COLIC

Two-Sided Statistical Disclosure Attack

George Danezis Claudia Diaz **Carmela Troncoso** ESAT/COSIC (KU Leuven)

PET'07 - Ottawa - 20 June 2007

Talk Outline

- Disclosure Attacks and Anonymity
- Modelling replies
- The Two-Sided Statistical Disclosure Attack
- Evaluation
- Discussion and Conclusions

Disclosure Attacks

- Anonymous communications: hide communication partners
- Attacker objective: reveal Alice's contacts
- Threshold mix
- Passive attacker
 - Observes the network for many rounds
 - Exploit persistent patterns

- Solving NP-Complete problem [Kesdogan03]
- Simplified model
 - Sensitive to changes
- Statistical Disclosure Attacks [Danezis03]
 - Reduce complexity
- Two-sided Statistical Disclosure Attacks
 - Include replies

SHORE SHORE

Introducing replies in the model

Indistinguishable from normal messages

• Parameters:

- Choice of partners
- Start a new discussion Poisson process
- Replying?
- Time to reply

- Distribution of contacts
- Fixed known probability
- Exponential

Independent

Introducing replies: The general formal model

Introducing replies: The replies in the formal model

The Two-Sided Statistical Disclosure Attack

- Uses
 - Rounds with Alice sending/receiving
 - Time sending/reception
- Objective
 - Estimate D_A
 - Infer receiver per round
 - Contribution from Alice (D_A)
 - Contributions from other senders (D_n)
 - Potential receivers of replies

The Two-Sided Statistical Disclosure Attack

сол

The Two-Sided Statistical Disclosure Attack

ARS:SBUBS:SAD

$$\operatorname{Re} c(S_{i}) \sim \frac{\alpha_{r}}{B} \frac{Z_{I}D_{A} + \sum_{j} Z_{ij}I_{ij}}{Z_{I} + Z_{r}} + \frac{B - \alpha_{r}}{B}D_{n}$$

$$D_{A} \sim \frac{(B \cdot \operatorname{Re} c(S_{i}) - (B - \alpha_{r})D_{n})(Z_{I} + Z_{r})}{\alpha_{r}Z_{I}} \equiv C_{i} \Longrightarrow \hat{D}_{A} \approx \frac{1}{K_{s}} \sum_{\forall i} C_{i}$$

$$\operatorname{Re} c(S_{i})' \sim \left(\frac{\alpha_{r}}{B} \frac{Z_{I}\hat{D}_{A} + \sum_{j} Z_{ij}I_{ij}}{Z_{I} + Z_{r}} + \frac{B - \alpha_{r}}{B}D_{n}\right) \cdot \operatorname{Re} c(S_{i})$$
From traffic in rounds where Alice is not present [Mathewson and Dingledine 04]

PET'07 - Ottawa - 20 June 2007

Evaluation: Method

- We compare with SDA
- <u>Rank</u>: number of receivers in Rec(S_i)' with at least the same probability as the real receiver

Evaluation: Standard parameters

Name	Value	Description
Ν	1000	Number participants
k	20	Alice's contacts
В	100	Mix threshold
t _{max}	4000	Observation time
λ	1/10	Initiation rate
r	0.5	Reply probability
λ _r	1/2	Reply delay rate

- Alice sends with uniform probability to her contacts
- The rest send with uniform probability to all the users
- Only Alice replies to messages

солю

Evaluation: Observation time

PET'07 - Ottawa - 20 June 2007

Evaluation: Initiations vs. replies

PET'07 - Ottawa - 20 June 2007

15

Evaluation: Replies rate

PET'07 - Ottawa - 20 June 2007

Evaluation: Background traffic

16

PET'07 - Ottawa - 20 June 2007

Discussion

• The model is not realistic

- Poisson process for initiating discussions
- Parameters independent
- Replying uniformly
- Only one reply per message
- Other anonymity systems

Conclusion

- First attack and model including anonymous replies
- The attack is fast
 - Only operations on vectors
 - Linear with the number of messages O(K_s)
- Evaluation in different conditions
- The timing of replies is crucial
- Indistinguishable replies increase anonymity
- Unrealistic model: lack of data

Thank you

Carmela.Troncoso@esat.kuleuven.be

19

PET'07 - Ottawa - 20 June 2007