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Abstract. In this paper we study two models, the viscoplastic model and the thermo-

viscous model, of rate-dependent non-homogeneous materials with non-oscillating strain-

rate sensitivity submitted to simple quasistatic shearing. We prove that the two models

are stable by homogenization, i.e. that the equations in both the heterogeneous problems

and the homogenized one have the same form, and we give explicit formulas for the ho-

mogenized (effective) coefficients. These formulas depend on the initial conditions, but

not on the boundary conditions. Our theoretical results are illustrated by a numerical

example.

1. Introduction. Many methods have been proposed to provide “effective” equa-

tions of highly heterogeneous materials. Mathematical homogenization, which is adopted

in the present paper, consists of setting the problem as a sequence of equations describing

the heterogeneous material when the heterogeneities, whose typical size is characterized

by a parameter ε, become smaller and smaller. Passing to the limit in the problem is a

nonlinear process (even if the problem is linear) when both the solution and the coeffi-

cients are concerned. To quote only a very few works in this direction, we cite Tartar

(1977), Murat (1977), Bensoussan et al. (1978), and Sanchez-Palencia (1978).

In terms used in mechanics, homogenization aims at replacing a highly heterogeneous

material with an equivalent (effective) one. This method can of course be used to de-

sign new materials with enhanced properties. It has often been described in mechanics

literature, and here again, giving a complete list is impossible; let us mention Suquet

(1982), Francfort et al. (1983a), Francfort et al. (1983b), Hashin (1983), Suquet (1983),
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Maugin (1992), Aboudi et al. (1999), Ghosh et al. (2001), Bansal and Pindera (2003),

Michel and Suquet (2004), Alshits and Maugin (2005), Bansal and Pindera (2005),

Bardzokas and Zobnin (2005), Guinovart-Diaz et al. (2005), Suquet (2005),

Batra and Love (2006a), Batra and Love (2006b), Idiart et al. (2006), Cavalcante et al.

(2007), Cavalcante et al. (2008), as well as the excellent review paper by Pindera et al.

(2009).

It would be interesting to look for the conditions under which a given model has

the same form at the phases’ and at the homogenized level. This allows one to look

for effective parameters and simplifies the characterization of mechanical properties of

heterogeneous materials. Here we define “stable-by-homogenization” (SbH) thermovis-

coplastic models (i.e. models in which the equations in both the heterogeneous and the

homogenized problem are of the same form). We show that the quasistatic shearing

under dynamical conditions is SbH for two specific models of rate-dependent materials,

the viscoplastic model and the thermoviscous model.

The simple shearing between the planes x = a, x = b of a rigid rate-dependent

material made of numerous layers of thickness of order ε perpendicular to the x-direction,

with different referential densities ρε, specific heat coefficients ηε, rates of plastic work

converted into heat βε, strain-rate sensitivities nε, viscosity coefficients ψε and body

force f , is described by the balance laws of the process and the compatibility equation,

which relate the unknowns of the problem (namely the velocity vε(t, x), the shear stress

σε(t, x), the strain γε(t, x) and the temperature θε(t, x)), namely

ρε(x)
∂vε

∂t
=

∂σε

∂x
+ f(t, x), (1.1)

cε(x, θε)
∂θε

∂t
= σε ∂v

ε

∂x
, (1.2)

∂γε

∂t
=

∂vε

∂x
, (1.3)

and by the constitutive law, which here will be assumed to be of the form

σε = ψε(x, γε, θε)|∂v
ε

∂x
|nε(x)−1 ∂v

ε

∂x
, (1.4)

while the heat coefficient cε is defined by

cε(x, θε) =
ρε(x) ηε(x, θε)

βε(x, θε)
. (1.5)

Here t ∈ (0, T ) and x ∈ Ω = (a, b).

The corresponding quasistatic problem is obtained by assuming that the inertial effects

are negligible (
∂vε

∂t
∼ 0). Then (1.1) reads as

−∂σε

∂x
= f. (1.6)

The above system (1.1)–(1.5) has, of course, to be complemented by suitable initial

and boundary conditions. We note that all the (given) material functions ρε(x), cε(x, θ),

nε(x) and ψε(x, γ, θ) are only assumed to be bounded from above and from below by

strictly positive constants but are allowed to exhibit discontinuities with respect to x, so
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that equations (1.1)–(1.3) must be understood in the sense of distributions. Moreover,

the heat coefficient cε(x, θ) and the viscosity coefficient ψε(x, γ, θ) are supposed to be

uniformly Lipschitz continuous with respect to γ and θ.

Homogenization consists of describing the overall behavior of the velocity vε, stress σε,

strain γε and temperature θε for fixed external forces and initial and boundary conditions,

which is expressed by the weak limits (in suitable spaces) (v0, σ0, γ0, θ0) of (vε, σε, γε,

θε) as ε tends to zero.

When nε(x) = 1 and ψε(x, γ, θ) = με(x, θε) in (1.4), and when
∂με

∂θ
≤ 0 holds, i.e. in

the case of the special constitutive law

σε = με(x, θε)
∂vε

∂x
(1.7)

with thermal softening, the dynamical problem (1.1)–(1.4) with Dirichlet or Neumann or

mixed boundary conditions has been studied by the authors (Charalambakis and Murat

(1989), Charalambakis and Murat (2006a)), and its homogenization has been presented

in Charalambakis and Murat (2006b). In this setting, the dynamical problem (1.1)–(1.3),

(1.7) is SbH.

In the present paper, we concentrate on the quasistatic problem. We prove that the

quasistatic problem is SbH if the constitutive law (1.4) (and, in some cases, the heat

coefficient cε) takes special forms. More specifically, we prove that when nε(x) = n�(x)

and when either

(i) ψε(x, γ, θ) = νε(x, γ) and cε(x, θ) = c�(x) (viscoplastic case),

or when

(ii) ψε(x, γ, θ) = με(x, θ) (thermoviscous case),

the quasistatic problem (1.2)–(1.4), (1.6) is SbH. Recall that in Charalambakis and Murat

(2009) we proved that the quasistatic problem (1.2)–(1.4), (1.6) is SbH when ψε(x, γ, θ)

is general but when σε(t, x) = σ��(x). Therefore the problem is SbH for (at least)

the three following models: (i) the viscoplastic model, exhibiting strain-dependent vis-

cosity νε(x, γ), with non-oscillating strain-rate sensitivity n�(x) and with temperature-

independent non-oscillating heat coefficient c�(x); (ii) the thermoviscous model, exhibit-

ing temperature-dependent viscosity με(x, θ), with non-oscillating strain-rate sensitivity

n�(x) and with temperature-dependent heat coefficient cε(x, θ); (iii) the general thermo-

viscoplastic model ψε(x, γ, θ), with non-oscillating strain-rate sensitivity n�(x) and with

temperature-dependent heat coefficient cε(x, θ), in the case where the material is sheared

by steady boundary shearing and body force.

