
Two solvers for tractable temporal constraints with preferences

F. Rossi
�
, K.B. Venable

�
, L. Khatib

��� �
, P. Morris

�
, R. Morris

�
�

Department of Pure and Applied Mathematics, University of Padova, Italy. E-mail: frossi@math.unipd.it, kvenable@math.unipd.it�
Kestrel Technology�

NASA Ames Research Center, Moffett Field, CA, USA. E-mail:
�
lina,pmorris,morris 	 @ptolemy.arc.nasa.gov

Abstract

A number of reasoning problems involving the manipulation
of temporal information can naturally be viewed as implicitly
inducing an ordering of potential local decisions involving
time on the basis of preferences. Soft temporal constraints
problems allow to describe in a natural way scenarios where
events happen over time and preferences are associated to
event distances and durations.
In general, solving soft temporal problems require exponen-
tial time in the worst case, but there are interesting subclasses
of problems which are polynomially solvable. We describe
two solvers based on two different approaches for solving
temporal soft problems from tractable subclasses: one solver
is more general and the other one is more efficient. For each
solver we present the theoretical results it stands on, a de-
scription of the algorithm and some experimental results. The
random generator used to build the problems on which tests
are performed is also described. Finally, we compare the two
solvers highlighting the tradeoff between performance and
representational power.

Introduction and motivation
Several real world problems involving the manipulation of
temporal information in order to find an assignment of times
to a set of activities or events can naturally be viewed as
having preferences associated with local temporal decisions,
where by a local temporal decision we mean one associated
with how long a single activity should last, when it should
occur, or how it should be ordered with respect to other ac-
tivities.

For example, an antenna on an earth orbiting satellite such
as Landsat 7 must be slewed so that it is pointing at a ground
station in order for recorded science or telemetry data to be
downlinked to earth. Antenna slewing on Landsat 7 has been
shown to occasionally cause a slight vibration to the satel-
lite, which in turn might affect the quality of the image taken
by the scanning instrument if the scanner is in use during
slewing. Consequently, it is preferable for the slewing ac-
tivity not to overlap any scanning activity, although because
the detrimental effect on image quality occurs only inter-
mittently, this disjointness is best not expressed as a hard
constraint.

Copyright c

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This is only one of the many real world problems that
can be casted and, under certain assumptions, solved in our
framework, where one can model temporal constraints over
distances and durations of events which can have several lev-
els of satisfaction.

This paper presents the current formalism and results for
soft temporal constraint problems, and describes two solvers
we have developed for solving such problems. The imple-
mented modules rely on the theoretical results (such as those
on tractability of some classes of problems (Khatib et al.
2001b)) and make some assumptions for both tractability
and efficiency. In particular:
� both solvers are able to deal with soft temporal constraints

with one interval per constraint, and with a particular
shape of the preference functions, which assures tractabil-
ity (like for Simple Temporal Constraints in the case of
hard constraints (Dechter, Meiri, & Pearl 1991));

� preferences are dealt with via a fuzzy (max-min) frame-
work;

� our random problem generator is based on some param-
eters to generate a soft temporal problem, which suitably
extend the usual ones for hard CSPs (density, tightness,
...).

The paper is organized as follows: the background sec-
tion gives the basic notions about temporal and soft con-
straints, and summarizes the tractability results over which
our solvers are based. Then, the next section describes the
random problem generator which we use to test our solvers,
the section on the first solver introduces our solver based on
path-consistency, and the next section gives the details of the
other solver, based on a chopping procedure. Finally, the last
section concludes the paper by summarizing the results and
hinting at possible directions for future work.

Temporal constraint problems with
preferences

Temporal constraint reasoning. In the Temporal CSP
framework (TCSP) (Dechter, Meiri, & Pearl 1991), vari-
ables represent events happening over time, and each con-
straint gives an allowed range for the distances or durations,
expressed as a set of intervals over the time line. Satisfying

From: AAAI Technical Report WS-02-13. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

such a constraint means choosing any of the allowed dis-
tances. A solution for a TCSP consisting of a set of tem-
poral constraints is an assignment of values to its variables
such that all constraints are satisfied.

Complexity issues for TCSPs. As expected, general TC-
SPs are NP-hard. However, TCSPs with just one interval for
each constraint, called STPs, are polynomially solvable. In
fact, one can transform the given STP into a distance graph,
apply to this graph a shortest path algorithm, and then as-
sign to each variable the value corresponding to the shortest
distance thus found (see (Dechter, Meiri, & Pearl 1991) for
details).

