice of λ is a separate optimization
task and depends on the design of the test configuration, but it will not be discussed
further in this paper.

4.2. Refinement levels. The accuracy of the finite element approximation of
the equations in (2.2) increases if one refines the mesh. As described above, we start
with the coarse grid triangulation in Figure 3 and use a bisection refinement [5] to
refine the triangulation five times. Each time, the triangles are split into two subtri-
angles by inserting a new edge, as depicted in Figure 4, that bisects the refinement
edge in the existing triangle. Notice that every second refinement level corresponds
to one uniform refinement [5] in the whole domain. Refinement levels 3 and 5 are
illustrated in Figure 5.

In order to resolve the feedback influence as described in subsection 4.5 already
on the coarsest mesh, the initial triangulation is adaptively refined; see Figure 3. The
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
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K

(
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F
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tolADI = 10
−7

tolADI = 10
−8

tolADI = 10
−9

(a) Convergence behavior of Newton iteration for dif-
ferent ADI accuracies.

(b) Number of ADI steps per Newton step
(small bars) and average over all Newton
steps (wide bars).

Fig. 9. Influence of ADI accuracy to Newton convergence (Re = 500; refinement: Level 6;
tolNewton = 10−8).
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Fig. 10. Condition number of matrix Fi for different ADI shifts qi during the first Newton
step for different refinement levels (Re = 500).

mesh size is smaller close to the control boundaries Γfeed,1,Γfeed,2. Finer meshes yield
more detailed information about the physical behavior of the flow and can be used
to compute the optimal control u(t). Similar to the influence of higher regularization
parameters in subsection 4.1.2, the number of Newton steps increases to process the
higher amount of information.

The Newton-ADI algorithm converges quadratically for all refinement levels up to
Level 5 within 9 to 11 steps, as illustrated in Figure 8(a) for Re = 500, λ = 100, and
an ADI tolerance tolADI = 10−7. Only Level 6 does not show quadratic convergence
anymore such that significantly more Newton steps are needed. This problem can be
observed for all configurations with Re ≥ 200.D
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100 200 300 400 500

103

104
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Re

ti
m
e

Level 1 Level 2 Level 3

Level 4 Level 5 Level 6

Fig. 11. Total time in seconds for whole Newton-ADI iteration (λ = 100, tolNewton = 10−8,
tolADI = 10−7).

The comparison of the average number of ADI steps per Newton step is depicted in
Figure 8(b). For Re = 100 the number of steps varies slightly. For all other Reynolds
numbers the number of ADI steps decreases if the refinement level increases. For
Re > 200 the first two refinement levels do not share this behavior. We believe that
this unstable behavior for flows with Re > 200 is due to insufficient mesh resolution
for these refinement levels. The reduction of ADI steps in Level 6 is drastic and leads
to worse convergence of the Newton iteration. This means the ADI tolerance is not
sufficient to ensure quadratic convergence of the Newton iteration. Figure 9(a) shows
the convergence of the Newton-ADI iteration for different ADI tolerances. Using
a higher ADI accuracy ensures the quadratic Newton convergence. However, the
amount of ADI steps increases drastically as well. This example shows the necessity
of an automatic tolerance adjustment as in the inexact Newton iteration (see, e.g.,
[24]) that is part of recent research.

A variation of Reynolds number or regularization parameter λ only changes the
quantitative results regarding the explanations in subsection 4.1 and is not further il-
lustrated. Another aspect that leads to increased numbers of Newton steps is the
increasing condition number of the shifted saddle point system Fi, as plotted in
Figure 10 for all ADI shifts during the first Newton step. Thereby, the horizontal
axis depicts the magnitude of all ADI shifts for all six refinement levels for Re = 500.

4.3. Timings for Newton-ADI iteration. Various parameters influence the
number of Newton and ADI iteration steps. The most time-consuming operation
within the nested iteration is to solve the arising saddle point system (3.2) in each
ADI step. The ADI shift and the Reynolds number influence the condition number
and, as a result, the time to solve these systems. Nevertheless, the average time to
solve one single saddle point system is nearly constant for a fixed refinement level and
is not illustrated in more detail. The most important parameter for the computation
time is the refinement level. The direct solver needs more time and memory due to
increasing system dimensions. The total times for the whole Newton-ADI iteration
are depicted in Figure 11 and are given in detail in Table 2. The influence of the
Reynolds number that is described in subsection 4.1.1 is reflected in the timings as
expected.
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Table 2

Total time in seconds for whole Newton-ADI iteration (λ = 100, tolNewton = 10−8, tolADI =
10−7).