In the three models (i)–(iii), the homogenized coefficients depend on the initial values

of the strain or of the temperature. This reflects the nonelastic character of the problem

(1.2)–(1.4), (1.6). Moreover, in the case (iii), the homogenized viscosity ψ0 and heat

coefficient c0 depend also on the boundary shearing and on the body force. In contrast,

in the cases (i) and (ii), the constitutive law of the homogenized material does not

depend on the boundary conditions. This fact provides an easy characterization of the

mechanical behavior of the homogenized material and allows an easy exploitation of

experimental data. Let us finally observe that the materials exhibiting oscillating strain-

rate sensitivities are not SbH in general (see Remark 3.7 below).
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Regarding the nature of the above three models, model (i) and model (iii) are used to

describe steels under large strains, so it makes sense to investigate a given microstruc-

ture. It is true that model (ii) is essentially a fluid, in which case the microstructure

is transported by the flow. However, in the special case of a solid in which the strain

acts as a hidden variable in the viscosity function (for instance, when it can be expressed

explicitly in terms of the temperature), the strain- and temperature-dependent viscosity

function can be written as in the thermoviscous case (ii). This is, for instance, the case of

a solid sheared by steady boundary stress with temperature-independent heat coefficient,

as one may easily verify by integrating the energy equation (1.2) after using (1.3).

It is worth noticing that the above setting is very rigid, since the stability by homog-

enization depends heavily upon the fact that the stress and the strain rate sensitivity

coefficient do not depend on ε, prohibiting any changes in the constitutive behavior

(adding elasticity for example), or any change in the type of boundary conditions, and

forcing the approximation of the rate dependence of constituents by a non-oscillating

coefficient. Thus, the notion of stability by homogenization seems a bit ad hoc. How-

ever, our analysis allows for the explanation of some nonexpected effects arising from

homogenization in thermoviscoplastic materials, such as the memory effects, like that of

the effective viscosity coefficient exhibited in Remark 3.2, or like that of the time de-

pendence of the loading conditions in model (iii). In this context, this one-dimensional

setting could prove instructive as a case study and a guideline for future investigation.

The paper is organized as follows. In Section 2 we present an existence and uniqueness

result for the general quasistatic problem which we proved in Charalambakis and Murat

(2009), and we define the notion of stability by homogenization (SbH). In Sections 3,

4 and 5 we prove that the system is SbH for two cases of materials: the viscoplastic

case and the thermoviscous case. In Section 3 we also present a numerical example

concerned with multiphase stratified materials with periodic structure when the phases

are characterized by power laws; we observe that the homogenized material is no more

characterized by a power law, and therefore that power laws are not SbH.

2. Existence and uniqueness. In this section we consider the general quasistatic

problem posed in Q = (0, T )×Ω, where T > 0 and where Ω = (a, b) is one-dimensional,

namely

−∂σε

∂x
= f in Q, (2.1)

∂γε

∂t
=

∂vε

∂x
in Q, (2.2)

cε(x, θε)
∂θε

∂t
= σε ∂v

ε

∂x
in Q, (2.3)

σε = ψε(x, γε, θε)

∣∣∣∣∂v
ε

∂x

∣∣∣∣
nε(x)−1

∂vε

∂x
in Q, (2.4)
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complemented by the initial conditions

γε(0, x) = γ0(x) in Ω, (2.5)

θε(0, x) = θ0(x) in Ω, (2.6)

and by the boundary conditions

σε(t, a) = σa(t) in (0, T ), (2.7)

vε(t, b) = vb(t) in (0, T ). (2.8)

2.1. Existence and uniqueness. In this subsection, we recall the statement of the ex-

istence and uniqueness result which is proved in Charalambakis and Murat (2009). We

make the following hypotheses on the data, where 0 < M < +∞, 0 < α ≤ β < +∞ and

0 < α ≤ β < +∞ are given:

f = −∂g

∂x
in Q, where g ∈ C0(Q), (2.9)

x → cε(x, θ) is measurable on Ω, ∀θ ∈ R, (2.10)∣∣∣∣∂c
ε

∂θ
(x, θ)

∣∣∣∣ ≤ M, a.e. x ∈ Ω, ∀θ ∈ R, (2.11)

α ≤ cε(x, θ) ≤ β, a.e. x ∈ Ω, ∀θ ∈ R, (2.12)

x → ψε(x, γ, θ) is measurable on Ω, ∀γ ∈ R, ∀θ ∈ R, (2.13)∣∣∣∣∂ψ
ε

∂γ
(x, θ, γ)

∣∣∣∣ ≤ M, a.e. x ∈ Ω, ∀γ ∈ R, ∀θ ∈ R, (2.14)

∣∣∣∣∂ψ
ε

∂θ
(x, θ, γ)

∣∣∣∣ ≤ M, a.e. x ∈ Ω, ∀γ ∈ R, ∀θ ∈ R, (2.15)

α ≤ ψε(x, γ, θ) ≤ β, a.e. x ∈ Ω, ∀γ ∈ R, ∀θ ∈ R, (2.16)

nε ∈ L∞(Ω), (2.17)

α ≤ nε(x) ≤ β, a.e. x ∈ Ω, (2.18)

γ0 ∈ L∞(Ω), (2.19)

θ0 ∈ L∞(Ω), (2.20)

σa ∈ C0([0, T ]), (2.21)

vb ∈ L∞(0, T ). (2.22)

When considering their regularity with respect to x, the only hypothesis made on

the heat coefficient cε, on the viscosity coefficient ψε and on the strain-rate sensitivity

nε is that they are bounded from below and from above by strictly positive constants.

More specifically, they are allowed to exhibit discontinuities with respect to the spatial

variable x. The same is valid for the initial strain γ0 and the initial temperature θ0. It

is also worth noticing that we do not make any softening or hardening hypothesis on the

material behavior, since the viscosity coefficient ψε may have a negative or positive or

nonsigned derivative with respect to strain and/or temperature.
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Proposition 2.1 (Charalambakis and Murat (2009)). When hypotheses (2.9)–(2.22)

hold true, there exists a unique solution (σε, vε, γε, θε) of (2.1)–(2.8) which satisfies

σε = σ� in Q, (2.23)

vε ∈ L∞(Q),
∂vε

∂x
∈ L∞(Q), (2.24)

γε ∈ L∞(Q),
∂γε

∂t
∈ L∞(Q), (2.25)

θε ∈ L∞(Q),
∂θε

∂t
∈ L∞(Q), (2.26)

where σ� ∈ C0(Q) is given by

σ�(t, x) = σa(t) + g(t, x)− g(t, a) in Q. (2.27)

Moreover σε, vε,
∂vε

∂x
, γε,

∂γε

∂t
, θε and

∂θε

∂t
are bounded in L∞(Q) independently of ε.

