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A. Agostinho1,6, Luiz C. Gomes1,6

1 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual
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Brazil, 6 Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), Universidade Estadual de
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Abstract

Climate change and species invasions interact in nature, disrupting biological communities.

Based on this knowledge, we simultaneously assessed the effects of climate change on the

native distribution of the Amazonian fish Colossoma macropomum as well as on its inva-

siveness across river basins of South America, using ecological niche modeling. We used

six niche models within the ensemble forecast context to predict the geographical distribu-

tion of C.macropomum for the present time, 2050 and 2080. Given that this species has

been continuously introduced into non-native South American basins by fish farming activi-

ties, we added the locations of C.macropomum farms into the modeling process to obtain a

more realistic scenario of its invasive potential. Based on modelling outputs we mapped cli-

mate refuge areas at different times. Our results showed that a plenty of climatically suitable

areas for the occurrence of C.macropomum occurrence are located outside the original

basins at the present time and that its invasive potential is greatly amplified by fish farms.

Simulations of future geographic ranges revealed drastic range contraction in the native

region, implying concerns not only with respect to the species conservation but also from a

socio-economic perspective since the species is a cornerstone of artisanal and commercial

fisheries in the Amazon. Although the invasive potential is projected to decrease in the face

of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and

East Atlantic basins, putting intense, negative pressures on the native fish fauna these

regions. Our findings show that short and long-term management actions are required for: i)

the conservation of natural stocks of C.macropomum in the Amazon, and ii) protecting

native fish fauna in the climate refuges of the invaded regions.
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Introduction

Climate change and species invasion are widely recognized as grievous threats to biodiversity,

generating great conservation and socio-economic demands worldwide [1, 2, 3, 4, 5]. It is cru-

cial to understand the interactions between climate change and biological invasions, since the

impacts caused are progressively increasing worldwide and generating negative changes in

native communities [6, 7]. For this reason, there is a growing consensus that management

decisions aimed at biodiversity conservation should be made.

Freshwater environments play an important role in determining global biodiversity and

providing valuable goods and services for humans [8, 9]. Despite their importance, these eco-

systems are subject to unprecedented levels of anthropogenic impacts, among which invasive

species occupy a central position in the level of threat [10]. Freshwater ecosystems are also

particularly vulnerable to climate change, because increases in temperature and change in pre-

cipitation regimes affect the water runoff dynamic, seasonality and duration of floods and

droughts, water temperature and water quality [11, 12, 13]. Thus, there is an emergent need

for government policies and management actions to protect freshwater ecosystems and their

species, taking into account the coupled effect of invasions and climate change.

Fish species have been continuously introduced on a global scale, with invasive species now

occupying a large number of drainage basins at an unprecedented rate [14, 15, 16]. Fish inva-

sions promote impacts at population, community and ecosystem levels primarily due to com-

petition, predation and changes in the structure and quality of habitats, hence magnifying the

impacts of other anthropogenic assaults [17, 18]. Among the causes of freshwater fish intro-

ductions, fish farming stands as the main driver in the Neotropical region [17, 19]. In aquacul-

ture, the escape of non-native species represents a constant source of propagules, increasing

colonization pressure, thus facilitating species invasion [20, 21, 22, 23].

In South American basins, introduced fish species, both from South America itself (allo-

chthonous invaders) and from other continents, are commonly used in fish farming. Many of

these fish species have become invasive, and some are starting to colonize non-native areas

[24]. Because there is no fully safe confinement in aquaculture, the flow of non-native propa-

gules into different drainage basins is expected to be constant and intensive [17]. In Brazil, this

situation has worsened considerably with government subsidies to rear non-native species in

aquaculture cages in reservoirs, from which escapes are inevitable, generating pressures on

wildlife [23, 24]. The widespread release and dispersion of non-native fish through climatically

suitable areas into South American rivers are major concerns from a conservation viewpoint.

Furthermore, global warming may expand the geographic areas with suitable temperatures for

aquaculture, boosting the impacts of invasive species [4].

Additionally, climate change has complex effects on the potential distribution of freshwater

fish, mainly by altering the environmental conditions where species find the bulk of require-

ments needed to complete their life cycle in the present-day. The multiple responses to climate

change have involved the shift, expansion and contraction of geographical ranges. However,

most of the evidences is geographically and taxonomically biased towards the temperate

regions and salmonids, respectively [25, 26]. Therefore, the scientific debate is restricted to a

limited level in the face of worldwide extraordinarily high freshwater fish diversity worldwide.