Hard and soft temporal constraints. Although very ex-
pressive, TCSPs are able to model just hard temporal con-
straints. This means that all constraints have to be satisfied,
and that the solutions of a constraint are all equally satisfy-
ing. However, in many real-life some solutions are preferred
with respect to others. Therefore the global problem is not
to find a way to satisfy all constraints, but to find a way to
satisfy them optimally, according to the preferences speci-
fied.

Soft temporal constraint problems. To address such
problems, recently (Khatib et al. 2001b) a new framework
has been proposed, where each temporal constraint is asso-
ciated with a preference function, which specifies the prefer-
ence for each distance. This framework is based on a simple
merge of TCSPs and soft constraints, where for soft con-
straints we have taken a general framework based on semir-
ings (Bistarelli, Montanari, & Rossi March 1997). The re-
sult is a class of problems called Temporal Constraint Satis-
faction problems with preferences (TCSPPs).

Preference functions. A soft temporal constraint in a
TCSPP is represented by a pair consisting of a set
of disjoint intervals and a preference function: �������� � �	��
 ������������ � ��� ��
 � � 	 ����� , where ��� � 1 ��� , is a map-
ping of the elements of � into preference values, taken from
a set � .

Global preference value. A solution to a TCSPP is a com-
plete assignment to all the variables that satisfies the distance
constraints. Each solution has a global preference value, ob-
tained by combining the local preference values found in
the constraints. To formalize the process of combining local
preferences into a global preference, and comparing solu-
tions, we impose a semiring structure ont the TCSPP frame-
work.

Semirings. A semiring is a tuple � � ����� �!��"���#�� such that� is a set and "$��#&% � ; � , the additive operation, is com-
mutative, associative and " is its unit element; � , the multi-
plicative operation, is associative, distributes over � , # is its

1Here by I we mean the set of all elements appearing in the
intervals of I.

unit element and " is its absorbing element. A c-semiring
is a semiring in which � is idempotent, # is its absorbing
element, and � is commutative. These additional properties
(w.r.t. usual semirings) are required to cope with the usual
nature of constraints.

C-semirings allow for a partial order relation ')(over �
to be defined as

� '*(
 iff
� �+
 �
 . Informally, '*(gives us

a way to compare tuples of values and constraints, and
� ' (
 can be read b is better than a. Moreover, one can prove

that for all
� ��
,% � ,

� �-
 is the least upper bound (lub) of�
and
 ; and if � is idempotent, then � � � ' (� is a complete

distributive lattice and � is its greatest lower bound (glb).
Given a semiring2 with a set of values � , each preference

function � associated with a soft constraint �.� ����� of a TC-
SPP takes an element from � and returns an element of � ,
where � is the carrier of a semiring. This allows us to asso-
ciate a preference with a duration or a distance.

From local to global preferences. The two semiring oper-
ations allow for complete solutions to be evaluated in terms
of the preference values assigned locally. More precisely,
given a solution / in a TCSPP with associated semiring� � �0���1�!��"$��#�� , let 2�3546�7���83�9 4 ��� 3:9 4 � be a soft constraint
over variables ; 3 � ; 4 and <:= 3 � = 4?> be the projection of / over
the values assigned to variables ;@3 and ;�4 (abbreviated as<:=A3 � =?4 > �B/DC0EGFH9 EGI). Then, the corresponding preference
value given by � 3J4 is � 3J4 <:= 4�K = 3�> , where = 4�K = 3 % � 3�9 4 .
Finally, where LM� ��N � �������8� NPO 	 is a set, and � is the
multiplicative operator on the semiring, let � L abbreviateN �Q�R������� N O . Then the global preference value of / , = ��S <:/ > , is
defined to be = ��S <:/ > � � � � 354 <�= 4TK = 3.>!U <:= 3 � = 4?> �V/ C0E F 9 E I 	 .
The optimal solutions of a TCSPP are those solutions which
have the best global preference value, where “best” is deter-
mined by the ordering ' (of the values in the semiring.

Example: fuzzy temporal constraints. The semir-
ing underlying the problems targeted here is WYX?Z	[�[�\]�� � ^ ��_��`�a ��N ��acb�de� ^ ��_	� , used for fuzzy constraint solving
(Schiex 1992). The global preference value of a solution
will be the minimum of all the preference values associated
with the distances selected by this solution in all constraints,
and the best solutions will be those with the maximal value.