The sketch of the proof is the following: We define a new temperature θ̂ =∫ θ

θ0(x)
cε(x, s)ds and obtain from (2.3) that ∂θ̂ε

∂t = σ∗ ∂vε

∂x . Since ψε(x, γε, θε) =

ψ̂ε(x, γε, θ̂ε), (2.4) gives ∂vε

∂x = [ σ∗

ψ̂ε(x,γε,θ̂ε)
]

1
nε , then we replace in (2.2) and (2.3) and ob-

tain a system of two ordinary differential equations of the form ∂
∂t (γ

ε θ̂ε)T =F ε(x, γε, θ̂ε),

for which existence and uniqueness are ensured.

2.2. Definition of the stability by homogenization (SbH). Since we have σε = σ� for

each ε > 0 (see (2.23)), we define σ0 by

σ0 = σ� in Q, (2.28)

and we have for every ε > 0

σε = σ0 in Q. (2.29)

On the other hand, in view of the a priori bounds on vε,
∂vε

∂x
, γε,

∂γε

∂t
, θε and

∂θε

∂t
obtained in Proposition 2.1, it is possible to extract a subsequence ε′ such that, as ε′

tends to zero,

vε
′
⇀ v0 in L∞(Q) weak-star, (2.30)

∂vε
′

∂x
⇀

∂v0

∂x
in L∞(Q) weak-star, (2.31)

γε′ ⇀ γ0 in L∞(Q) weak-star, (2.32)

∂γε′

∂t
⇀

∂γ0

∂t
in L∞(Q) weak-star, (2.33)

θε
′
⇀ θ0 in L∞(Q) weak-star, (2.34)

∂θε
′

∂t
⇀

∂θ0

∂t
in L∞(Q) weak-star, (2.35)

for some v0, γ0 and θ0 which belong to L∞(Q), such that
∂v0

∂x
,
∂γ0

∂t
and

∂θ0

∂t
belong to

L∞(Q).
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It is then easy to pass to the limit in the linear equations of problem (2.1)–(2.8),

namely (2.1), (2.2) and (2.5)–(2.8), obtaining

−∂σ0

∂x
= f in Q, (2.36)

∂γ0

∂t
=

∂v0

∂x
in Q, (2.37)

γ0(0, x) = γ0(x) in Ω, (2.38)

θ0(0, x) = θ0(x) in Ω, (2.39)

σ0(t, a) = σa(t) in (0, T ), (2.40)

v0(t, b) = vb(t) in (0, T ). (2.41)

In contrast, it is absolutely not clear whether one can pass to the limit in the nonlinear

equations (2.3) and (2.4), and obtain equations similar to (2.3) and (2.4), which would

read as

c0(x, θ0)
∂θ0

∂t
= σ0 ∂v0

∂x
in Q, (2.42)

σ0 = ψ0(x, γ0, θ0)

∣∣∣∣∂v
0

∂x

∣∣∣∣
n0(x)−1

∂v0

∂x
in Q, (2.43)

for some homogenized coefficients c0(x, θ) and ψ0(x, γ, θ) and some strain-rate sensitivity

n0(x).

This leads to the following definition (see Charalambakis and Murat (2009)).

Definition 2.2. Assume that hypotheses (2.9)–(2.22) hold true and let (σε, vε, γε, θε)

be the unique solution of problem (2.1)–(2.8). The problem (2.1)–(2.8) is said to be Stable

by Homogenization (SbH) if there exists a subsequence ε′, a heat coefficient c0(x, θ), a

viscosity coefficient ψ0(x, γ, θ) and a strain-rate sensitivity n0(x) satisfying (2.10)–(2.18)

(with constants M , α, β, α and β possibly different) such that for this subsequence,

convergences (2.30)–(2.35) hold true for the unique solution (σ0, v0, γ0, θ0) of problem

(2.36)–(2.43).

Then c0(x, θ), ψ0(x, γ, θ) and n0(x) are called the homogenized heat coefficient, the

homogenized viscosity coefficient and the homogenized strain-rate sensitivity of problem

(2.1)–(2.8), respectively.

Note that in Definition 2.2 the homogenized quantities c0(x, θ), ψ0(x, γ, θ) and n0(x)

can depend on the force f and on the initial and boundary data γ0, θ0, σa and vb. This

is a consequence of the nonelastic character of problem (2.1)–(2.8).

In general, when only the general hypotheses (2.9)–(2.22) are made, problem (2.1)–

(2.8) is not SbH (see Remark 3.7 below). In contrast, we will prove in Sections 3, 4 and

5 of the present paper that, for at least two special models, the system (2.1)–(2.8) is SbH

(see Proposition 3.1 and Proposition 4.1).
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3. Problem (2.1)–(2.8) is SbH when the viscosity coefficient ψε(x, γ, θ) does

not depend on the temperature θ (viscoplastic case).

Proposition 3.1. Assume that hypotheses (2.9)–(2.22) hold true and, moreover, that

nε(x) = n�(x), (3.1)

cε(x, θ) = c�(x), (3.2)

ψε(x, γ, θ) = νε(x, γ), (3.3)

for some given n�(x), c�(x) and νε(x, γ). Then problem (2.1)–(2.8) is SbH and one has

n0(x) = n�(x), (3.4)

c0(x, θ) = c�(x), (3.5)

ψ0(x, γ, θ) = ν0(x, γ), (3.6)

where the homogenized viscosity coefficient ν0(x, γ) depends only on the sequence

νε(x, γ), on the strain-rate sensitivity n�(x) and on the initial strain γ0(x). The ho-

mogenized viscosity coefficient ν0(x, γ) is described in Remark 3.2 below.

Proof of Proposition 3.1. Since here cε(x, θ) = c�(x) depends neither on ε nor on θ, it

is straightforward to pass to the limit in equation (2.3), which in view of (3.2) and (2.23)

reads as

c�(x)
∂θε

∂t
= σ�(t, x)

∂vε

∂x
in Q,

obtaining

c�(x)
∂θ0

∂t
= σ�(t, x)

∂v0

∂x
in Q.

