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Two Simplified Recursive Gauss–Newton Algorithms
for Direct Amplitude and Phase Tracking

of a Real Sinusoid
Jun Zheng, Kenneth W. K. Lui, W.-K. Ma, and H. C. So

Abstract—In this letter, the problem of adaptive tracking the am-
plitude and phase of a noisy sinusoid with known frequency is ad-
dressed. Based on approximating the recursive Gauss–Newton ap-
proach, two computationally simple algorithms, which provide di-
rect parameter estimates, are devised and analyzed. Simulation re-
sults show that the proposed methods can attain identical estima-
tion performance as their original one.

Index Terms—Fast algorithm, Gauss–Newton method, sinu-
soidal amplitude estimation, sinusoidal phase estimation.

I. INTRODUCTION

SINUSOIDAL parameter estimation from noisy measure-
ments has many important applications in sonar, radar,

digital communications, and biomedical engineering [1]–[5].
In this letter, we address the problem of amplitude and phase
tracking for a single real sinusoid with known frequency. The
discrete-time signal model is

(1)

where is the known frequency, and ,
which can be time-varying, represent the amplitude and phase
of the sinusoid at time , respectively, and is the additive
zero-mean white noise with variance .

Since is a nonlinear function of the parameters of
interest, one standard technique [1] is to make the expression
linear by transforming and into
and . We can then apply the recursive least
squares (RLS) or recursive Gauss–Newton (RGN) method
[6] to solve the problem, but the computational complexity
of both schemes is high. In this letter, we utilize the RGN
approach to develop two computationally simple algorithms for
directly tracking and . Following the Gauss–Newton
method for maximum-likelihood estimation of the amplitude,
frequency, and phase for multiple sinusoids [3], as well as the
RGN framework [6], the RGN algorithm for direct amplitude
and phase estimation is presented in Section II. By exploiting
the characteristics of the Hessian matrix in the RGN algorithm,
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two simplified sinusoidal parameter estimators are devised and
analyzed in Section III. Simulation results are included to eval-
uate the performance of the proposed algorithms in Section IV,
and finally, conclusions are drawn in Section V.

II. RECURSIVE GAUSS–NEWTON METHOD

Define , where denotes the trans-
pose, and let its estimate be . Using

, the estimate of at time is computed as
. The a priori estimation error at

time is then

(2)

A standard approach for tracking is to minimize the fol-
lowing exponentially weighted cost function:

(3)

where is the forgetting factor. As (2) is not linear
in and , the conventional RLS algorithm cannot be
applied for this problem. Here, we utilize a generalized form,
the RGN algorithm, to minimize (3).

Following the Gauss–Newton method for sinusoidal param-
eter estimation [3] and the RGN algorithm derivation [6], the
RGN updating equations for tracking are easily shown to be

(4)

and

(5)

where (6) and (7) at the bottom of the next page are the gradient
vector and the Hessian matrix, respectively. In practical imple-
mentation, the matrix inversion of in (4) is avoided, and
we make use of the matrix inversion lemma to directly update

in (8) at the bottom of the next page instead of em-
ploying (5). To summarize, the RGN estimate of is computed
using (2), (4), (6), and (8).

III. SIMPLIFIED RECURSIVE ESTIMATION ALGORITHMS

In spite of avoiding matrix inversion computation, the RGN
method is still computationally demanding. In this section, we
propose two simplified RGN estimators for such that their
computational complexity is significantly smaller without un-
dermining the estimation performance, compared to the original
one.
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A. Hessian Matrix Approximation

Here we approximate the Hessian matrix in (7). Since is
usually close to 1 and assuming that is not near 0 or , we
have [3]

(9)

It is noteworthy that when the sinusoidal frequency is close to
0 or , this approximation for becomes invalid, and thus,
utilizing (9) will lead to a biased estimate of . Based on (9),

can be easily computed from

(10)

where . Substituting (10) into (4)
and noting that can be computed recursively, we have

(11)

(12)

and

(13)

We refer the updating equations of (2) and (11)–(13) to as the
Hessian matrix approximation (HMA) algorithm.