The gap in knowledge is still more critical when considering the responses of introduced spe-

cies to climate change, with a scarcity of studies in tropical regions.

Colossoma macropomum Cuvier 1818, popularly known as tambaqui, is a native fish species

from the Amazon and Orinoco River basins in northern South America [27]. Due to its large

body size and highly appreciated meat for human consumption, tambaqui is among the most

cultivated Neotropical fish species in fish farms [28]. Even though the escape of C.macropomum
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is not systematically monitored, the frequency of such events is high in the face of its continuous

and intensive farm production. To date, there is no record of C.macropomum having formed

large non-native populations, and their potential impacts are still not precisely known [17].

However, constant escapes from fish farms and colonization facilitated by climatic suitability

may considerably enlarge any C.macropomum populations in non-native regions, increasing

the probability of establishment in different South American river basins, potentially affecting

the native fish fauna of such areas.

In this study, we consider C.macropomum as a potential invasive species for all South

American river basins since its barrier to dispersal has been broken by human activities, espe-

cially through fish farming in net cages [17, 23]. Relying on correlations between climate and

species occurrences our study simultaneously assesses the effects of climate change on the

native distribution of C.macropomum and on its invasiveness across river basins of South

America, using an ecological niche modeling approach. First, we estimated the range expan-

sion of the species through climatically suitable areas of the continent at the present time.

Then, we assessed the effects of climate change projected for 2050 and 2080 on the geographi-

cal distribution of C.macropomum in native and invaded regions. Finally, we identified cli-

mate refugia in the native region, corresponding to strategic areas for implementing species

conservation measures, as well as in the invaded regions, corresponding to areas in which

native fish fauna should experience the negative effects of C.macropomum invasion in the face

of climate change. In addition to conservation issues, we also addressed considerations on

socio-economic issues due to the effect of climate change on distribution of C.macropomum.

The model predictions indicated that favorable climatic conditions, abundant at the present

time, would become scarce in the future, implying conservation and socio-economic concerns

in the native region. Although the invasive potential of this species is predicted to decrease in

the face of climate change, climate refugia will remain in the Paraná River, the East Atlantic

basins and the Southeast Atlantic basins, putting intense, negative pressures on native fish

fauna.

Methods

Occurrence data of the species

The occurrence data of Colossoma macropomum in South America were obtained from three

databases: FishNet2 (http://www.fishnet2.net/), SpeciesLink (http://splink.cria.org.br/) and

Global Biodiversity Information Facility (GBIF; http://www.gbif.org/). We also used occur-

rence data provided by field samplings carried out by Universidade Estadual de Maringá/

Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura–Nupélia, Universidade Federal

do Tocantins/ Núcleo de Estudos Ambientais–Neamb and Limnobios. This search was still

supplemented with an extensive review in ISI (http://www.isiknowledge.com/) and Google

Scholar (http://www.googlescholar.com/) using “Colossoma macropomum” as a key word.

Occurrences of C.macropomum in non-native regions of the South America mostly originated

from stocking and fish farming. Regarding the latter, fish farms are continuously putting juve-

niles and adults of C.macropomum into the natural environments of non-native areas mainly

due to: i) the escape of individuals along with the effluent water; ii) their confinement breaking

by natural flooding and iii) the inappropriate management of tanks. Thus, fish farming consti-

tutes the main vector of C.macropomum introduction in South America. Based on the

assumptions that there is no fully safe confinement and that fish farms act as constant and

effective propagule sources for the cultivated species [17, 19], we added the locations of fish

farms rearing C.macropomum as surrogates of species occurrence in natural environments,

Effects of climate change on the distribution ofColossomamacropomum
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along with natural occurrences, to obtain a more realistic scenario of invasive potential of the

species in the continent over time.

The occurrence records from both the natural environment and fish farms were mapped

on a regular geographical grid, containing 6,180 cells with spatial resolutions of latitude and

longitude of 0.5˚, representing the 14 major river basins of South America. The area of each

cell grid corresponds to approximately 3025 km2 (55 x 55 km). The mapping of the occurrence

records on the geographical grid resulted in 178 occupied cells. Thus, two binary matrices of

presence and pseudo-absence were constructed: (1) South America considering occurrences

from natural environments (104 occupied cells) and (2) South America considering occur-

rences from natural environment and fish farming together (178 occupied cells) (see Fig 1 and

S1 Table for details).

