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Abstract 

NUMBER 4 

A target hides himself in one of the boxes 1,2, ... , m with prob­

ability distribution X=<Xl, ... , Xm) and can move to any of other 

boxes after each unsuccessful search by a searcher. The searcher is 

not informed of x and continues search until the target is found. He 

is informed of Ci'S, i.e., examination costs of each box, and ai's, i= 

1, ... , m, where ai is the probability of overlooking the target if i is 

searched and the target is in i. A formulation of this two-sided 

search game in which "non-blind" target and "noisy" searcher are 

involved is given in a stochastic game framework, and the game is 

solved in some special cases. 

1. Introduction and Summary 

In the game which we shall consider in this paper player I 

(Target) hides himself in one of m boxes, labeled from 1 to m. His 

opponent, player 11 (Searcher), has to search for the target by suc-
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208 Jlinoru Sakaguchi 

cessive examinations of the boxes. An examination of the ith box, 

i=l, "', m, can be performed at a cost Ct>O each time and there is 

a probability ai, O~ai<l, of overlooking the target given that the 

right box is searched. Upon finding the target in the ith box player 

11 receives a reward of Ri>O. 

A mixed strategy for player 11 is a probability m-vector 
m 

Y=(Yl, "', Ym> with Yi~O, i=l, "', m, and 2: Yi=l which denotes 
t=l 

a probability distribution, by which the box to be examined at each 

stage is selected. A mixed strategy for player I is also a probability 
m 

m-vector X=(Xl, ''', Xm\ with Xi~O, i=l, "', m and 2: Xi=1. Xi 
i=l 

denotes the probability of hiding in the ith box. 

If player I uses a mixed strategy x and the "memory less" player 

11 a specified mixed strategy y, chosen once and for all, the expected 

return to player I for each stage of the game is 

(1) M(x, y)=~ {ci-xi(l-ai)Ri}Yi , 
i=l 

and the probability that the target will be detected during a given 

search equals 
m 

( 2 ) Sex, y)= 2: (l-ai)xiYi . 
i=l 

Hence the discounted expected return to player I for the entire search 

is given by 

(3 ) 
M(x, y) 

G(x, Y)= 1-j9{1-S(x, y)} 

where 0~.8<1 is a discount rate. 

In [7], Neuts gives incorrect descriptions of the solutions of this 

game for the two cases: one in which 0<.8<1 and the other .8=0, 

with the additional restriction that Ri=R in both cases. It is a part 

of our purpose of this paper to give correct descriptions of the solu­

tions of the game for the case where .8=1 (Section 2) and that where 

.8=0, i.e., two-sided single-stage game (Section 3). The former case 
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Two-Sided Search Games 209 

would be a meaningful formulation of the sequential game in which 

player I is allowed to move after each stage of search by player H. 

We shall continue studying this class of games in Section 4. A 

formulation of the sequential search game in which "non-blind" target 

and "noisy" searcher are involved is given in a stochastic game frame­

work, and the game is solved in some special cases. 

2. Solution of the Game with /1=1. 

First we consider the case where 1'=1. Fortunately this case has 

every feature of manipulations which will be seen in the general case 

where O<j3~l, and, nevertheless, the solution has a simple and re­

markable form. 

Theorem 1. The single-stage game with the payoff function 

(4) G(x, y) 
M(x, y) 

Sex, y) 

is solved as follows: Let vo be the largest real root of the equation 

(5 ) 

Then vo is the value of the game and the optimal strategies are given by 

ci(l-ai)-l 
XiO= , 

(6) 
Ri+vo 

(i=l, ... , m). 

Proof. If we denote by XO=(X10, ... , XmO), yO=(Y10, ... , YmO) and v, 

respectively, a pair of optimal strategies and the value of the game 

with payoff (4), then we must have 

G(x, yO)~v~G(XO, y) 

for all x and y_ By rearranging and collecting terms this relations 

can be replaced by the following equivalent systems: 

(7) for all i , 
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210 b.linoru Sakaguchi 

m 

(8) 2.J eiYtO-(l-ai)(Ri+v)YtO~O , for all i . 
i=l 

The inequalities (7) and (8), together with ~ XiO=~ Yio=l, can be 
i=l i=l 

satisfied as equalities, resulting (6) where V=Vo satisfies the equation 

(5). This equation has clearly m real roots (including multiplicities 

if some of Ri's are equal). Therefore denoting the largest real root 

of the equation by Vo, we have 

min (Ri+vo»O , 
i 

so that XO and gO given by (6) are mixed strategies. It evidently 

follows that X O and gO are a pair of optimal strategies and Vo is the 

value of the game. 