The only problem is therefore to pass to the limit in the constitutive law (2.4), which

thanks to (3.1), (3.3) and (2.23) reads here as

σ�(t, x) = νε(x, γε)

∣∣∣∣∂v
ε

∂x

∣∣∣∣
n�(x)−1

∂vε

∂x
in Q,

or, equivalently, as

∂vε

∂x
=

|σ�(t, x)|
1

n�(x)−1σ�(t, x)

(νε(x, γε))
1

n�(x)

in Q. (3.7)

By (2.2), (2.5) and (3.7) we therefore have

∂γε

∂t
=

|σ�(t, x)|
1

n�(x)−1σ�(t, x)

(νε(x, γε))
1

n�(x)

in Q, (3.8)

γε(0, x) = γ0(x) in Ω. (3.9)

For the rest of the proof, we refer the reader to Section 5, where the common proof

of Propositions 3.1 and 4.1 is presented. In the next remarks of this section we give all

useful results of the homogenization of the viscoplastic case.

Remark 3.2. Definition of the homogenized viscosity coefficient ν0(x, γ).

Let us summarize in this Remark the way in which ν0(x, γ) is defined in the viscoplastic

case considered in Proposition 3.1.
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From the data cε(x, s), νε(x, s), n�(x) and γ0(x), we define the function Ẑε(x, s) by

Ẑε(x, s) =

∫ s

γ0(x)

(νε(x, s′))
1

n�(x) ds′ in Ω×R

(see (5.6)). Then we extract a subsequence ε′ such that the reciprocal functions

(Ẑε′)−1(x, r) satisfy, for every r ∈ R fixed,

(Ẑε′)−1(x, r) ⇀ (Ẑ0)−1(x, r) in L∞(Ω) weak-star,

for some function Ẑ0(x, s) (see (5.16) and (5.21)). From the same data, we also define (see

(5.13), (5.17) and (5.23)) a function ν0(x, s) such that (possibly for a further subsequence,

still denoted by ε′) one has, for every r ∈ R fixed,

1

(νε′(x, (Ẑε′)−1(x, r)))
1

n�(x)

⇀
1

(ν0(x, (Ẑ0)−1(x, r)))
1

n�(x)

in L∞(Ω) weak-star.

This function ν0(x, s) depends only (but does depend) on the sequence νε(x, s), on the

strain-rate sensitivity n�(x) and on the initial condition γ0(x) (memory effect). It does

not depend on the other data (f, θ0, σa and vb) of the problem. �
Remark 3.3. The case of a multiphase viscoplastic heterogeneous material made of

periodic homogeneous layers.

In this Remark we consider the special case of Proposition 3.1 where the heteroge-

neous viscoplastic material is made of periodic thin layers (of thickness of order ε) of

homogeneous phases.

In other words, we consider here the case where

n�(x) = n��, (3.10)

c�(x) = c��, (3.11)

νε(x, γ) =
∑
i

χi

(x
ε

)
νi(γ), (3.12)

where n�� and c�� are given in R+, where the index i runs between 1 and I (I ≥ 2

denotes the number of phases), where νi : R → R are viscosity coefficients which do not

depend on x (and therefore describe homogeneous phases) and which satisfy (2.14) and

(2.16), where

0 = a0 < a1 < ... < ai−1 < aI = 1 (3.13)

are given numbers and where χi is the characteristic function of the interval (ai−1, ai)

extended by periodicity to R, i.e.

χi(x) =

⎧⎨
⎩

1 if k + ai−1 < x < k + ai for some k ∈ Z,

0 otherwise.

(3.14)

We set

pi = ai − ai−1. (3.15)

The number pi describes the volume fraction of the phase i in the material and satisfies

pi > 0 ∀i,
∑
i

pi = 1.
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Observe that

χi

(x
ε

)
⇀ pi in L∞(Ω) weak-star. (3.16)

We finally assume that

γ0(x) = γ�� in Ω, (3.17)

where γ�� is given in R.

Hypotheses (2.9)–(2.22) are then satisfied, and the present setting is a particular case

of Proposition 3.1. In this setting, the function Ẑε defined by (5.6) is given by

Ẑε(x, s) =
∑
i

χi

(x
ε

)∫ s

γ��

(νi(s
′))

1
n�� ds′ =

∑
i

χi

(x
ε

)
Ẑi(s), (3.18)

where Ẑi : R → R is the function defined by

Ẑi(s) =

∫ s

γ��

(νi(s
′))

1
n�� ds′. (3.19)

Therefore the reciprocal function (Ẑε)−1(x, r) is defined by

(Ẑε)−1(x, r) =
∑
i

χi

(x
ε

)
(Ẑi)

−1(r), (3.20)

where (Ẑi)
−1 : R → R is the reciprocal function of the function Ẑi.

In view of (3.16) and (3.20), the function (Ẑ0)−1(x, r) = Y 0(x, r), which is defined by

(5.16) and (5.21), does not depend on x, and one has

(Ẑ0)−1(r) = Y 0(r) =
∑
i

pi (Ẑi)
−1(r). (3.21)

Similarly, the homogenized viscosity coefficient ν0(x, s), which is defined by (5.13),

(5.17) and (5.23), does not depend on x : indeed, since the function πε(x, r) defined by

(5.13) is given here by

πε(x, r) =
1

(νε(x, (Ẑε)−1(x, r)))
1

n�(x)

=
∑
i

χi

(x
ε

)

(νi((Ẑi)−1(r)))
1

n��
, (3.22)

we deduce from (5.17), (5.21), (5.23) and (3.22) that

1

(ν0((Ẑ0)−1(r)))
1

n��
=

∑
i

pi

(νi((Ẑi)−1(r)))
1

n��
. (3.23)

�
Remark 3.4. The case of power laws for a multiphase viscoplastic heterogeneous ma-

terial made of periodic layers.

Let us complete the previous Remark by an explicit example.

In the setting of Remark 3.3, consider the case where the heterogeneous viscoplastic

material is made of periodic layers of I phases with volume fractions pi, which are

characterized by viscosity coefficients νi(s) that satisfy hypotheses (2.14) and (2.16) and

which are given by power laws in some interval A ≤ s ≤ B of R+, i.e. which satisfy

νi(s) = Gi s
mi , ∀s with A ≤ s ≤ B, (3.24)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



TWO STABLE-BY-HOMOGENIZATION MODELS 405

where Gi are given in R+, where mi are given in R and where A and B are given with

0 < A < B < +∞. Note that viscosity coefficients defined by power laws on the whole

of R or even of R+ would satisfy neither hypothesis (2.14) nor hypothesis (2.16); this is

the reason why we assume that the viscosity coefficients νi(s) of the phases are given by

power laws only in the interval A ≤ s ≤ B. On the other hand, since we can have A = δ

and B = 1/δ with δ > 0 small, the viscosity coefficients νi(s) can be defined by power

laws on a very large part of R+.