Bioclimatic variables

We used four bioclimatic variables related to the environmental tolerance of the species as pre-

dictors of the species distribution: maximum temperature of the warmest month (oC; TMAX),

minimum temperature of coldest month (oC; TMIN), precipitation of the wettest month (mm;

PMAX) and precipitation of the driest month (mm; PMIN) [29]. Temperature and precipita-

tion are the major climatic parameters determining the distribution of organisms on Earth.

The former is responsible for altering the metabolism (especially the enzymatic activity) of liv-

ing organisms, and the latter determines the seasonal variations of droughts and floods, syn-

chronizing biological events of the species, such as migration, spawning, home range and

growth. We also used two hydrological variables as measures of water availability in each grid

cell: the number of rivers (NR) and the upstream flow length (m; UFL, corresponding to dis-

tance from the headwater sources) (http://eros.usgs.gov/). In addition to bioclimatic and

hydrological variables, we also used mean altitude (m; ALT) as a predictor variable to address

distribution restrictions imposed by the Andes, Neblina Peak and Venezuelan Mountains in

Northern Amazon and Serra do Mar Mountains in eastern Brazil [29].

Fig 1. Occurrences ofColossomamacropomum in South America. The small map shows the native
range.

https://doi.org/10.1371/journal.pone.0179684.g001
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Forecasts of future bioclimatic variables (projected for 2050 and 2080) were extracted from

the model by the Intergovernmental Panel on Climate Change, Fifth Assessment Report (IPC-

C-AR5) (http://ccafs-climate.org). We used four Atmosphere-Ocean General Circulation

Models (AOGCMs): CCSM (Community Climate SystemModel), CSIRO (Australia’s Com-

mon wealth Scientific and Industrial Research’s General Organization), MIROC (Model for

Interdisciplinary Research on Climate) and MRI (Meteorological Research Institute). The con-

centration trajectory for each AOGCMs was based on the Representative Concentration Path-

ways 4.5 (RPC 4.5; moderate scenario of carbon emission within the optimistic context). We

assumed the ALT, NR and UFL were temporally stationary to perform future predictions.

Ecological niche modeling

Considering that broad scale patterns of species occurrence are determined by the responses

of organisms to different environmental conditions (reflecting the Grinellian component of

the ecological niche, sensu [30]), we used ecological niche models (ENMs) to predict the effects

of climate change on the distribution of C.macropomum. The two species occurrence matrices

(South America considering occurrences in natural environments, and South America consid-

ering occurrences in natural and fish farming environments) were modeled with ENMs, using

the layers of climatic-environmental variables. The fit of ENMs yield suitability matrices, from

which the potential distribution of C.macropomum was mapped given the present and future

climates.

We used six conceptually and statistically different ENM based on presence-only and pres-

ence-background data: Bioclim (BIOC; [31], Euclidean distance (EUCD; [32]), Gower distance

(GOWD; [32, 33]), Mahalanobis distance (MAHD; [34]), Ecological Niche Factor Analysis

(ENFA; [35]), and Maximum Entropy (MAXE; [36]). Predictions vary among ENMs because

of the different assumptions of each model. Because all models are biologically plausible, we

treated the variation among predictions as statistical uncertainty [37]. To account for the sta-

tistical uncertainty and minimize inferential errors, we employed the ensemble forecasting

approach, which consists of calculating the “consensus” of multiple models (CONS, [38]).

Assuming that distinct sources of errors affect each ENM in different ways, by obtaining a con-

sensus model, the errors in each individual prediction tend to cancel each other out, therefore

producing a more reliable prediction [39].

For each ENM, the extent of species occurrence was randomly divided into two subsets:

75% for calibration and 25% for evaluation. This procedure was repeated 50 times to avoid

bias in the calibration and evaluation of the data sets. We converted the continuous predictions

of suitability of each ENM into binary vectors of presences and absences in each cell (1/0)

using the threshold that maximizes sensitivity and specificity values in the receiver operating

characteristic (ROC) curve. The ROC curve is generated by plotting the fraction of true posi-

tives versus the fraction of false positives at various threshold settings. The distribution of C.

macropomum in current climatic conditions was estimated using 300 predictions (6 ENMs x

50 randomizations) for each species occurrence matrix. The simulations for future climatic

conditions were estimated obtaining 1200 predictions (6 ENMs x 50 randomizations x 4

GCMs) for each future time (2050 and 2080) and for each specie occurrence matrix. This pro-

cedure allowed us to generate a frequency of projections in the ensemble. We then generated

the frequency of projections weighted by the TSS statistics for each region and time, i.e., better

models have more weight in our consensus projections. The TSS range from -1 to +1, where

values equal to +1 are a perfect prediction and values equal to or less than zero are a prediction

no better than random [40]. We considered the species present only in cells in which at least

50% of the models retained in the ensemble predicted the species as present.