Corollary 2. If Rl=··· =Rm=R, then we obtain as the solution of the 

game: 
rn 

vo=2.J et(l-at)-l-R 
i==l 

(i=l, ... , m). 

Each of Vo, xO and gO in the solution (6) depends on every existing 

parameters et, at and Rt's. But in the identical-reward case, surpriz­

ing facts happen, i.e., the optimal strategy of each player is independ­

ent of the common reward R, and gO is independent of et's too. We 

also note that 

(10) Vo {:}o, if fj et(l-ai)-l {:}l' 
< '~l R, < 

i.e., the game is advantageous to the searcher if and only if 

2:: et(l-ai)-l/Rt<l . 
i 

Remark. The same line of arguments as in the proof of Theorem 1 

gives the following result for the case of O<J3<1. The game with 
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payoff function (3) with O<fl<1 is solved as follows: Assume that 
m 
~ ci(l-at)-l/Ri~1. Let Vo be the largest real root of the equation 
i=l 

m ci-(I-fl)v 
2: l. 
i=1 (l-ai)(Ri+flv) 

Then Vo is the value of the game and vo~O. The optimal strategies 

are given by 

(l-ai )-l/ m (l-ai)-l 
Yi O= 2:----, 

Rt+flvo i=1 Ri+,8vo 
(i=l, ... , m). 

If R l =··· =Rm=R, then these reduce to 

Vo= {::E ci(l- ai)-l-R
1 

/ {fl+(I-fl)::E (l-ai)-l} , 
,=1 ) ,=1 

Xi O= ci-(I-fl)vo 

(l-ai)(R+flvo) 

YiO=(I-ai)-l/ ~ (l-ai)-l , (i=l, ... , m). 

We shall state another corollary which will be used later, and a 

numerical example will be attached to it. 

Let 

(11) 

[

Cl-(I-m)Rl C2 

Cl c2-(I-m)R2 
M=. . . . . . 

Cl C2 

C'" J C'" 

~~-(I-Ln)Rm 
and 

[

I-al. 0 1 
(12) S= . . 

o I-a", 

Corollary 3. Let Vo be the largest real root of the equation (5). Then 

Vo is a root of the equation l
) 

1) Given a matrix game B, let val (B) denote its max-min value to player 1. 
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212 Minoru Sakaguchi 

(13) val(M-vS)=O , 

and X O and gO defined by (6) are a pair of the optimal strategies for the 

m x m matrix game M - voS. Moreover both of X O and gO are completely 

mixed. 

Example 1. Let cI=l, c2=2; al=I/2, a2=1/3; RI=4, R2=9. Then 

cI(l-al)-1 1 c2(1-m) 1 

RI 2' R2 3 ' 

and the equation (5) becomes 

2 3 
4+v + 9+v =1, i.e., v

2
+8v+6=0 

which has two real roots -4±.J10. Hence the value of the game is 

vo= -4+.J1O~ -0.8377, being consistent with (10). The optimal strate­

gies are from (6) 

Now since 

we obtain 

xo=< ~1O, 1- ~1O>~<0.6325, 0.3675> , 

gO =< ~ (J10-2), ~ (7 -2JlO) >~ <0.7749, 0.2251> . 

[

-1 
M= 

1 

2J [1/2 0J and S= , 
-4 0 2/3 

[ 1] -l--v 2 

f(v)=val(M-vS)=val 2 2 

1 -4--v 

-(v2+8v+6) 

24 + (7/2)v ' 

2, 

1 
-1--v 

2 ' 

3 

if v<-9 or v>-4 

if -9<v<-6 

if -6<v<-4. 

We find (see, Fig. 1) that the equation (13) has only one root v=vo 

=-4+JI0. 
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As is seen in this example Vo is the only one root of the equation 

(13). This fact will be proved later in Theorem 6. 