Note that in (3.24) the power laws could be replaced by exponential or logarithmic

laws (see Lemaitre and Chaboche (2001), Wright (2002)). Let us also emphasize that the

powers mi are not assumed to be positive or negative. This allows us to consider both

softening and hardening processes, as well as problems with softening and hardening

processes competing against each other.

We will finally assume that the powers mi and the initial strain γ�� satisfy

n�� +mi 	= 0 ∀i, (3.25)

γ�� ≤ A. (3.26)

These two hypotheses are not essential.

In this example the function Ẑi(s) defined by (3.19) is given by

Ẑi(s) = gi s
n��+mi

n�� − κi, ∀s with A ≤ s ≤ B (3.27)

(in the case where hypothesis (3.25) does not hold true, the power has to be replaced by

a logarithm), where the constants gi and κi are given by

gi =
n��

n�� +mi
G

1
n��

i , (3.28)

κi = gi A
n��+mi

n�� −
∫ A

γ��

(νi(s
′))

1
n�� ds′. (3.29)

Note that

κi = gi A
n��+mi

n�� when A = γ��. (3.30)

The reciprocal function (Ẑi)
−1(r) therefore satisfies

(Ẑi)
−1(r) =

(
1

gi
(r + κi)

) n��

n��+mi

, ∀r with Ẑi(A) ≤ r ≤ Ẑi(B). (3.31)

Since the function Ẑi(s) is strictly increasing and since Ẑi(γ
��) = 0, hypothesis (3.26)

implies that 0 ≤ Ẑi(A) < Ẑi(B) < +∞. We will assume, moreover, that there exist C

and D such that

max
i

Ẑi(A) ≤ C < D ≤ min
i

Ẑi(B). (3.32)

Then on the interval C ≤ r ≤ D, the function (Ẑ0)−1(r)=Y 0(r) defined by (3.21) is

given by

(Ẑ0)−1(r) = Y 0(r) =
∑
i

pi

(
1

gi
(r + κi)

) n��

n��+mi

, ∀r with C ≤ r ≤ D, (3.33)
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and formula (3.23) which defines the homogenized viscosity coefficient ν0 reads as

1

(ν0(Y 0(r)))
1

n��
=

∑
i

pi

G
1

n��

i

(
1

gi
(r + κi)

) mi
n��+mi

, ∀r with C ≤ r ≤ D. (3.34)

Observe that power laws are not SbH. �
Remark 3.5. A numerical example.

We now present, in the context of Remark 3.4, some numerical results concerning

the homogenized viscosity coefficient of a bimetallic material (so I = 2 here) exhibiting

strain hardening (so mi > 0 here) and strain-rate sensitivity n�� > 0. In this case the

constitutive law (2.4) reads as

σ =

2∑
i=1

χi(
x

ε
)Gi γ

mi

∣∣∣∣∂v∂x
∣∣∣∣
n��−1

∂v

∂x
, ∀γ with A ≤ γ ≤ B, (3.35)

for some A and B given with 0 < A < B < +∞ (see (3.24)). We moreover assume that

the initial strain satisfies

γ�� = A. (3.36)

Formulas (3.34) and (3.33) which define the homogenized viscosity coefficient ν0, to-

gether with (3.28) and (3.30), give

1

(ν0(Y 0(r)))
1

n��
=

2∑
i=1

pi

G
1

n��+mi
i

(
n��+mi

n�� r +G
1

n��

i (γ��)
n��+mi

n��

) mi
n��+mi

,

Y 0(r) =
2∑

i=1

pi

G
1

n��+mi
i

(
n�� +mi

n��
r +G

1
n��

i (γ��)
n��+mi

n��

) n��

n��+mi

,

∀r with C ≤ r ≤ D.

(3.37)

We consider a layered material made of two equally distributed phases (so that p1 =

p2 =
1

2
) which are different steels, with (Lemaitre and Chaboche (2001))

G1 = 762 MPa, m1 = 0.167, n1 = 0.07, (3.38)

G2 = 962 MPa, m2 = 0.187, n2 = 0.07, (3.39)

for different given values of the initial strain γ��.

Figures 1 and 2 present numerical results due to George Chatzigeorgiou, whose col-

laboration is gratefully acknowledged. Both figures present the values of the viscosity

coefficients ν1(r) and ν2(r) for four values of the initial strain γ�� and the values of

the homogenized viscosity coefficient ν0(r) for the same values of γ��. The two figures

only differ by the range considered for r. Contrarily to Figure 2 (onset of deforma-

tion), Figure 1 shows that, for large values of r, the homogenized viscosity coefficient

does not depend in practice on the initial value of strain. Finally, it is worth noticing

that the homogenized viscosity coefficient is more “attracted” by the hardening of the

weaker material than by the hardening of the stronger one, in a ratio 2/1. Indeed, due to
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Fig. 1. The hardenings ν1 and ν2 of the phases and the homogenized
hardening ν0 for different values of the initial strain γ�� (the curves
seem to coincide for the four values of γ��)
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Fig. 2. The hardenings ν1 and ν2 of the phases and the homogenized
hardening ν0 for different values of the initial strain γ�� at the onset
of the deformation (the curves differ for the four values of γ��)

the one-dimensional setting, the contribution of the strongest material is less important,

because of the fact that one cannot “surround” the weakest material by the strongest

one, in contrast with what can be done in a two- or three-dimensional setting (see also

Charalambakis and Murat (2009)). �
Remark 3.6. A comment on the hypothesis cε(x, θ) = c�(x).
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In Proposition 3.1, the heat coefficient cε(x, θ) is assumed to be independent of ε and

of x (see hypothesis (3.2)). One can wonder whether this hypothesis is necessary, i.e.

whether one could pass to the limit in equation (2.3) when the heat coefficient is of the

general form cε(x, θ).

Thanks to (2.23), equation (2.3) reads as

cε(x, θε)
∂θε

∂t
= σ� ∂vε

∂x
in Q. (3.40)

Defining the function Cε : Ω×R → R by

Cε(x, s) =

∫ s

θ0(x)

cε(x, s′) ds′ in Ω×R,

and defining the transformed temperature τ ε = τ ε(t, x) by

τ ε(t, x) = Cε(x, θε(t, x)) in Q, (3.41)

equation (3.40) reads as
∂τ ε

∂t
= σ� ∂vε

∂x
in Q, (3.42)

while the initial condition (2.6) on θε yields

τ ε(0, x) = 0 in Ω. (3.43)

Combining (3.42) and (3.43) with the convergence (2.31) implies that one can pass to the

limit in (3.42) and (3.43) in L∞(Q) weak-star, which defines in a unique way the limit

τ0 of the transformed temperature τ ε
′
. But since τ ε

′
and θε

′
converge only weakly, one

cannot pass to the limit in the relation (3.41) and deduce a relation between θ0 defined

by (2.34) and τ0. This is impossible even in the case where cε(x, θ) = cε(x) does not

depend on θ. This is the reason which forces us to assume hypothesis (3.2), namely that

cε(x, θ) is independent of θ and of ε. �
Remark 3.7. Materials with oscillating strain-rate sensitivities are not SbH in general.