Effects of climate change on the distribution ofColossomamacropomum
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Principal components analysis (PCA) [41] was used to compare the suitability outputs

derived from alternative ENMs and their consensus at current and future times. This analysis

allowed us to: i) evaluate the degree to which different ENMs converge in estimates of the cli-

matic suitability of C.macropomum; and ii) determine which model reflects the main direction

of variation among the suitability maps [42]. In our study, only the results of models reflecting

the main direction of variation among the suitability maps were interpreted. The suitability of

native region was obtained from results generated for 2.429 cells of South America, represent-

ing the Amazon and Orinoco basins. Given that in native basins the escapes of C.macropo-

mum from fish farms do not generate impact, the analyses covering the native region were

focused only on natural occurrences, disregarding fish farms.

From the presence and absence outputs provided by ENMs reflecting the main direction of

variation of the suitability data, we estimated the native range of C.macropomum and its

expansion across climatically suitable areas of South America. We generated an occupancy

matrix for the 14 major South American basins: the Amazon and Orinoco basins representing

the native region, and the Pacific, Magdalena, North Atlantic, Northeast Atlantic, Eastern

Atlantic, Tocantins-Araguaia, São Francisco, Paraná-Paraguay, Uruguay, Southeast Atlantic,

Lake Titicaca and Colorado-Patagonian basins representing the non-native regions. Then, we

computed the total number of occupied cells in native and non-native basins at the present

time. We analyzed the effects of climate change on native distribution and the non-native

regions by assessing the range shift, expansion and contraction phenomena, and performed

the same protocol for the two future times. We also performed such analysis considering the

natural environmental and fish farming occurrences together, to portray a more pessimistic

scenario with respect to the invasion of C.macropomum into South America river basins.

Then, we identified the basins in which the invasive process should be amplified by fish-farm

activity over time. In addition, we finally identified the areas of South America serving as cli-

mate refugia for C.macropomum in 2050 and 2080. Climate refugia in the native region corre-

spond to the areas of greatest interest for the conservation of the species and in the non-native

regions correspond to the areas in which the native fish fauna has the most potential to experi-

ence the impacts of C.macropomum invasion in the face of climate change.

Ecological niche modeling was carried out in the computational platform BioEnsembles

[37] and PCAs were performed in SAM v.4.0 [43]. The maps were produced in ArcGIS v.10.2.

Results

Our survey indicates that C.macropomum is common in the invaded regions, especially in the

Paraná-Paraguay River basin. Fish farms stocking the species are common in the Paraná-Para-

guay, East Atlantic, Northeast Atlantic basins and in the Amazon (Fig 1). Among the 14 South

American river basins, the Pacific, Lake Titicaca and Colorado-Patagonian basins do not show

occurrences of C.macropomum in natural environments.

The first two PCA axes represented a large proportion of variation between suitability maps

generated by different ENMs. The accumulated proportion of variation represented by the two

axes ranged from 69% to 84% in native region in 2080 and South America at the present time,

respectively (Table 1). For the present time, the BIOC and distance methods, and ENFA and

CONS produced similar suitability predictions (Fig 2A and 2D), with the exception of CONS,

wich differed from the others models for South America considering total occurrences (Fig

2G). In the future, the predictions of CONS were more similar to those of EUCD (Fig 2B, 2C,

2E and 2F), except for when CONS was more similar to MAHD for South America consider-

ing total occurrences (Fig 2H and 2I). In general, MAXE produced results markedly different

from the other methods. The CONS model had the highest loadings for the first PCA axis for

Effects of climate change on the distribution ofColossomamacropomum
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different times and data sets (Table 1), reflecting the main direction of variation among suit-

ability maps. Consequently, only the outputs derived from the CONS method were retained

for interpretation.

The results of the climatic suitability of the CONS model pointed out the northern and

northwestern portions of the native region as unsuitable for C.macropomum (Fig 3A). Amazo-

nian Rivers, especially those located in the southern portion (from southwestern to southeast-

ern), hold the most suitable environmental conditions in the native region. When the model is

extended to South America, a large portion of climatically suitable areas (CSAs) were identified

outside the original basins, mainly in the North Atlantic, Northeast Atlantic, Tocantins-Ara-

guaia and Paraná-Paraguay (Fig 3B). The species distribution in the native region was esti-

mated to be 1,668 cells, corresponding to approximately 68.67% of the original basins

(Table 2). By transposing geographical barriers, it is expected that this species will expand its

range by 999 cells (corresponding to approximately 59.9% of their native range), occupying

Table 1. Values of the PCA loadings of different modelingmethods for native region and South America. The “Total” column corresponds to the
results of modeling considering natural environmental occurrences along with fish farm occurrences.