Simple soft temporal constraints. A special case occurs
when each constraint of a TCSPP contains a single inter-
val. We call such problems Simple Temporal Problems with
Preferences (STPPs).

We can perform two operations on soft simple temporal
constraints: intersection and composition. Given two such
constraints f � �g��� �A��� �8� and f � �h��� � ��� ��� the intersection
is the constraint f ��i f � �j�.� ��k � �1����� , where k is the usual
intersection of intervals and � < � > � � � < � > �l� � < � > �Dm � %
� � k � � . The combination of the two constraints is again a
constraint f �$n f � �g�Ao� � o�P� , where o��� ��p U q p � % � � � q p � %

2For simplicity, from now on we will write semiring meaning
c-semiring.

� � p � p � � p � 	 and o� < p > � � � � � < p � > � � � < p � >�U p � p � �p � � p �*% � � � p�� % � � 	 .
We can use these operations to perform constraint prop-

agation over STPPs. In particular, we can achieve a local
consistency notion similar to path-consistency, but adapted
to deal with temporal soft constraints. Applying path con-
sistency to an STPP means considering all triangles of con-
straints, say <`f �A� f �A� f � > , composing any two of them, sayf � and f � , and then intersecting the resulting constraint
with the other, i.e. <.f �,n f � > i f � . This is performed
until stability is reached, that is, until one sweep of path
consistency wouldn’t result in any changes. Later in the pa-
per we will see a solving algorithm which is based on path-
consistency.

In (Khatib et al. 2001b) it has been shown that, while in
general TCSPPs are NP-hard, under certain restrictions on
the “shape” of the preference functions and on the semiring,
STPPs are tractable.

Linear preference functions. For example, when the
preference functions of an STPP are linear, and the semiring
chosen is such that its two operations maintain such linear-
ity when applied to the initial preference functions, it can
be seen that the given STPP can be written as a linear pro-
gramming problem, which is tractable (Cormen, Leiserson,
& Rivest 1990).

Convex preference functions. Linear preference func-
tions are expressive enough for many cases, but there are
also several situations in which we need preference func-
tions which are not linear. A typical example arises when we
want to state that the distance between two variables must be
as close as possible to a single value. Then, unless this value
is one of the extremes of the interval, the preference function
is convex, but not linear.

Step preference functions. Another case is one in which
preferred values are as close as possible to a single distance
value, but in which there are some subintervals where all
values have the same preference. In this case, the preference
criteria define a step function, which is not convex.

Semi-convex preference functions. A class of functions
which which includes linear, convex, and also some step
functions has been called in (Khatib et al. 2001b) semi-
convex. A semi-convex function � is one such that, for all�

, the set
� ; such that � <:; >�� � 	 forms an interval. It is

easy to see that semi-convex functions include linear ones,
as well as convex and some step functions. For example,
the close to k criteria cannot be coded into a linear prefer-
ence function, but it can be easly specified by a semi-convex
preference function, which could be � < N > � N

for
N '�� and� < N > � � � K N

for
N
	 � . Figure 1 shows some examples

of semi-convex and non-semi-convex functions.

Tractability results for STPPs. It is proven in (Khatib et
al. 2001b) that STPPs with semi-convex preference func-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Examples of semi-convex functions (a)-(f) and
non-semi-convex functions (g)-(i)

tions and a semiring with a total order of preference values
and an idempotent multiplicative operation can be solved in
polynomial time.

In (Khatib et al. 2001b) it is also proven that semi-
convex preference functions are closed with respect to path-
consistency: if we start from an STPP � with semi-convex
functions, and we apply path consistency, we get a new
STPP �� with semi-convex functions. We will use this result
in this paper.

Our random problem generator
The two solvers we have developed, and that will be de-
scribed in the following of the paper, have been tested on
randomly-generated soft temporal constraints with semi-
convex preference functions.

The random generator we have developed focuses on
a particular subclass of semi-convex preference functions:
convex quadratic functions of the form

��N � �]
 N ��� , with� ' ^
. This choice has been suggested by the expressive-

ness of such a class of functions. In fact, we can notice that
this class of functions includes constant, linear, and semi-
convex quadratic functions. Moreover, it is easy to express
functions in this class: we just need to specify three param-
eters.