In this Remark, we prove by means of a counterexample that materials exhibiting

oscillating strain-rate sensitivities are not SbH in general.

To build this counterexample, we consider the case where hypotheses (2.9)–(2.22) hold

true and where

cε(x, θ) = c�(x), (3.44)

ψε(x, γ, θ) = ψ�(x), (3.45)

σ�(t, x) = σ��(x), (3.46)

for some given c�(x), ψ�(x) and σ��(x). We moreover assume, as in Remark 3.3, that

the material is made of periodic thin layers of homogeneous phases, namely that

nε(x) =
∑
i

χi

(x
ε

)
ni, (3.47)

for some given ni, where the functions χi are defined by (3.14). Then equation (2.4) is

equivalent to

∂vε

∂x
=

∑
i

χi

(x
ε

) |σ��(x)|
1

ni−1 σ��(x)

(ψ�(x))
1
ni

in Q, (3.48)
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and it is easy to pass to the limit in (2.2), (2.3), (2.5), (2.6) and (3.48), obtaining

∂γ0

∂t
=

∂v0

∂x
in Q, (3.49)

c�(x)
∂θ0

∂t
= σ��(x)

∂v0

∂x
in Q, (3.50)

γ0(0, x) = γ0(x) in Ω, (3.51)

θ0(0, x) = θ0(x) in Ω, (3.52)

∂v0

∂x
=

∑
i

pi
|σ��(x)|

1
ni−1 σ��(x)

(ψ�(x))
1
ni

in Q. (3.53)

Since σ�� does not depend on t, such is also the case of
∂v0

∂x
in view of (3.53), and

(3.49)–(3.52) imply that

γ0(t, x) = t
∂v0

∂x
(x) + γ0(x) in Q, (3.54)

c�(x) θ0(t, x) = t σ��(x)
∂v0

∂x
(x) + θ0(x) in Q (3.55)

(this is in order to obtain these explicit formulas on γ0(t, x) and θ0(t, x) that we made

on σ� for hypothesis (3.46)).

We now claim that there does not exist any viscosity coefficient ψ0(x, γ, θ) or strain-

rate sensitivity n0(x) such that

σ0 = ψ0(x, γ0, θ0)

∣∣∣∣∂v
0

∂x

∣∣∣∣
n0(x)−1

∂v0

∂x
in Q. (3.56)

Indeed since σ0 = σ�� and
∂v0

∂x
do not depend on t, while γ0(t, x) and θ0(t, x) are affine

in t by (3.54) and (3.55), formula (3.56) would imply that ψ0(x, γ, θ) = ψ̂(x) for some

function ψ̂(x), and (3.56) would be equivalent to

∂v0

∂x
(x) =

|σ��(x)|
1

n0(x)
−1

σ��(x)

(ψ̂(x))
1

n0(x)

in Q, (3.57)

a contradiction with (3.53) since σ�� is arbitrary.

This counterexample proves that materials exhibiting oscillating strain-rate sensitivi-

ties are not SbH in general. �

4. Problem (2.1)–(2.8) is SbH when the viscosity coefficient ψε(x, γ, θ) does

not depend on the strain γ (thermoviscous case).

Proposition 4.1. Assume that hypotheses (2.9)–(2.22) hold true and, moreover, that

nε(x) = n�(x), (4.1)

ψε(x, γ, θ) = με(x, θ), (4.2)
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for some given n�(x) and με(x, θ). Then problem (2.1)–(2.8) is SbH and one has

n0(x) = n�(x), (4.3)

ψ0(x, γ, θ) = μ0(x, θ), (4.4)

where the homogenized heat coefficient c0(x, θ) and the homogenized viscosity coefficient

μ0(x, θ) depend only on the sequences cε(x, θ) and με(x, θ), on the strain-rate sensitivity

n�(x) and on the initial temperature θ0(x). The homogenized coefficients c0(x, θ) and

μ0(x, θ) are described in Remark 4.2 below.

Proof of Proposition 4.1. Here the problem is to pass to the limit in (2.3) and (2.4).

In view of (2.23), equation (2.4) is here equivalent to

∂vε

∂x
=

|σ�(t, x)|
1

n�(x)−1σ�(t, x)

(με(x, θε))
1

n�(x)

in Q, (4.5)

and therefore (2.3) reads as

cε(x, θε)
∂θε

∂t
=

|σ�(t, x)|
1

n�(x)+1

(με(x, θε))
1

n�(x)

in Q. (4.6)

For the rest of the proof, we refer the reader to Section 5, where the common proof of

Propositions 3.1 and 4.1 is presented. In the following remarks we present useful results

from the homogenization of thermoviscous materials.

Remark 4.2. Definition of the homogenized heat and viscosity coefficients c0(x, θ) and

μ0(x, θ).

Let us summarize in this Remark the way in which the homogenized coefficients

c0(x, θ) and μ0(x, θ) are defined in the thermoviscous case considered in Proposition

4.1.

From the data cε(x, s), με(x, s), n�(x) and θ0(x), we define the function Ẑε(x, s) by

Ẑε(x, s) =

∫ s

θ0(x)

cε(x, s′) (με(x, s′))
1

n�(x) ds′ in Ω×R

(see (5.6)). Then we extract a subsequence ε′ such that the reciprocal functions

(Ẑε′)−1(x, r) satisfy for every r ∈ R fixed

(Ẑε′)−1(x, r) ⇀ (Ẑ0)−1(x, r) in L∞(Ω) weak-star,

for some function Ẑ0(x, s) (see (5.16) and (5.21)). From the same data, we also define (see

(5.13), (5.17) and (5.23)) a function μ0(x, s) such that (possibly for a further subsequence,

still denoted by ε′) one has for every r ∈ R fixed

1

(με′(x, (Ẑε′)−1(x, r)))
1

n�(x)

⇀
1

(μ0(x, (Ẑ0)−1(x, r)))
1

n�(x)

in L∞(Ω) weak-star.