Native region South America

Natural environment Natural environment Total

PCA1 PCA2 PCA1 PCA2 PCA1 PCA2

Current time

BIOCL 0.81 -0.30 0.84 -0.15 0.85 -0.09

EUCDIST 0.77 -0.16 0.83 -0.097 0.84 -0.14

GOWDIST 0.91 -0.20 0.93 -0.21 0.92 -0.21

MAHADIST 0.88 -0.17 0.89 -0.22 0.89 -0.20

ENFA 0.72 0.12 0.84 <0.001 0.81 -0.09

MAXENT 0.50 0.84 0.62 0.79 0.56 0.82

CONS 0.98 0.20 0.99 0.11 0.98 0.17

Axes explanation (%) 0.65 0.13 0.73 0.11 0.72 0.12

Accum. explanation (%) 0.78 0.84 0.84

Future 50

BIOCL 0.65 -0.46 0.63 -0.50 0.69 0.43

EUCLDIST 0.76 0.24 0.82 0.14 0.81 -0.32

GOWDIST 0.90 -0.07 0.87 -0.18 0.88 -0.30

MAHADIST 0.79 -0.39 0.78 -0.39 0.76 0.21

ENFA 0.64 0.07 0.74 0.30 0.69 -0.42

MAXENT 0.26 0.86 0.51 0.65 0.35 0.71

CONS 0.96 0.23 0.99 0.11 0.98 0.11

Axes explanation (%) 0.54 0.17 0.60 0.14 0.58 0.16

Accum. explanation (%) 0.71 0.74 0.74

Future 80

BIOCL 0.59 -0.46 0.60 -0.59 0.68 0.48

EUCLDIST 0.76 0.24 0.81 0.20 0.81 -0.33

GOWDIST 0.88 -0.13 0.86 -0.2 0.88 -0.29

MAHADIST 0.78 -0.35 0.76 -0.41 0.74 0.3

ENFA 0.60 <0.01 0.68 0.46 0.65 -0.48

MAXENT 0.25 0.87 0.51 0.49 0.34 0.65

CONS 0.96 0.27 0.99 0.12 0.98 0.08

Axes explanation (%) 0.52 0.17 0.58 0.15 0.56 0.17

Accum. explanation (%) 0.69 0.73 0.73

https://doi.org/10.1371/journal.pone.0179684.t001
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approximately 24.6% of the invaded region. Our results show that the invasive potential of C.

macropomum is greatly amplified when the locations of fish farms rearing the species are

included in the modelling process. Because the regular introduction of C.macropomum in

contiguous aquatic bodies is just a matter of time, fish farming activity tends to exceptionally

magnify the species invasion in the São Francisco (355.6%), East Atlantic (261.5%) and South-

east Atlantic (263.0%) basins. In general, the invasion potential of C.macropomum expands to

1,318 cells (approximately 32.5% of invaded region) when we consider the natural environ-

ment and fish farming occurrences together in the modeling process (Table 2).

In general, our study revealed marked losses of climatically suitable areas for C.macropo-

mum in the face of climate change. The models showed small portions of highly suitable areas

for the occurrence of the species in the eastern Amazon projected for 2050 (Fig 4A) and 2080

Fig 2. Principal component loadings on the first two axes of PCA representing the suitability ofColossoma
macropomum for native region at the present time (A), 2050 (B) and 2080 (C); for South America considering
natural environment occurrences at the present time (D), 2050 (E) and 2080 (F); and for South America
considering the total occurrences (natural environments and fish farming together) at the present time (G),
2050 (H) and 2080 (I). B = Bioclim, ED = Euclidian Distance, GD = Gower Distance; MD =Mahalanobis
Distance, M =Maxent; E = Enfa and C = consensusmodel.

https://doi.org/10.1371/journal.pone.0179684.g002
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(Fig 4C). However, a greater amount of highly suitable areas, in the face of climate change, was

concentrated outside the native region, especially in the central portion of the Upper Paraná

River basin and in the East and Southeast Atlantic basins (Fig 4B and 4D).