3. Solution of the Game with P=O. 

We shall consider in this section the case where 1'=0. From (3) 

and (1) the game in this case is a m x m matrix game with payoff 

matrix M given by (11). Let ai=(l·-at)Ri >O, i=l, ... , m. 

We assume without losing generality that the boxes are labeled 

such that 

(14) Cl~ min Cj 
2:ij:im 

and 

(15) 
Cl-Cl < Ca-Cl < ••• <~:",-Cl 

al = aa = = am • 

First of all we note that the value v(M) of the game satisfies 

CI-(2: ai-I)-I~v(M)~Cl , 
i 

since we have element· wise inequalities 

r al 

CIE-

lo 

0] [~l Cl C~J 
:';"M~ : : -- - . . . . 

am Cl Cl Cm 
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where E denotes the m x m matrix whose elements are all unity. 

We shall prove: 

Theorem 4. The game with payoff matrix M is solved as follows: 

Ci-CI . 
(i) If ~ ---~1, or equwalently, 

i0;:2 ai 

then the game has the value 

(17) vo= (::8 ciai-l-l)/::8 ai-I, 
~=l t=l 

and the unique simple solution 

Xio=(ci-vO)ai- l 

(18) 

YiO=ai- l/ ~ ai-I, (i=l, "', m). 

.. Ci-CI Ci-CI 
(n) If ~ --~1<~ --, (k=2,3, "', m-I), then the game 

i<:;"+l ai i<:;" ai 
has the value Cl and (m-k+l) basic solutions with the common gO=<I, 

0, ",,0> and (m-k+l) x<"s, i.e., 

X O=<o ... 0 1- '" Ci-CI Ck+1-CI ... Cm-Cl> 
' " L.J , " iO;:k+l ai a"+l am 

(19) or 

<0 0 C,,-CI Cm-I-Cl 1 ~l Ct-Cl > 
or , ... " , ... , , - L.J --- • 

a" am-l i=k ai 

(iii) J+ 1:S: Cm-0.., then the payoff matrix has a saddle point at (m, 1) 
J - am 

and the saddle value is Cl. 

Proof. Let x O, gO and v respectively denote a pair of optimal strategies 

and the value of the game with payoff matrix M, then we must have 

M(x, gO)~v~M(xO, g) 

for all x and g. 

(i): By rearranging and collecting terms this relation can be replaced 

by the system of linear inequalities 
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for all i 

for all i . 

These inequalities, together with ~ :t:to=~ Yio=1 can be satisfied as 

equalities, resulting (18) where V=Vo satisfies the equation 

::8 Ct-V =1 
i=l ai 

which evidently has a unique root Vo given by (17). If 

~ Ci-Cl ~1, 
i;;:2 at 

then Cl~VO from (16) and (17) and therefore, by the assumption (14) 

)(J given by (18) is certainly a mixed strategy. It readily follows that 

x> and gO are a pair of optimal strategies and Vo is the value of the 

game. This proves the part (i) of the theorem. 

(ii): For gO=(1, 0, ",,0), we have M(x, gO)~CI, for all x. For 

we have 

since 

-"-<0 ... 0 1- " Ci-CI CUI-Cl ... cm-Cl> 
~. - , ,'L.J , " , 

i<:k+l ai ak+l am 

[ ( 
Ci-Cl) ] )(JM= Cl, C2, • ", C!:-l, cIG-a!: 1- ~ --- ,Cl," ',Cl 

i <: k+ 1 at '--.-----' 
m-k 

~[Cl, "', cd , 

Clc-ak(l- ~ Ci-Cl) =.a) ~ Ci-Cl -I} >Cl • 

i;;:IG+1 ai (i",k at 

Thus XO and gO are a pair of optimal strategies and Cl is the value 

of the game. Moreover XO and gO constitute a simple solution of the 

sub-matrix game of M which is composed of the last m-k+l rows, 

the first column and the last m-k columns_ The proof that gO and 

the other XO given in (19) constitute a basic solution of M is similar, 

and so it will be omitted. (See, for example, McKinsey [5], Chapter 

3). 

(Hi): Since Cl~Cm-am in this case, (m, 1) is a saddle point of the 
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216 Alinoru Sakaguchi 

matrix M. 