Finally from the functions Ẑ0(x, s) and μ0(x, s), we define a function c0(x, s) by (5.28),

i.e. by

c0(x, s) =

∂Ẑ0

∂s
(x, s)

(μ0(x, s))
1

n�(x)

in Ω×R
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(an equivalent formula for c0(x, s) is (5.31)). The functions μ0(x, s) and c0(x, s) depend

only (but do depend) on the sequences με(x, s) and cε(x, s), on the strain-rate sensitivity

n�(x) and on the initial condition θ0(x). They do not depend on the other data (f, γ0, σa

and vb) of the problem. �
Remark 4.3. The case of a multiphase thermoviscous heterogeneous material made

of periodic homogeneous layers.

We consider here the case where (part of the notation in this Remark is the same as

the notation in Remark 3.3 above)

n�(x) = n��, (4.7)

cε(x, θ) =
∑
i

χi

(x
ε

)
ci(θ), (4.8)

με(x, θ) =
∑
i

χi

(x
ε

)
μi(θ), (4.9)

where n�� is given in R+, where the index i runs between 1 and I (I ≥ 2 denotes

the number of phases), where ci : R → R and μi : R → R are heat and viscosity

coefficients that do not depend on x (and therefore describe homogeneous phases) and

which satisfy respectively (2.11), (2.12) and (2.15), (2.16), where χi is the characteristic

function defined in Remark 3.3. We assume that

θ0(x) = θ�� in Ω, (4.10)

where θ�� is given in R.

Following parallel lines with Remark 3.3, we find

Ẑi(s) =

∫ s

θ��

ci(s
′) (μi(s

′))
1

n�� ds′, (4.11)

(Ẑε)−1(x, r) =
∑
i

χi

(x
ε

)
(Ẑi)

−1(r), (4.12)

1

(μ0(Ŷ 0(r)))
1

n��
=

∑
i

pi

(μi((Ẑi)−1(r)))
1

n��
(4.13)

and

c0(Ŷ 0(r)) =

∑
i

pi

(μi((Ẑi)−1(r)))
1

n��

∑
i

pi
∂(Ẑi)

−1

∂r
(r)

. (4.14)

�
Remark 4.4. The case of power laws for a multiphase thermoviscous heterogeneous

material made of periodic layers.

Let us complete the previous Remark by an explicit example.

In the setting of Remark 4.3, consider the case where the thermoviscous material is

made of periodic layers of I phases with volume fractions pi, which are characterized by

heat coefficients ci(s) and by viscosity coefficients μi(s) which satisfy hypotheses (2.11),
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(2.12) and (2.15), (2.16) respectively, and which are given by power laws in some interval

A ≤ s ≤ B of R+, i.e. which satisfy

ci(s) = Ki s
ξi , ∀s with A ≤ s ≤ B, (4.15)

μi(s) = Mi s
λi , ∀s with A ≤ s ≤ B, (4.16)

where Ki and Mi are given in R+, where ξi and λi are given in R and where A and B

are given with 0 < A < B < +∞. We will finally assume that the powers ξi, λi and the

initial temperature θ�� satisfy

(1 + ξi)n
�� + λi 	= 0 ∀i, (4.17)

θ�� ≤ A. (4.18)

These two hypotheses are not essential.

In this example the function Ẑi(s) defined by (4.11) is given by

Ẑi(s) = ĝi s
(1+ξi) n��+λi

n�� − K̂i, ∀s with A ≤ s ≤ B (4.19)

(in the case where hypothesis (4.17) does not hold true, the power has to be replaced by

a logarithm), where the constants ĝi and K̂i are given by

ĝi =
n��

(1 + ξi)n�� + λi
Ki M

1
n��

i , (4.20)

K̂i = ĝi A
(1+ξi) n��+λi

n�� −
∫ A

θ��

ci(s
′) (μi(s

′))
1

n�� ds′. (4.21)

We will assume, moreover, that there exist C and D such that

max
i

Ẑi(A) ≤ C < D ≤ min
i

Ẑi(B). (4.22)

Then, following parallel lines with the viscoplastic case, we find that the homogenized

viscosity coefficient μ0 reads as

1

(μ0(Ŷ 0(r)))
1

n��
=

∑
i

pi

M
1

n��

i

(
1

ĝi
(r + K̂i)

) λi
(1+ξi) n��+λi

,

∀r with C ≤ r ≤ D,

(4.23)

and the homogenized heat coefficient c0 reads as

c0(Ŷ 0(r)) =

∑
i

pi

M
1

n��

i

(
1

ĝi
(r + K̂i)

) λi
(1+ξi)n��+λi

∑
i

pi
n��

(1 + ξi)n�� + λi

1

ĝi

(
1

ĝi
(r + K̂i)

)− ξi n��+λi
(1+ξi) n��+λi

,

∀r with C ≤ r ≤ D.

(4.24)

Observe that power laws are not SbH. �
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5. Proof of propositions. We can write both (3.8) and (4.6) in the form

dε(x, uε)
∂uε

∂t
=

|σ|ξσδ

ψε(x, uε)
, (5.1)

where

dε =

⎧⎨
⎩

1 if uε = γε,

cε(x, θε) if uε = θε,

(5.2)

ξ =

⎧⎨
⎩

1
n∗ − 1 if uε = γε,

1
n∗ + 1 if uε = θε,

(5.3)

δ =

⎧⎨
⎩

1 if uε = γε,

0 if uε = θε,

(5.4)

ψε =

⎧⎨
⎩

νε if uε = γε,

με if uε = θε.

(5.5)

Let us define the function Ẑε : Ω×R → R by

Ẑε(x, s) =

∫ s

u0(x)

dε(x, s′) (ψε(x, s′))
1

n�(x) ds′ in Ω×R. (5.6)

We have in particular

∂Ẑε

∂s
(x, s) = dε(x, s′) (ψε(x, s))

1
n�(x) in Ω×R. (5.7)

For a.e. x ∈ Ω fixed, the function s ∈ R → Ẑε(x, s) ∈ R is one-to-one, strictly increasing

and Lipschitz continuous with

0 < αζ+1/β ≤ ∂Ẑε

∂s
(x, s) ≤ βζ+1/α < +∞ in Ω×R,

where α, β, α and β appear in (2.12), (2.16) and (2.18) and ζ = 0 if uε = γε, ζ = 1

if uε = θε. Therefore for a.e. x ∈ Ω fixed, this function has a reciprocal function

r ∈ R → (Ẑε)−1(x, r) ∈ R which is also one-to-one, strictly increasing and Lipschitz

continuous with

0 <
1

βζ+1/α
≤ ∂(Ẑε)−1

∂r
(x, r) ≤ 1

αζ+1/β
< +∞ in Ω×R. (5.8)

Then, since

∂Ẑε

∂s
(x, uε)

∂uε

∂t
= |σ�|ξσδ in Q,

and since

Ẑε(x, u0(x)) = 0 in Ω,

we have

Ẑε(x, uε(t, x)) = K̂�(t, x) in Q, (5.9)
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where K̂� = K̂�(t, x) is defined by