Future simulations reveled a range shift accompanied by range contraction phenomena in

both the native and invaded regions. For the native region, of the 1,668 cells occupied at the

present time, only 759 and 452 should remain occupied in 2050 and 2080, respectively

(Table 2). In the invaded regions, the number of occupied cells at the present time (999) falls

to 551 and 397 in 2050 and 2080, respectively, evidencing a marked reduction of the invasive

potential of C.macropomum in South American river basins in the face of climate change.

When fish farming data is considered, the losses are a little milder, with 576 cells and 414 cells

remaining occupied in 2050 and 2080, respectively.

Despite the wide geographical range of the species in South America at the present time

(Fig 5A), our future projections pointed out that major climate refugia in 2050 should be con-

centrated in the western, northern and eastern regions of the Amazon, as well as the North

Atlantic, East-Southeast Atlantic and Paraná-Paraguay basins (Fig 5B). In 2080, the climate

refugia correspond to such regions, albeit with areas that are more restricted with the excep-

tion of the East-Southeast Atlantic and Paraná-Paraguay basins (Fig 5C). It is valid to stress

that the Paraná-Paraguay basin (the portion of the upper Paraná River, specifically) is the cli-

mate refugia that will hold the largest amount of CSAs for the occurrence of C.macropomum

(Fig 4B and 4D).

Discussion

It is agreed that climate change and species invasions independently cause serious ecological

damage. Given that these two continuous phenomena are expected to interact in nature, we

assessed the effects of environmental change drivers on the distribution of C.macropomum in

both native and non-native ranges, contributing to bridging the gap of knowledge on the

responses of tropical fish species. We show that potential conservation conflicts in the native

Fig 3. Habitat suitability forColossomamacropomum occurrence derived from the consensus model for the
native region (A) and South America (B) at the present time.

https://doi.org/10.1371/journal.pone.0179684.g003
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region are expected as a result of climate change due to extraordinarily large losses of suitable

areas. In addition, we call attention to the need for effective strategies against the invasion of

this species in climate refugia outside the native region.

Our results indicate low climatic suitability in stretches of the original basins, correspond-

ing to the Venezuelan Amazon and upper Orinoco river regions. Previous studies suggest that

a spatially irregular or low sampling effort can bias the distribution modeling results, in partic-

ular for sub-regions of the geographic space [44, 45]. However, a study involving extensive

samplings of freshwater fish in the Venezuelan Amazon and upper Orinoco basins (269 sam-

pled sites between 1984 and 1999), did not capture any individuals of C.macropomum (see

[46]), inferring support for the climatic unsuitability of this region for this species.

By simulating the potential distribution of C.macropomum throughout South American

basins, we showed that large areas are suitable for the species outside its native basins, espe-

cially in the North Atlantic, Northeast Atlantic, Tocantins-Araguaia and Paraná-Paraguay

basins. Boosted by stocking and fish farming activities, this species has been successfully in

occupying such areas. Since the first half of the twentieth century, stocking activities have been

conducted in Northeast Brazil, aiming to increase the region’s fishery production [17]. Such

practice was expanded to other non-native basins, and stocking programs were carried out by

the Brazilian hydroelectric sector through legal constraints imposed by the organizations of

fishery development. The first Fishery Code of Brazil (Decree-Law N˚ 794 from 19/10/1938),

Table 2. Geographical distribution (number of occupied cells) ofColossomamacropomum in South American basins. The “Total” columns corre-
spond to the modeling results considering natural environmental occurrences along with fish farm occurrences.

Current time Future Climate (2050) Future Climate (2080)

Natural
environment

Total Natural
environment

Total Natural
environment

Total

Range
(cells)

%
occupied

Range
(cells)

%
occupied

Range
(cells)

%
occupied

Range
(cells)

%
occupied

Range
(cells)

%
occupied

Range
(cells)