Reynolds number

100 200 300 400 500

L
ev
el

1 2.2 · 102 5.0 · 102 4.2 · 102 6.4 · 102 9.5 · 102

2 4.4 · 102 1.5 · 103 1.6 · 103 1.7 · 103 2.5 · 103

3 1.3 · 103 4.6 · 103 7.3 · 103 9.1 · 103 1.2 · 104

4 2.6 · 103 1.1 · 104 1.7 · 104 2.4 · 104 3.2 · 104

5 1.0 · 104 2.6 · 104 4.7 · 104 5.9 · 104 7.1 · 104

6 2.5 · 104 4.6 · 104 7.0 · 104 1.1 · 105 1.5 · 105

Furthermore, the influence of the mesh refinement can be seen easily. For compar-
ison we want to mention that the matrix assembling times of NAVIER and the times
to compute the initial feedback are not part of these times, because both processes
can be done beforehand independently of all parameters that are used later on.

4.4. Control cost. The number of Newton steps associates in a natural way
to the difficulty of the optimization problem. The feedback matrices computed by
using more Newton steps force the system more strictly to the desired state. Such a
strict forcing requires larger control cost, which is implicitly shown in Figure 7. To
show this in a more detailed way we compute the stationary optimal control uw with
respect to the linearization point �w of system (2.1) and its corresponding discretized
velocity field w. Thereby, uw is measured as the square of the Euclidean norm:

||uw||22 = uT
w
uw = wTKTKw.

Using the same configurations as above, Figure 12(a) shows that the control cost
increases for higher Reynolds numbers up to an upper bound; this is the same behavior
as can be seen for the number of Newton steps in Figure 6(a). It is natural that the
control cost is smaller for lower λ, because the control cost is implicitly penalized for
λ < 1. To illustrate the monotone increase for increasing λ, the Reynolds number is
fixed and the influence of the varying λ is shown in Figure 12(b). There is a noticeable
gap between Re ≤ 200 and Re ≥ 300 that is related to the instability of systems with
higher Reynolds numbers, as explained in section 3.3.

In Figure 12(c), the initial control costs are compared for different Reynolds
numbers regarding the refinement levels. Levels 1 to 5 show a convergent behavior.
This does not hold for Level 6 in the case of Re ∈ {100, 300, 400} anymore. We
think a better understanding of stopping criteria and their connections to ensure the
convergence within the Newton-ADI iteration would solve this problem.

4.5. Closed-loop simulation. In this subsection the usability of the feedback
matrix K computed via Algorithm 2 to stabilize the flow problem (1.1) during a
forward simulation is verified. Here, by stabilization we mean smoothing vortexes
behind the obstacle that occur for Reynolds numbers Re > 200.

A laminar stationary flow field �w is considered as linearization point. The matrix
K, computed in MATLAB R©, is imported into the finite element flow solver NAVIER
using the matrix market format [18].

D
o
w

n
lo

ad
ed

 0
4
/1

0
/1

5
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FEEDBACK STABILIZATION OF NAVIER–STOKES FLOWS A853

100 200 300 400 500

103

100

10−3

10−6

10−9

10−12

Re

u
T w
u
w

λ = 10−3
λ = 103

λ = 10−2
λ = 100 λ = 102

λ = 10−1
λ = 101

(a) Various Reynolds number and fixed λ (refine-
ment level: Level 1).
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(b) Various λ and fixed Re (refinement level:
Level 1).
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(c) Various Reynolds number and fixed refinement level (λ = 100).

Fig. 12. Initial control cost with uw = −Kw, where w is the discretized version of the sta-
tionary velocity field �w in (2.1).

In [40], Raymond shows that the optimal control u(t) computed for the linearized
system (2.2) also stabilizes the nonlinear system (1.1) if one assumes �v ≈ �w; this
means the deviations of the velocity field �v from the stationary velocity field �w are
small enough [7].