B. Gradient Correlation Matrix Approximation

Based on (9), we can ignore the off-diagonal elements of
in an alternative manner to achieve algorithm simplifica-

tion. Here, we set the two off-diagonal elements in the gradient
correlation matrix, namely, of (5), to zero. As a re-
sult, (5) becomes (14) at the bottom of the page, where

(15)

and

(16)

Putting (14) into (4) yields

(17)

and

(18)

We refer the updating equations of (2) and (15)–(18) to as the
gradient correlation matrix approximation (GCMA) algorithm.

C. Comparative Computational Complexity

Considering that the cosine and sine functions are determined
from lookup tables, the computational requirements for the

(6)

(7)

(8)

(14)
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TABLE I
COMPUTATIONAL COMPLEXITY OF ESTIMATORS

RGN, HMA, and GCMA algorithms at each iteration are listed
in Table I. We see that the computational complexity of the
HMA and GCMA methods is significantly smaller than that of
the original RGN scheme, with the former being the simplest
estimator.

D. Estimation Accuracy Analysis

In the following, we will show that the covariance ma-
trices for the parameter estimates of a stationary , say,

, in the RGN, HMA, and GCMA algorithms are
identical at sufficiently large iteration number.

Starting with the covariance matrix of the RGN algorithm,
denoted by , it has the form of [6]

(19)

where denotes the expectation operator. When is suffi-
ciently large, we utilize (9) to get

(20)

where the variances of and are given by the (1,1) and
(2,2) entries of (20), respectively. Since both HMA and GCMA
approximate the Hessian matrix, it can be easily seen that their
asymptotic covariance matrices are also given by (20). In par-
ticular, when , (20) becomes

(21)

The mean-square errors of and are
and , which attain their corresponding
Cramér–Rao lower bounds (CRLBs), when is large enough
and is Gaussian distributed. As a result, it is proved
that the RGN, HMA, and GCMA algorithms achieve optimal
performance for stationary amplitude and phase estimation in
an asymptotic sense with .

Fig. 1. Mean-square amplitude error versus SNR at stationary condition.

Fig. 2. Mean-square phase error versus SNR at stationary condition.

IV. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
performance of the proposed HMA and GCMA methods in am-
plitude and phase estimation of a noisy sinusoid. The sinusoidal
frequency is fixed to be , and is a white Gaussian
noise. The estimate of is initialized with
and the observation data length of 500. All simulation results
are averages of 1000 independent runs.

Figs. 1 and 2 plot the mean-square error (MSE) perfor-
mance for amplitude and phase, respectively, of the proposed
algorithms versus signal-to-noise ratio (SNR) when both are
stationary, namely, . The SNR is defined as

, and we scale the noise sequence to obtain different
conditions. Comparison with the RGN method as well as CRLB
is also made. The forgetting factors in all estimators are set
to unity in order to achieve their best performance. From the
two figures, we see that all three estimators perform similarly,
and their MSEs are close to the corresponding CRLBs for
sufficiently large SNRs. In fact, the HMA scheme has the
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Fig. 3. Amplitude estimate at nonstationary condition.

best threshold performance as it provides optimum estimation
performance for the whole SNR range.

In the second test, we examine the estimator performance for
time-varying amplitude and phase at SNR dB. The ampli-
tude of the sinusoid is set to 1 for the first 200 iterations, then
increases linearly at the rate of for the next 100 it-
erations, and remains unchanged afterwards. On the other hand,
the phase is set to for the first 200 iterations, then de-
creases linearly at the rate of for the next
100 iterations, and remains unchanged afterwards. In this non-
stationary scenario, the forgetting factor is set to 0.8 for fast
convergence. Figs. 3 and 4 show the tracking results for the am-
plitude and phase, respectively, of the HMA, GCMA, and RGN
algorithms. It is observed that the proposed methods, which ac-
curately track the time-varying parameters, achieve almost the
same performance as that of the RGN method. Although not
shown, the MSE results of the three estimators also have very
similar values.

V. CONCLUSION

Two algorithms have been proposed to simplify the RGN
method for direct estimation of amplitude and phase of a noisy

Fig. 4. Phase estimate at nonstationary condition.

sinusoid with known frequency. The first algorithm prunes the
Hessian matrix of the RGN scheme directly, while the second
approximates the update progress of the Hessian matrix. It is
demonstrated that the proposed methods can attain identical
tracking performance as the standard RGN algorithm but are
much more computationally efficient.
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