%
occupied

Amazon 1482 69.97 710 33.52 424 20.02

Orinoco 213 57.1 59 15.82 34 9.12

Native
region

1668 68.67 759 31.25 452 18.61

East Atlantic 13 5.99 34 15.67 22 10.14 34 15.67 24 11.06 35 16.13

Northeast
Atlantic

208 57.94 254 70.75 57 15.88 76 21.17 29 8.08 50 13.93

North Atlantic 194 86.61 203 90.63 120 53.57 78 34.82

Southeast
Atlantic

27 14.36 71 37.77 35 18.62 72 38.38 41 21.8 73 38.83

Colorado-
Patagonian

Magdalena 73 33.95 92 42.79 49 22.79 37 17.21 38 17.67

Pacific 32 10.42 38 12.37 22 7.16 25 8.14 18 5.86 24 7.82

Paraná-
Paraguay

248 22.94 344 31.82 194 17.95 216 19.98 153 14.15 157 14.52

São
Francisco

27 10.23 96 36.36 7 2.65 27 10.23 3 1.14 21 7.95

Titicaca

Tocantins-
Araguaia

214 66.88 251 79.06 42 13.13 10 3.13

Uruguay 5 3.42 24 16.44 22 15.07

Invaded
region

999 24.65 1318 32.52 551 13.59 576 14.21 397 9.8 414 10.21

https://doi.org/10.1371/journal.pone.0179684.t002
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which made fish farming compulsory in reservoirs, is an example of such development policy

[17, 23, 47]. In addition, recent government policies have encouraged fish culture in cages

placed in reservoirs throughout Brazil, as part of the social programs for food production [17,

23, 48]. Thus, many non-native species have been massively introduced into diverse Brazilian

rivers, with C.macropomum one of the most used Amazon species.

In addition to the massive fish-culture in reservoirs, non-native species have been largely

cultivated for either sale or recreational fishing in tanks excavated near the margin of water

bodies, especially in densely populated areas [19]. In this sense, by using fish farm locations as

proxies of species occurrence, we showed that fish farming tends to magnify the invasion of C.

Fig 4. Habitat suitability forColossomamacropomum derived from a consensus model for the native region
(A) and South America (B) in 2050, and for the native region (C) and South America (D) in 2080.

https://doi.org/10.1371/journal.pone.0179684.g004
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macropomum, especially in the São Francisco, East Atlantic and Southeast Atlantic basins,

which, along with the upper Paraná River, are the most populated basins. Among the biologi-

cal invasion hypotheses, the human activity hypothesis predicts that antropogenically altered

ecosystems (here represented by highly populated river basins) or ecosystems with high propa-

gule pressure (here represented by the water bodies supplying fish farms) make colonization

and establishment easier for non-native species [49]. Thus, a positive relationship is expected

between non-native species and variables linked to habitat alteration and propagule pressure

[49]. Therefore, the human activity hypothesis can be used for the explanation of the invasion

process of C.macropomum addressed here.

By projecting the potential distribution of C.macropomum for the years 2050 and 2080,

under a low-moderate scenario, we observed that the species tends to drastically reduce its geo-

graphical distribution in the native region. In general, studies support the idea that the range

contraction phenomenon is a response of cold-water fish species to climate change, whereas

warm-water species tend to expand their ranges (see [25, 26, 50] for reviews about the effects

of climate change on freshwater fish). However, the available information is highly biased

towards temperate regions and ‘iconic’ species (e.g. salmonids), thus limiting robust generali-

zations [25, 51]. This gives relevance to the results presented here, which showed that fish spe-

cies from warm areas could also experience range contraction facing future climatic

alterations.

The habitat unsuitability of the native region for C.macropomum in the future with conse-

cutive range contraction is not a concern only for the species’ conservation but also from a

socio-economic point of view. It is expected that habitat unsuitability will decrease the intrinsic

rate of population growth, leading to extinction scenarios over time, thus jeopardizing the spe-

cies conservation. In addition, the population decline of the species in the native basins tends

to cause strong damages to the economy due to its importance in the regional fishery (see [52,

53]). This species has been exploited commercially in the Amazon Basin since at least the end

of the nineteenth century, becoming the main species of fishery landings (see [52, 53]), and the

preferred species for local consumption [54]. We believe that this scenario can be replicated to

other species of economic interest, causing a deep impact in the way of life of the local human

population.

When the analyses are expanded to the invaded region, it was shown that climate change

tends to considerably reduce the invasive potential of C.macropomum in South American

Fig 5. Climate change refugia ofColossomamacropomum in South America at present time (A), 2050 (B)
and 2080 (C).

https://doi.org/10.1371/journal.pone.0179684.g005
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river basins. The opposite view, i.e., that global warming will exacerbate the threat posed by

invasive species, has been widespread in the literature [55, 56]. However, some studies have

shown that climate change can reduce invasion risks, especially in lower-latitude regions,

which is consistent with our results. In South Africa, 30 invasive grass species should experi-

ence the loss of approximately 50% of their potential range by mid-century [57]. In Australia,

hawkweed and other weed species are predicted to substantially contract their ranges [58, 59].