Thus we have completed all of the proof. 

A striking fact which is found by this theorem is that the optimal 

strategy yO for the searcher is either completely mixed or concentra­

tes to the box (or boxes) with the smallest Ci. We also note that 

(20) V(M){:: }o, if i:J ci(1-ai)-1 {::} 1 
< ,=1 Ri < 

i.e., (10) is again valid. 

An example will be given. 

Example 2. Let cl=1, c2=2, ca=3; ai=4i (i=1, 2, 3). Then since 

6 
part (i) of Theorem 4 gives the value Vo = -- of the game and a 

11 
unique simple solution 

xo=<H, ~, ~), yO=<1
6
1' ft' 1

2
1) . 

Also let cl=1, c2=2, ca=3; ai=i (i=1, 2, 3). Then since 

C2-Cl 1 CS-Cl 2 
----;--=2' ~-3 ' 

we have from part Cii) of Theorem 4, two basic solutions 

1 
xo=<o ~ 1.) 1 xo=<o ~ ~) , 3' 3 ' 2' 2 

yO=<l, 0, 0)' yO=<l, 0, 0) 
and the value 1 of the game. By a routine work in finding all solu­

tions of a game we can easily check that these are the only two 

basic solutions. 

Corollary 5. If Rl='" =Rm=R and ~ ~i-=-:; ~R, then we obtain as 

the solution of the game: 
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Vo={2:: ci(l-ai)-l-R}n.~ (l-at)-l , 
i , 

0_ Ci-VO 
Xi -C1- a i)R ' 

Yio=(l-ai)-l/2:: (l-ai)-l , 
i 

(i=, 1, "', m). 
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Again we get a striking fact, i.e., the independence of yO of all 

parameters but the ai's in the identical-reward case. 

4. A Sequential Game Involving a Moving Target 

In [2] Dobbie suggested that the two-sided search problems de­

served more attention than they had received in the development of 

search theory. In [4] Klein indicated how certain search problems 

involving a moving, but blind target can be formulated by the use 

of appropriate Markovian decision models. Although he treated one­

sided models, a general description of such search problems was 

given. 

In this section we shall treat a sequential two-sided search model 

which is characterized by the following two assumptions: 

(AI): Target movements are dependent of the searcher's location, 

that is, the target is "non-blind" and even considered to be 

intellectual. In fact, the target is the maximizing player in 

our game model. 

(Ai): The searcher is "noisy". Hence, the target can base his move­

ments on knowledge of the searcher's location at the end of 

each period. 

Other sequential search games have been discussed using closely 

related models. Norris [8] studied the structure of some special 

"search games for a conscious evader." Neuts [7] examined a sequen­

tial search game in which a stationary (i.e., :motionless) target and 

a "memory less" searcher were involved. Recently Sweat [10] analysed 

a search model for stationary target by an intellectual searcher who 
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can learn from past history. Also Meinardi [6] studied a special two­

sided sequential game in which the number of boxes increases as 

long as unsuccessful searches are repeated. 

We now give a more precise description of the problem and its 

formulation within the sequential-game framework. A class of states 

will be used for the Markov chain to be constructed. Let the state 

i (i=l, ... , m) indicate that the ith box has just been searched unsuc­

cessfully. Since the target is "non-blind" and the searcher is "noisy" 

as stated above by the assumptions (AI) and (A2), both players know 

correctly the present state of the Markov chain, at each stage of the 

sequential game. 

The sequential play is terminated as soon as the target is found 

by the searcher. Examination cost Ci(>O), overlooking probability 

ai, O~ai<l, and reward Ri(>O) of finding the target are involved as 

in the previous sections. Moreover travel costs between successive 

search locations will be counted for the searcher only. Let tij (i, j 

= 1, ... , m) be the travel cost needed for the searcher to go from 

box i to box j C*i). 

A stationary strategy for player II (searcher) may be represented 

by an m-tuple of probability m-vectors 

and similarly, for player I (target), 

By stationary strategies, we mean the situation in which for each of 

m distinct states, a probability distribution is specified for the player 

for use every time that state is reached, by whatever route. 

