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Abstract

Two general problems related to resistive magnetohydrodynamic
stability are addressed in this paper :

1. A general stability condition previously derived by the author for
a class of real systems, occuring especially in plasma physics, is
proved to persist to second order, despite the addition of several
‘antisymmetric operators of first order in the linearized stability
equation.

2. For a special but representative choice of the stability opera-
tors, a nonperturbative analysis demonstrates the existence of
a critical density for the appearence of an overstability and the
connected Hopf bifurcation, as suggested in a previous note of
the author.

1 Persistence of a general stability condition
in real systems

A challenging problem in linear stability theory is the stability of nonconser-
vative mechanical systems [1] and fluids [2] possessing ‘circulatory forces’. A




simple reduction of the problem to a quadratic form and the analysis of its
sign is possible only for the case without circulatory forces and is expressed
by the Thompson-Tait theorem [3]. The theorem is easy to prove, using
Lyapunov methods [4], for systems of the form

N+ (Po+ P)E+ Qs =0, (1)

where £ is a column vector, N; and P; are symmetric positive definite matri-
ces, P, is an antisymmetric matrix and () is a symmetric matrix. In case of
fluids the vector £ is replaced by functions and the matrices by continuous
operators. Nevertheless, equation (1) can be considered as a discretization
of a fluid stability problem. The theorem states that

(£, @s8) 20 (2)

for all £ is necessary and sufficient for the stability of (1). Many problems in
mechanics [1] and in plasma physics [5] were solved in this way.

If we add circulatory forces and a kind of antisymmetric inertia to (1),
then we have to face the stability problem for a real equation of the form

(N, 4+ N)E + (Py + P)E+(Qs + Qa)E = 0. (3)

In most cases £ is a Lagrangean variable (see [2]), in which are expressed
the friction P,¢ and the circulatory force Q.¢, but N, = 0. In some cases
(e.g. dissipative magnetohydrodynamics with Hall term), however, an anti-
symmetric inertia N,€ can also appear as in (3).

The purpose of this note is to extend to equation (3) statements proved
by the author for stability equations without N, (see [6]) and equations with
neither N, nor P, but with a small @, (see [7]). The first statement concerns
purely growing modes. In this case, the eigenfunctions related to (3) can be
taken real, since (3) contains only real quantities, similarly to the situation
in [6]. It follows that, making the ansatz £ = Ue and taking the scalar
product of (3) with ¥, we obtain

72(\I”Ars‘1,) % 7(1D:PS‘II) + (\Ija Qs\p) =0. (4)

Since N, and P, are positive operators, then a general sufficient stability
condition with respect to purely growing modes is

(7,Q:%) 20 - )
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for all ¥ real. _

The second point is to extend the perturbation procedure and the result
of [7] to the situation where N,, P, and Q, are all small of order ¢. At zero
order we know from (3] that (5) is also necessary, so that, in the absence of
degeneracy in the zero order spectrum, the following holds: If (5) is violated,
only purely growing modes exist (see [7]), with

£ = Toe™ (6)
and a real ¥q obeying
YN, Uo + 7P, ¥o + Q,¥o = 0. (7)
To obtain the next order we set £ = Ue“* and expand

U = Up+e¥y +... (8)
w = v+ ew + ... (9)

Inserting (8) and (9) in (3) leads, up to the first order in ¢, to

v*N, U, + P, ¥, + Q,¥,; +
27W1Ns‘1fo + w1 PWo +
+7°NoUo+ 7P¥o + Q. ¥ = 0. (10)

Taking the scalar product of (10) with ¥y, we obtain
wl(.?’y(ll’o, NS‘I’()) + (‘I’o, P,‘I’g)) = 0. (].].)

The terms in ¥, vanish because of (7) and the symmetry of the operators.
Those with N,, P, and @, vanish also because of the reality of ¥y. Since N;
and P, are positive, it follows that

w = 0 (12)

This means that the unstable spectrum of (3) is affected by N,, P, and
Q. (all of order €) only at the order €%. In that sense, condition (5) can be
said to be necessary and sufficient for stability. In other words the condition
is persistent to second order in e.