Moreover, the generator generates fuzzy STPPs, thus
preference values are between 0 and 1, and they are com-
bined using the max-min approach. A reason for this choice
is the fact that the min operator is idempotent, thus the gen-
erated problems, according to the results in (Khatib et al.
2001b), are tractable. Moreover, the fuzzy approach has
been shown to be useful in many real-life problems, as it is
demonstrated by the interest in fuzzy theory and by several
arguments for its generality.

An STPP is generated according to the value of the fol-
lowing parameters:
� number d of variables;
� range

p
for the initial solution: to assure that the generated

problem has at least one solution, we first generate such a
solution, by giving to each variable a random value within
the range

� ^ � p � ;

� density: percentage of constraints that are not universal
(that is, with the maximum range and preference 1 for all
interval values);

� maximum expansion from initial solution (max): for each
constraint, the bounds of its interval are set by using a
random value between 0 and max, to be added to and sub-
tracted from the timepoint identified for this constraint by
the initial solution;

� perturbation of preference functions (�
�

, �
 , � �): we re-
call that each preference function can be described by
three values (

�
,
 , and �); to set such values for each

constraint, the generator starts from a standard quadratic
function which passes through the end points of the inter-
val, with value 0, and the middlepoint, with value 0.5, and
then modifies it according to the percentages specified for�

,
 , and � .
For example, if we call the generator with the parameters� _ ^ � �A^ ��� ^ ��� ^ � �A^ � ��� ��� ^ � , it will generate a fuzzy STPP

with 10 variables. Moreover, the initial solution will be cho-
sen by giving to each variable a value between 0 and 20.
Among all the constraints, �

^
	
of them will be universal,

while the other � ^
	 will be specified as follows: for each
constraint, consider the timepoint specified by the initial so-
lution, say / ; then the interval will be

� / K / _ � / � / � � , where / _
and / � are random numbers between 0 and 40. Finally, the
preference function in each constraint is specified by taking
the default one and changing its three parameters

�
,
 , and � ,

by, respectively,
�A^
	

,
����	

, and � ^�	 .
To compare our generator with the usual one for classi-

cal CSPs, we notice that the maximum expansion (max) for
the constraint intervals roughly corresponds to the tightness.
However, we do not have the same tightness for all con-
straints, because we just set an upper bound to the number of
values allowed in a constraint. Also, we do not explicitly set
the domain of the variables, but we just set the constraints.
This is in line with other temporal CSP generators, like the
one in (Schwalb & Dechter 1993).

A solver based on path consistency
The tractability results for STPPs that are contained in
(Khatib et al. 2001b) can be translated in practice as fol-
lows: to find an optimal solution for an STPP, we can first
apply path consistency and then use a search procedure to
find a solution without the need to backtrack. More in de-
tails, besides the results of (Khatib et al. 2001b), we can
show the following results:

Theorem 1 Given an STPP � , let us call � � the STPP ob-
tained by applying path-consistency to � . Then, all pref-
erence functions in � � have the same best preference level,
which is lower than or equal to the original one.

Theorem 2 Consider the STP obtained from the STPP � �
by taking, for each constraint, the sub-interval correspond-
ing to the best preference level. Then, the solutions of such
an STP coincide with the best solutions of the original �
(and also of ��). Therefore, finding a solution of this STP
means finding an optimal solution of � .

Pseudocode for path-solver
1. input STPP P;
2. STPP P’=STPP PC-2(P);
3. if P’ inconsistent then exit;
4. STP P”=REDUCE TO BEST(P’);
5. return EARLIEST BEST(P”).

Figure 2: Path-solver.

Our first solver, which we call path-solver, relies on these
results. In fact, the STPP solver takes as input an STPP
with semi-convex preference functions and fuzzy temporal
constraints, and returns an optimal solution of the given
problem, working as follows and as shown in Figure 2:
first, path consistency is applied to the given problem, by
function STPP PC-2, producing a new problem � � ; then,
an STP corresponding to � � is constructed, applying RE-
DUCE TO BEST to � � , by taking the subintervals corre-
sponding to the best preference level and forgetting about
the preference functions; finally, a backtrack-free search is
performed to find a solution of the STP, specifically the earli-
est one is returned by function EARLIEST BEST. All these
steps are polynomial, so the overall complexity of solving an
STPP with the above assumptions is polynomial. In Figure
2 we show the pseudocode for this solver.