Let Mk (k=l, ... , m) be the matrix M defined by (11) with each 

Ci, i*k, replaced by tki+Ci. Let, for [=1, ... , m. 
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1 

o Cl 
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in which PCl=[p~; 11~i, j~m] and p~; denotes the transition probability 

from state k to state I if player I hides himself in box i and player 

II examines box j. 

Given a pair (x, y) of stationary strategies for the two players, 

the stationary transition matrix of the Markov chain, and the payoff 

to player I in state k are respectively: 

P(x, y)=[xkPClykI1~k, l~;m] 

k:=l, ... , m 

if xi: and yi: are written as row and column vectors, respectively. 

Also let 
·.n 

8k=[s~jI1~i, j~m]=E-:~ pcl , k=l, ... , m 
1=1 

be the matrix of stop probabilities at state k. Then we easily find 

that 8 1= ... =8"'=8, given by (12). Therefore our sequential game 

belongs to "stochastic games with zero stop probabilities", discussed 

by Gillette [3]. 

For 0<.a<1, we define, following Gillette, .a-discounted payoff for 

stationary strategies (x, y) as: 

(23) k=l, ... , m 

where pCnl(x, y) (n~l) and PCOl(X, y), respectively, denote the nth 

power of the matrix pcx, y) and the identity matrix. [pcnl(x, y)]kl 

means the (k, l) element of the matrix pcnl(x, y). 
From results by Shapley [9] and Gillette [3] there exist stationary 
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strategies (X*, y*) such that for all strategies (x, y) and all k = 1, ... , m 

rl(x, Y*):'2 r l(x*, Y*):'2rl(X*, iiJ . 
Denote r/'(x*, y*), simply by Vk. This represents the value of the 

stochastic game when the play starts with state k. We readily find 

that an application of Bellman's principle of optimality [1] implies 

that the following equations must be satisfied 

(24) k=l, ... , m. 

By the use of the "value-transformation" technique (Shapley [9]) we 

can easily prove that (24) has a unique solution, provided that 0<,B<1. 

For m=2, (24) becomes 

1 [CI+,BVI-(l-al)(RI+,BVI) C2'+,BV2 ] 

vI=va CI+,BVI c2'+,Bv2-(1-a2)(R2+,Bv2) 

1 [CI'+,BVI-(l-m)(RI+,BVI) C2+,BV2 ] 

V2=va CI'+,BVI c2+,Bv2-(1-m)(R2+,Bv2) 

(25) 

where CI'=t21+CI, C2'=tI2+C2 and Vi are written as Vi. 

Let Al and A2, respectively, be the matrix in the righthand side 

of each equation of (25). Then we obtain from Theorem 4 

{ 
Cl + ,BVI C2' + ,BV2 I} 

VI= (l-m)(RI+,BvI) + (1-a2)(R2+,Bv2) -

I { (l-al)(~1 + ,BVI) + (1-m)(~2 + ,BV2) } 

~= + 1 {
Cl' + ,BVI C2 + ,BV2 } 

(l-al)(RI + ,BVI) (1-a2)(R2 + ,BV2) 

It (l-m)(~I+,BvI) + (1-m)(~2+,Bv2)} 
provided that Ri+Vi>O, i=1,2, and both of Al and A2 do not have 

saddle points. These give 

{ 

cI-(l-,B)VI Cl+,BV2-VI 

(l-al)(RI + ,BVI) + (1-a2)(R2 + ,BV2) 1, 

CI'+,BVI-V2 + c2-(1-,B)v2 1 
(l-al)(RI + ,BVI) (1-a2)(R2 + ,BV2) , 
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If, for example, CI=C2=C, t12=t21=t, al=a2=a and RI=R2=R, then 

(26) gives VI=V2 (=v*, say) and 

1 
c+

2
{t-(I-a)R} 

v*= 

{

I) 
I-.a I-2 (I-a); 

(27) 

We can easily check that R+.av*>O and that both of AI, and A2 do 

not have saddle points if 

(28) t<to=CI-a)(R+ I~.a). 

Thus, for this choice of t, the optimal strategy of each player in 

state k is given, from (18), by 

~ <1 I) (29) y*=[yl*, y2*], where yl*=y2*= 2' 2 

(30) x*=[xl*, x 2*], where 

XII*=X22*= 21 [1 t{I--.a( I-~)} 1 
(I-a){.aCc+t/2)+CI-.a)R} . 