One may be tempted to check the persistency of (2) by considering (1),
which has a finite P,, as a zero order equation and adding to it small N,
and Q.. Indeed the first statement concerning the sufficient part of (2) with
respect to purely growing modes is persitent. It is not possible, however, to
prove the second statement i.e. w; = 0, since, in case of violation of (2),
the unstable modes of (1) do not need to be purely growing and ¥, becomes
complex, so that the contributions coming from N, and F, do not vanish
anymore. The persistency of (2) would be to first order in €, which is trivial.

Let us finally note that the stability of fluid motion with moderate and
large Reynolds numbers cannot be approached in this way because the cor-
responding P, and Q, are finite. This explains why the persistent condition
applies naturally to configurations in plasma physics 7], where the mass flows
are not the dominant cause of instabilities.

2 Nonperturbative procedure for an ad hoc
choice of operators

In a previous note [8] the linearized equations of resistive magnetohydrody-
namics were shown to be of the form

NV + PO + (Q, + Qa)¥ =0, (13)

with N and P real symmetric and positive operators, @, and @, being real
but symmetric and antisymmetric respectively. A sufficient condition for
stability with respect to purely growing modes was found and can be written
as

§W = (1,Q.¥) > 0, (14)
for all W.

Several considerations concerning the up-grading of condition (14) were
given in [7] . In essence, they lead first, to the sufficiency of (14) w. r. to all
modes, in case N is neglected, and second, to the necessity of (14) if Q, is
small. Finally, a Hopf bifurcationwas demonstrated [9], for (14) fulfilled and
N increaincreased, until an overstability occurs.

In this section, we want to illustrate the general results of [7],[8] and 9]
through a problem related to (13), in which the operators N and P are both
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proportional to the idendity. For this choice, (13) becomes
nI¥ + pI¥ + (Qs + Qu)¥ =0, (15)

where n and p are positive numbers.
If the eigenvalue problem for @ + @, can be solved, we have

(Qs W Qa)lpm =AU (16)

with
Am = A + i (17)
Am and ¥, are, in general, complex, though (15) involves only real quantities.

If we make the ansatz U = ¥, e“m!  the eigenvalues of (15) wy, are related
to the A, by the following equation

nw? + pw+ Ap +iA; =0, (18)

valid for each pair of eigenvalues A,, and wy,.
Let us split w in real and imaginary parts, then (18) can be written as a
system

n(wp —wi) +pwr +Ar = o (19)
wI(anR + p) +Ar = 0. (20)

Inserting in (19) the value of w; obtained from (20), we have

nA?
nuh + por + AR = o (21)

2nwp + p)?’




Since n and p are positive, it is easy to make schematic plots of the left
hand side (lhs) and right hand side (rhs) of (20) (see Figures 1 and 2). Let
us consider two cases : first, some Ag < 0 (Fig. 1), and second, all A\g > 0
(Fig. 2), which follows from the validity of (14).

I
o=
~—
N
(
=
e

We see that, if some Ag < 0, the system (19, 20) has always a positive
root wg (see Fig. 1), which means instability.




Let us note that a violation of (14) for a U which is not representative of
the eigenfunction, does not necessarily imply that Ag < 0 .

[
|
|
:'-p/Zn w;

Fig.2 A,>0

In case Ag > 0, the crossing point leads to an instability only if A\g < “3L
(see Fig. 2). As mentioned above and in [7] the unstable crossing cannot
occur for n & 0 or A; very small or p large. Starting from a small n, for
Ar > 0 and A and p fixed, we obtain an overstability by increasing the value

of n until \2
n
Ar < p—;, (22)

as explained in [9] .
The study of this example suggests a two steps procedure for investigating
the stability of a resistive MHD system of the type (13):

1. Check the validity of (14), which can be done numerically for real con-
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figurations, using standard procedures for Hermitean eigenvalue prob-
lems, as suggested in [7] and [8] .

2. Increasing slowly the value of the operator N, search for a pure imag-
inery eigenvalue w = iwy for problem (13). The first appearence of
such an eigenvalue gives the critical value of N for overstability and,
possibly, for a Hopf bifurcation as described in [9] .
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