For the controlled forward simulation we proceed as follows. The same finite
element discretization as above is used, such that the spatially discretized nonlinear
system can be written as

M
d

dt
v(t) = A(v(t))v(t) +Gp̃(t) + B̃u(t),(4.1a)

0 = GTv(t),(4.1b)

y(t) = Cv(t)(4.1c)
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with the discrete velocity v(t) ∈ Rnv , the discrete pressure p̃(t) ∈ Rnp , and the
nonlinear Navier–Stokes operator A(v(t)) that depends on the current velocity field
v(t). Additionally, we have the discrete versions of the boundary conditions (1.3a)–
(1.3b). We start with an initial condition

v(0) = w,

such that the perturbations from the stationary trajectory are zero at the beginning.
See [6] for more details on solving the nonlinear system (4.1).

The actual u(t) is computed on the discrete level via

u(t) = −Kz(t) = −(Kv(t)−Kw),

which means the feedback matrix K is applied to the stationary linearization point
w and the recent velocity field v(t). The values of u(t) describe the magnitude of
the parabolic inflow or outflow conditions via the control boundaries Γfeed,i ∀i = 1, 2;

compare Figures 1 and 3. In this setting the input operator B̃ maps the parabolic
control inflow at the feedback boundaries Γfeed,i ∀i = 1, 2 with the magnitudes ui(t)
to the control Dirichlet conditions

v(t) = gfeed(t) := B̃ui(t) on Γfeed,i ∀i = 1, 2.

Using these boundary conditions, the closed-loop forward simulation can be solved.
The output operator C measures the vertical velocity component vx2 at seven

different nodes Pobs,i of the FE grid behind the obstacle as depicted in Figure 3.
Getting these components as small as possible is a way to measure how laminar the
flow field is.

The choice of λ influences the quality of the results. To find the optimal value λ
one would need to solve an optimization process; we do not show details regarding this
problem in this paper. Another difficulty that occurs is that the computed control
u(t) is not directly constrained. Thus, the required inflow via the control boundaries
Γfeed,i can exceed the resolution capabilities of the underlying finite element grid.

Figure 13 shows a flow field for Re = 300. The vertical component of the velocity
is depicted in red, as maximal value downward, and white, as maximal value upward.
As explained above, the observation matrix C measures the vertical velocities only in
a few nodes behind the obstacle. We divided the domain into equally sized rectangles
of five rows and five columns for better illustration. The measurement nodes are
located in the vertical center row in the third and fourth horizontal sections from the
left. To achieve the goal of smoothing all vortexes, the flow field should not consist
of vertical velocity components; a zero vertical velocity corresponds to yellow in the
applied color scale. Due to the nature of our cost functional, we focus especially on the
above-mentioned measuring rectangles on which deviations from zero are penalized.

The top picture shows the velocity field at t = 25 without any feedback influence.
The occurring vortexes are shown by the red and white areas that move away from
the obstacle in an alternating order.

The middle picture shows the influence of the initial feedback K0. Although K0

numerically stabilizes the matrix pencil, the forward simulation is not stabilized with
respect to occurring vortexes.

Finally, the bottom picture represents the closed-loop simulation for the feedback
matrix K computed with Algorithm 2 using the regularization parameter λ = 2.
Nearly all vortexes are smoothed and the flow field is laminar, especially in the
rectangles in our focus. Here, the value λ = 2 is an experimentally determined value.
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For λ < 2 the flow field still consists of vortexes. For λ > 2 the finite element grid
cannot handle the in-/outflow conditions required for the computed feedback. More
drastic feedback influence would require a local mesh refinement. Unfortunately, this
would require us to compute a new feedback matrix. Recently, we investigated the con-
nection between coarse grid computed feedback influences applied to fine grid forward
simulations. A video of the closed-loop forward simulation is available online [47].

5. Conclusions and outlook. In this paper we have investigated the numer-
ical realization of a boundary feedback stabilization for instationary Navier–Stokes
flows. Based on an approach by Raymond [39, 40], the linearization around a given
stationary trajectory is the starting point to apply an LQR approach. Raymond uses
the Leray projector to define the evolution equation for the regulator approach on the
divergence-free vector field. The stabilizing feedback operator is based on the solution
of an operator Riccati equation. Using a finite element discretization in space yields
an algebraic Riccati equation that has to be solved numerically. These large-scale
and nonlinear equations can be solved with a Newton type method. Starting with
a suitable initial guess, the Newton iteration converges superlinearly to the unique
root that defines the stabilizing feedback. Every Newton step consists of solving a
Lyapunov equation, which is solved by applying a low-rank factor ADI method. To
this end, a linear solve has to be done in each ADI step.