In Figure 3 we show some results for finding an optimal
solution for STPPs generated by our random problem gen-
erator. Path-solver has been developed in C++ and tested on
a Pentium III 1GHz.

As it can be seen, this solver is very slow. The main rea-
son is that it uses a pointwise representation of the constraint
intervals and the preference functions. This makes the solver
more general, since it can represent any kind of preference
functions, even those that don’t have an analytical represen-
tation via a small set of parameters. In fact, even starting
from convex quadratic functions, which need just three pa-
rameters, the first solving phase, which applies path consis-
tency, can yield new preference functions which are not rep-
resentable via three parameters only. For example, we could
get semi-convex functions which are generic step functions,
and thus not representable by giving new values to the initial
three parameters.

A solver based on a chopping procedure
The second solver for STPPs that we have implemented,
and that we will call ’chop-solver’, is based on the proof of
tractability for STPPs, with semi-convex preference func-
tions and idempotent multiplicative operator of the under-
lying semiring, described in (Khatib et al. 2001b). Let’s
briefly recall the main argument. The first step is to obtain
an STP from a given STPP. In order to do this, we reduce
each soft constraint, �.� ����� , of the STPP into a simple tem-
poral constraint. Consider % � , a value in the set of pref-
erences. Then, since the function � on the soft constraint is
semi-conex, the set

��N � N % � ��� < N > � 	 forms an interval,
i.e. a simple temporal constraint. Performing this transfor-
mation on each soft constraint of the original STPP we get an

0

200

400

600

800

1000

1200

1400

1600

1800

20 30 40 50 60 70 80

se
co

nd
s

density

max=100
max=50
max=20

Figure 3: Time needed to find an optimal solution (in sec-
onds), as a function of density (�). The other parameters
are: d =50,

p
=100, �

�
=20, �
 =20, and � � =30. Mean on 3

examples.

STP, wich we refer to as We2 �G\ . The proof states that the set
of solutions of the W 2 ������� , where � � / represents the highest
level at which the derived STP is consistent, coincides with
the set of optimal solutions of the STPP.

The solver we have implemented works with STPPs with
semi-convex quadratic functions (lines and convex parabo-
las) based on the fuzzy semiring. This means that the set of
preferences we are considering is the interval [0,1].

The solver finds an optimal solution of the STPP identify-
ing first W 2 �����	� and returning its earliest or latest solution.
 � / is found by performing a binary search in

� ^ ��_8� . The
bound on the precision of a number, that is the maximum
number of decimal coded digits, explains why the number
of search steps is always finite. Moreover, our implementa-
tion allows the user to specify at the beginning of the solving
process the number d of digits he wants for the optimal so-
lution’s preference level. Figure 4 shows the pseudo-code
for this solver.

The search for the optimal preference level starts with
 � ^

. Since W 2 ��� is the We2 � we would obtain con-
sidering all the soft constraints as hard constraints, that is,
with preference function equal to 1 on the elements of the
interval and to 0 everywhere else, the algorithm first checks
if the hard part of the problem is consistent. If it is found
not to be consistent the algorithm stops informing the user
that the whole problem is inconsistent. Otherwise the search
goes on. Three variables are maintained during the search:
 containing the lowest level at which an inconsistent STP
was found,

S
 containing the highest level at which a con-
sistent STP was found and for the current level at which
we need to perform the “chopping”. The three values are
updated depending on the outcome of the consistency test.

The actual chopping and the consistency test on the STP
obtained are performed by function CONSISTENCY. It re-
ceives, as input, the level at which the chop must be per-
formed and the STPP. For each constraint of P it looks at
what type is the preference function, a constant, a line or a
semi-convex parabola. It then finds the intersection of the
function with the constant function at the chopping level.

Pseudocode for chop-solver
1. input STPP P;
2. input precision;
3. integer n=0;
4. real lb=0, ub=1, y=0;
5. if(CONSISTENCY(P,y))
6. y=0.5, n=n+1;
7. while (n �*� precision)
8. if(CONSISTENCY(P,y))
9. lb=y, y=y+(ub-lb)/2, n=n+1;
10. else
11. ub=y, y=y-(ub-lb)/2, n=n+1;
12. end of while;
13. return solution;
14. else exit.

Figure 4: Chop-solver.