If t~to then we have 

vI=v2=c/CI-.a) 

C3I) yl*=(I, 0>, y2*=(0, 1> , 
xl*=(O, 1>, x2*=(I, 0> . 

The target will not be captured by the searcher, and hence the 

search process continues forever. 

1 
Example 3. Let c=I, a=2' R=IO and t=1. Since 
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t<to=5+ ~ (~-) , 

-1 
3 . In fact, the first equation of (25) becomes in 

1---j9 
4 

(27) gives v* 

this case 

[

-4-lP
V 2 ] 

(l-,B)v=val 2 1 

1 -3-Z-j9v 

1

-1-j9Vj4, if v<-12jj9 or v>-8jj9 

= -4-pvj2, if -12jj9<v<-10jj9 

1, if -10jj9<v<-8/j9 

yielding a unique root v*=-(1-3j9/4)-1 (see Fig. 2). 

Let c, a and R be as before, and let t=10, j9=8j9. Then since 

t>to=9, (31) gives vl=v~=_c-=9. In fact, the first equation of 
1-j9 

(25) becomes in this case 

[ 

4 
-4--v 

1 9 
gV= val 1 

(7j2)-(2j9)v , 

-4-(4/9)v, 

1, 

11 ] 

6- !v 
1
.f 135 45 

v<-- or v>-
4 4 

if 135 45 
-4<v<-4 

if _ 45 <v<45 
4 4 

yielding a unique root v*=9 (see Fig. 3). 

Expressions (27)-(30) and the first half of Example 3 may suggest 

that the extreme case in which j9=1 would also be possible. We 

have lim to=+oo, and 
P~l 
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--------~--~--J-------~~~--~----~v 

Fig. 2. Unique root v* when t<to. 

Fig. 3. Unique root v* when t>to. 

lim v*=(2c+t)(1-a)-1-R , 
fi-l 

lim xll*=lim X2 2*=C/(2c+t) , 
fi-l fi-l 

which are consistent with (9) if t=O. 

223 

Although we were unable to prove or disprove the unique ex­

istence of the solution of (24) for j9=1, we obtained the result that 

(24) can have a unique solution in some special cases. We conclude 

this section by showing this result in the following. 

If travel costs are all zero, i.e., i'ij=O (i* j), (22) substituted into 

(24) with f3=1 gives v1=···=v'" (=v" say), and v satisfies the equa­

tion (13), i.e., 

(13) val (M-vS)=O . 

We shall prove: 

Theorem 6. The equation (13) has the only one real root VG, i.e., the 
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largest real root of the equation (5). 

Proof. Since 

[
Cl-(l-.m)(~l+V) ... c':' 1 

M-vS= :.. : ' 

Cl ... c",-(l-a",)(R",+v) 

f(v)=val (M-vS) is continuous and non·increasing in v. 

We also have f(-min Ri)=Cl>O, if Cl~ min Cl. and that lim f(v) 
2;;a;j-;im v __ oo 

= -00, for 

f(v)~mjn max {(M-vS).lO"max !CM-VS{ :~:]l 

= max ~j~Cr(l-ai)(Ri+V)} ~ -00. 
l:;;i:;;m m l j (v_oo) 

Now by Corollary 3 we have 

f(vo)=O, xO(M-voS)~O, (M-voS)yO~O 

where X O and yO are a pair of optimal strategies given by (6) for the 

matrix game M-voS, and are written as a row and column vector 

respectively. 

Since X O is completely mixed we have, for v<vo, xOM~voxOS>vxoS, 

and hence 

f(v)=max min {x(M-vS)}smin {xO(M-vS)}>O . 
x 

Similary, since yO is also completely mixed we have, for v>vo, Myo 

~voSyo<vSyO, and hence 

f(v)=min max {(M-vS)y}~max {(M-vS)yO}<O . 
g 

Thus we have proved the theorem. 

Theorem 6, combined with Corollary 3, gives 

Corollary 7. Suppose that travel costs are all zero, i.e., tij=O. Then 

Vl=··· = v'" (=vo, say), where Vo is the largest real root of the equation 

(5). The optimal strategy for each player in state k is independent of k, 

and is given by (6). 
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