We have used a Taylor–Hood [32] mixed spatial discretization as a stable con-
forming finite element method to semidiscretize the evolution equation. Thus, the
incompressibility condition is not automatically built into the trial space and requires
additional effort. In [29], Heinkenschloss and colleagues proposed a trick to overcome
this difficulty. We have extended the ideas in [15] that demonstrate the equivalence of
this approach with the use of a discrete Leray projection for discretized flow fields. We
have shown that the Newton-ADI method to solve an algebraic Riccati equation can
be reformulated for such a DAE setting. The crucial step to using the Newton-ADI
method without the explicit projection is the linear solve of large-scale nonsymmet-
ric saddle point systems. The occurring structure is common for Navier–Stokes flow
related problems.

Compared to the Stokes case [15], the Navier–Stokes case has the need of an initial
feedback to guarantee convergence of the Newton-ADI method. In this paper we have
shown a way to compute such an initial feedback based on the solution of a Bernoulli
equation. Using this initial feedback, the threefold nested iteration determines a
stabilizing feedback matrix.

We have illustrated the influence of the occurring parameters with some numerical
examples based on the forward simulation of the von Kármán vortex street. A closed-
loop simulation for this example has verified the stabilizing property of the feedback
matrix.

In the future we are going to investigate more details about coupled multi-field
flow problems as in [8]. Furthermore, the parameter dependence within the nested
iteration, as well as the handling of complex ADI shifts, will be a challenging task.
We hope to benefit from some recent ADI improvements such as avoiding complex
arithmetic [11] or efficient low-rank residual computations [12].

Moreover, we plan to expand the iterative solution strategies in [15] to the Navier–
Stokes and coupled multi-field flow problems on finer meshes. To this end, we will
investigate efficient block preconditioning methods. To deal with the special structure
of the saddle point systems arising in the Newton-ADI algorithm we will investigate
recycling and block Krylov methods to accelerate the time-consuming handling of
multiple right-hand sides for iterative linear solvers.
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Boston, 1992.

[18] R. F. Boisvert, R. Pozo, and K. A. Remington, The Matrix Market Exchange Formats:
Initial Design, NIST Interim Report 5935, National Institutes of Standards and Technology,
1996.

[19] M. O. Bristeau, R. Glowinski, and J. Périaux, Numerical methods for the Navier-Stokes
equations. Applications to the simulation of compressible and incompressible viscous
flows, in Finite Elements in Physics (Lausanne, 1986), North-Holland, Amsterdam, 1987,
pp. 73–187.

D
o
w

n
lo

ad
ed

 0
4
/1

0
/1

5
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

http://www.am.uni-erlangen.de/home/spp1253/wiki/images/2/28/Preprint-SPP1253-090.pdf
http://www.am.uni-erlangen.de/home/spp1253/wiki/images/2/28/Preprint-SPP1253-090.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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[44] M. Schäfer and S. Turek, Benchmark Computations of Laminar Flow Around a Cylinder,
Preprint 96–03, Universität Heidelberg, 1996.

[45] W. E. Schiesser, Numerical Methods of Lines, Academic Press, New York, 1991.
[46] E. L. Wachspress, The ADI Model Problem, Springer, New York, 2013.
[47] H. K. Weichelt, Riccati-Based Feedback Stabilized Navier-Stokes Flow, https://zenodo.org/

record/7110#.VLzNwV3KzEU (2013).
[48] J. Weickert, Navier-Stokes Equations as a Differential-Algebraic System, Preprint SFB393/

96-08, Department of Mathematics, Chemnitz University of Technology, 1996.

D
o
w

n
lo

ad
ed

 0
4
/1

0
/1

5
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p

http://archiv.tu-chemnitz.de/pub/2010/0013
http://www.tu-chemnitz.de/sfb393/sfb00pr.html
http://pos.sissa.it
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642
https://zenodo.org/record/7110#.VLzNwV3KzEU
https://zenodo.org/record/7110#.VLzNwV3KzEU