As it finds the intersection for each constraint it fills in the
distance matrix L . This matrix is � � � , where N is the
number of variables of the problem. It represents the dis-
tance graph of the STP (Dechter, Meiri, & Pearl 1991). This
means that if the constraint between variable b and variable�

is the interval
� � ��
�� , then L � b`� � � � �
 and L � � � � b`� � K � .

At this point we apply the theorem that states that an STP
is consistent if and only if its distance graph has no negative
cycles, see (Liao & Wang 1983) (Leiserson & Saxe 1983)
(Shostak 1981). In order to accomplish this we run Floyd-
Warshall’s all-shortest-paths algorithm on L and then check
the diagonal elements. If no diagonal elements are negative,
we can conclude that W 2 � \ is consistent. If we have already
reached the number of decimal digits the user wanted, then
we return either the earliest or the latest solution, respec-
tively corresponding to the assignments

N 3 � K L � b`� � ^ � andN 3 � L � ^ � � b.� . If instead one or more diagonal elements are
negative, we can conclude that the W 2 � \ is inconsistent and
either return the solution of the last consistent STP or keep
searching at lower levels of preference. The solution we re-
turn is always made of integers, that is, in the case of the ear-
liest solution, the real numbers found intersecting the prefer-
ence functions with the chopping level are approximated to
the first larger integer while for the latest the approximation
is to the largest smaller integer.

Figure 5 shows some experimental results for chop-solver.
We have used basically the same random generator used to
test the solver described in Section 3, although it has been
slightly modified since the two solvers use two different rep-
resentation of a constraint.

We have tested chop-solver by varying the number of vari-
ables, from a minimum of 25 up to a maximum of 1000, and
the density from 20% to 80%.

From Figure 5 we can conclude that chop-solver is only
slightly sensitive to variations in the density, and it is very
sensitive to the number of variables, since a higher number
of variables yields an increase of the number of constraints
on which the intersection procedure must be performed.

The choice of mantaining a fixed maximum enlargement
of the intervals, that can be interpreted as a fixed tightness,

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

den 20%
den 40%
den 60%
den 80%

Figure 5: Time, in seconds, (y-axis) required by chop-solver
to solve, varying the number of variables (x-axis) and the
density, with r=100000 max=50000, pa=5, pb=5 e pc=5.
Mean on 10 examples.

is justified by the continuos representation of the constraint
this solver uses. In fact, each constraint is represented by
only two integers for the left and right ends of the interval
and 3 doubles as parameters of the function. Increasing a ��N
affects this kind of representation of a constraint only mak-
ing these values bigger in modulo. This change however
does not affect any of the operations performed by chop-
solver.

Path-solver vs. chop-solver
In Table 1, 2 and 3 we can see a comparison between chop-
solver and path-solver.

D=20 D=40 D=60 D=80
path-solver 515.95 235.57 170.18 113.58
chop-solver 0.01 0.01 0.02 0.02

Table 1: Time in seconds, used by path-solver and chop-
solver to solve problems with d � � ^ ,

p � _ ^1^ , a ��N ��A^
, �

� � _ ^ , �
 � _ ^ , and � � � �
and varying density�

.Results are mean on 3 examples.

D=20 D=40 D=60 D=80
path-solver 1019.44 516.24 356.71 320.28
chop-solver 0.03 0.03 0.03 0.03

Table 2: Time in seconds, used by path-solver and chop-
solver to solve problems with d � � ^ ,

p � _ ^1^ , a ��N ��A^
, �

� � _ ^ , �
 � _ ^ , and � � � �
and varying density�

.Results are mean on 3 examples.

It appears clear that chop-solver is always much faster
than path-solver. It can be noted, however, that chop-solver
finds more constrained problems a little more difficult. This

D=20 D=40 D=60 D=80
path-solver 2077.59 1101.43 720.79 569.47
chop-solver 0.05 0.05 0.06 0.07

Table 3: Time in seconds, used by path-solver and chop-
solver to solve problems with d � �1^

,
p � _ ^ ^ , a � N ��A^

, �
� � _ ^ , �
 � _ ^ , and � � � �

and varying density�
.Results are mean on 3 examples.

fact can be partially explained by the way problems are gen-
erated: having a higher density means having more con-
straints with non trivial parabolas, i.e.