With respect to stream fish, invasive species in Australia are predicted to experience both con-

traction (Salmo trutta andOncorhynchus mykiss) and expansion (Gambusia holbrooki andMis-

gurnus anguillicaudatus) of their ranges [60].

Although our model has pointed out drastic reduction in distribution of C.macropomum

in both native and invaded regions based on variations in temperature and rainfall dynamics,

it is possible that physiological mechanisms, which were not evaluated here, can act to mini-

mize the range losses. Wide tolerance to temperature increases, low concentrations of gases

and high concentrations of toxins are traits that should alleviate the climate change effects on

aquatic organisms. Only high water temperatures (approximately 35˚C) can be considered

critical for C.macropomum [61]. A study found that individuals with a body weight above 250

g have tolerance to low oxygen concentrations due to high temperatures [62]. In addition, the

ability of C.macropomum to obtain O2 from an oxygen-rich air-water interface [63] may atten-

uate the effects of low concentrations of oxygen expected with global warming. However, it is

also expected that higher temperatures increase bacterial nitrification in the water, also

increasing the metabolic needs of the fish and accumulating NO2 in the blood and tissues,

which is toxic to fish [64]. Colossoma macropomum has a high sensitivity to NO2, which makes

increases in water temperature potentially harmful for its homeostasis, both in natural envi-

ronments and fish farming [65]. Thus, a mechanistic approach of ecological niche modeling

including adaptive characteristics could be useful to obtain more details about the effect of cli-

mate change on C.macropomum invasion (see [66, 67] for details about mechanistic models).

We showed that climate refugia for C.macropomum in the invaded regions will be concen-

trated, especially in the central portion of the upper Paraná River basin and in the East-South-

east Atlantic basins. Habitat suitability may lead to an increase in the population abundance at

exceptional levels in the climate refuge regions. Thus, besides having address with restrictions

imposed by climate change, the native fauna of such regions should also suffer with the intensi-

fication of impacts provided by the invasion of C.macropomum. The species is an omnivorous

fish with a tendency to eat zooplankton, fruits and seeds [68, 69]. Although the competition

pressure of these allochthonous invaders might not be severe, omnivorous fish may have as

much impact as predator species in native assemblages, as these species are capable of chang-

ing environmental quality and nutrient cycling, thus imposing impacts at the ecosystem level

[70, 71]. Thus, it is possible that C.macropomum exerts diffuse effects on native species of fish

communities.

Common terminology used for invasive species (see [72]) has led to the feeling that only

organisms relocated from great distances (e.g., other continents) can be considered as invaders

[73]. This has led to the common belief that species translocated from the same country, such

as C.macropomum, do not cause negative impacts on ecosystems. Thus, a great part of the

efforts of scientific research, mitigative measures and public policy does not consider native

South American species as invaders in different basins within the continent. This is a miscon-

ception, since the introduction of any species outside their natural habitat can cause major dis-

turbances in the native communities [6, 74]. Thus, there is a scientific challenge in making

explicit the risks of cultivation of wrongly considered native species explicit.

The drastic changes in the distribution of C.macropomum in the Amazon and Orinoco

River basins are a clear sign that actions for the conservation of the species are urgent. Thus,
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the maintenance of the original characteristics of climate refugia in the Amazon is crucial. In

addition, an important step towards more effective conservation measures would be combin-

ing, with our findings, the results for other species in order to identify sub-regions in these

watersheds that maximize species occupancy under future climate conditions, and then make

them protected areas. It is also noteworthy that the purposes of the National Energy Expansion

Plan reveal the intention of the Brazilian government to implement major hydroelectric proj-

ects in the Amazon [23], which will especially imperil migratory fish such as C.macropomum.

Thus, it is crucial to develop a detailed delineation of dam placement in the Amazon basin

[75], as well as consider the issues raised in this paper. Although we showed a decrease of in

the invasive potential of C.macropomum in South America, the fact that future populations

should concentrate in the upper Paraná River, Southern Atlantic and East Atlantic basins,

highlights the need to implement short and long-term strategies to control invasion effects for

the conservation of native species. The creation of basic specific criteria for the development of

fish farming activities using native species, and the acquisition of specific information on the

impacts of non-native species, are critical for the success of management measures in the

future.

Farming non-native species is a potential cause of biological invasion, and therefore consti-

tutes a significant threat to freshwater biodiversity. Our study suggests that managers and deci-

sion makers must carefully define more appropriate long-term strategies for conservation of

freshwater biodiversity. These strategies should include preventive management actions and

conservation policies that are specifically designed based on the biogeography of species and

environmental characteristics of each river basin.
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