���� ^
. The inter-

section procedure in this case is a little more complicated
than in the case of constants or lines. On the other hand,
with a higher density, path-solver has to deal with smaller
constraints (w.r.t. the default ones), and thus the pointwise
representation is less of a problem.

Chop-solver is also more precise, since it can find an op-
timal solution with a higher precision. It must be kept in
mind, though, that path-solver is more general. In fact, the
point-to-point representation of the constraints needed by
path-solver, to be blamed for its poor performance, allows
one to use any kind of semi-convex function, e.g. step func-
tions, that cannot be easily compactly parametrized. quan-
tity, which means that, once Moreover, even wanting to ex-
tend the types of parametrized functions in the continuous
representation for chop-solver, we must remember that the
system deriving from intersecting the constant at chopping
level and the function must be solvable in order to find the
possible intersections.

Conclusions and future work
We developed two solvers for tractable subclasses of soft
temporal constraint problems. One of the solvers, called
path-solver, uses path-consistency as a preprocessing step
before solving a simple temporal problem. Because of the
use of path-consistency, this solver requires a pointwise rep-
resentation of the soft constraints. This makes the solution
process slow but allows for the application of the solver to
soft temporal constraints where the preferences can be rep-
resented by any semi-convex function.

The second solver, called chop-solver, uses a binary
search strategy to identify the highest level at which to hor-
izontally ”chop” the preference functions to transform the
soft temporal constraint into a simple temporal problem.
This solver is much faster, since it uses a parametric rep-
resentation of the preference functions. For this paper, we
have chosen a three-parameter representation, which allows
for the modelling of constant, linear and parabolic functions.
Thus efficiency is gained but the solver is less general.

We plan to use chop-solver in combination with a learning
module we have already developed (Khatib et al. 2001a).
This can be useful when the preferences over the temporal
constraints are not completely known.

We also plan to extend the class of preference functions
which can be handled by chop-solver, to make it more gen-
eral, and to build a variant of chop-solver which uses another

solving algorithm for STPs, like the Bellman-Ford one.
We plan to further test the overall system, composed of the

solvers and the learning module, using other classes of ran-
domly generated STPPs and also real-life problem instances
such as satellite event scheduling. We also plan to extend
our solver to deal with soft temporal problems which are not
tractable.

Moreover, we believe that the ideas underlying chop-
solver can be used also for solving soft constraints in gen-
eral, not just temporal ones. This would allow for the choice
of the precision with which an optimal solution is found.
This approach is related to hybrid algorithms based on ab-
straction of soft constraints, where a series of abstraction
and concretization mappings can improve the bounds over
an optimal solution (Bistarelli et al. 2000).

References
Bistarelli, S.; Codognet, P.; Georget, Y.; and Rossi, F. 2000.
Abstracting soft constraints. In Proc. ERCIM/Compulog
Net workshop on constraints, Springer, LNAI 1865.
Bistarelli, S.; Montanari, U.; and Rossi, F. March
1997. Semiring-based Constraint Solving and Optimiza-
tion. Journal of the ACM 44(2):201–236.
Cormen, T.; Leiserson, C.; and Rivest, R. 1990. Introduc-
tion to Algorithms. MIT press, Cambridge, MA.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49.
Khatib, L.; Morris, P.; Morris, R.; Rossi, F.; and Sperduti,
A. 2001a. Learning preferences on temporal constraints: A
preliminary report. In Proc. TIME 2001, IEEE Computer
Society Press.
Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001b.
Temporal constraint reasoning with preferences. In Proc.
IJCAI 2001.
Leiserson, C., and Saxe, J. 1983. A mixed-integer lin-
ear programming problem which is efficiently solvable.
In Proc. 21st Annual Allerton Conference on Communica-
tions, Control, and Computing.
Liao, Y., and Wang, C. 1983. An algorithm to compact a
vlsi compact symbolic layout with mixed constraints. IEEE
Trans. Computer-Aided Design of integrated Circuits and
Systems, 2 (2).
Schiex, T. 1992. Possibilistic constraint satisfaction prob-
lems, or “how to handle soft constraints?”. In Proc. 8th
Conf. of Uncertainty in AI, 269–275.
Schwalb, E., and Dechter, R. 1993. Coping with disjunc-
tions in temporal constraint satisfaction problems. In Proc.
AAAI-93.
Shostak, R. 1981. Deciding linear inequalities by comput-
ing loop residues. J. ACM, 28 (4).