∂K̂�

∂t
= |σ�|ξσδ in Q, (5.10)

K̂�(0, x) = 0 in Ω. (5.11)

Equation (5.9) is equivalent to

uε(t, x) = (Ẑε)−1(x, K̂�(t, x)) in Q. (5.12)

We finally define the function π̂ε : Ω×R → R by

π̂ε(x, r) =
1

(ψε(x, (Ẑε)−1(x, r)))
1

n�(x)

in Ω×R. (5.13)

Observe that in view of (2.16) and (2.18), one has

1

β1/α
≤ π̂ε(x, r) ≤ 1

α1/β
in Ω×R. (5.14)

In view of (2.15), (2.16), (2.18) and (5.8), we deduce from (5.13) that∣∣∣∣∂π̂
ε

∂r
(x, r)

∣∣∣∣

=
1

n�(x)

1

(ψε(x, (Ẑε)−1(x, r)))
1

n�(x)+1

∣∣∣∣∂ψ
ε

∂u
(x, (Ẑε)−1(x, r))

∣∣∣∣
∣∣∣∣∣
∂(Ẑε)−1

∂r
(x, r)

∣∣∣∣∣

≤ 1

α

1

α1+1/β
M

1

αδ+1/β
in Ω×R.

(5.15)

Since the functions r ∈ R → (Ẑε)−1(x, r) ∈ R and r ∈ R → π̂ε(x, r) ∈ R are

(uniformly in x and ε) Lipschitz continuous (see (5.8) and (5.15)), and since the functions

x ∈ Ω → (Ẑε)−1(x, r) ∈ R and x ∈ Ω → π̂ε(x, r) ∈ R are measurable and bounded

(uniformly in ε) for every r ∈ R fixed, a well-known lemma in homogenization theory

(see, e.g., Lemma 3.8 in Charalambakis and Murat (2006b)) asserts that one can extract

a subsequence ε′ and that there exist two functions Ŷ 0(x, r): Ω ×R → R and π̂0(x, r):

Ω × R → R (which are also Lipschitz continuous in r uniformly in x, measurable in x

and bounded for every r ∈ R fixed), such that for every r ∈ R fixed

(Ẑε′)−1(x, r) ⇀ Ŷ 0(x, r) in L∞(Ω) weak-star, (5.16)

π̂ε′(x, r) ⇀ π̂0(x, r) in L∞(Ω) weak-star. (5.17)

Moreover, the same lemma asserts that for this subsequence ε′, one has

(Ẑε′)−1(x, K̂�(t, x)) ⇀ Ŷ 0(x, K̂�(t, x)) in L∞(Q) weak-star, (5.18)

π̂ε′(x, K̂�(t, x)) ⇀ π̂0(x, K̂�(t, x)) in L∞(Q) weak-star. (5.19)

Since Ẑε(x, u0(x)) = 0, we have

(Ẑε)−1(x, 0) = u0(x) in Ω,

and therefore

Ŷ 0(x, 0) = u0(x) in Ω.
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Since for every r, r′ ∈ R with r ≥ r′ we have (see (5.8))

1

βδ+1/α
(r − r′) ≤ (Ẑε)−1(x, r)− (Ẑε)−1(x, r′) ≤ 1

αδ+1/β
(r − r′) in Ω,

we also have, for every r, r′ ∈ R with r ≥ r′,

1

βδ+1/α
(r − r′) ≤ Ŷ 0(x, r)− Ŷ 0(x, r′) ≤ 1

αδ+1/β
(r − r′) in Ω, (5.20)

which proves that for a.e. x ∈ Ω fixed, the function r ∈ R → Ŷ 0(x, r) ∈ R is one-to-one,

strongly increasing and Lipschitz continuous. Therefore this function has a reciprocal

function s ∈ R → (Ŷ 0)−1(x, s) ∈ R with the same properties. We define the function

Ẑ0 : Ω×R → R by

Ẑ0(x, s) = (Ŷ 0)−1(x, s) in Ω×R. (5.21)

We also define the function ψ0 : Ω×R → R by

ψ0(x, s) =
1

(π̂0(x, Ẑ0(x, s)))n�(x)
in Ω×R, (5.22)

which is equivalent to (compare with (5.13))

π̂0(x, r) =
1

(ψ0(x, (Ẑ0)−1(x, r)))
1

n�(x)

in Ω×R. (5.23)

Since the function π̂0(x, r) is bounded from below and from above by strictly positive

constants (this is easily deduced from (5.14) and (5.17)), the function ψ0(x, s) satisfies

(2.16) (with constants α and β possibly different). On the other hand, since the function

Ẑ0(x, s) is Lipschitz continuous in s uniformly in x (see (5.20) and (5.21)) and since the

function π̂0(x, r) is Lipschitz continuous in r uniformly in x (this can easily be deduced

from (5.15) and (5.17)), the function ψ0(x, s) defined by (5.22) satisfies (2.15) (with a

constant M possibly different).

Since (5.12) asserts that uε(t, x) = (Ẑε)−1(x, K̂�(t, x)), we deduce from (5.18) and

(5.21) that

uε′ ⇀ u0 in L∞(Q) weak-star, (5.24)

where

u0(t, x) = (Ẑ0)−1(x, K̂�(t, x)). (5.25)

On the other hand, we deduce from (5.12), (5.13), (5.19), (5.23) and (5.25) that

1

(ψε′(x, uε′(t, x)))
1

n�(x)

⇀
1

(ψ0(x, u0(t, x)))
1

n�(x)

in L∞(Q) weak-star. (5.26)

Turning back to the constitutive equation, convergence (5.26) implies that

∂vε
′

∂x
⇀

∂v0

∂x
in L∞(Q) weak-star,

where

∂v0

∂x
=

|σ�(t, x)|
1

n�(x)−1σ�(t, x)

(ψ0(x, u0(t, x)))
1

n�(x)

in Q,
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which, thanks to (2.28), is equivalent to

σ0 = ψ0(x, u0)

∣∣∣∣∂v
0

∂x

∣∣∣∣
n�(x)−1

∂v0

∂x
in Q. (5.27)

We passed to the limit in (2.4) for both cases. Let us now pass to the limit in (2.3)

for the case uε = θε.

From the function Ẑ0 defined by (5.16) and (5.21), and from the function ψ0 defined

by (5.22), we define the function d0 : Ω×R → R by

d0(x, s) =

∂Ẑ0

∂s
(x, s)

(ψ0(x, s))
1

n�(x)

in Ω×R, (5.28)

or equivalently by

∂Ẑ0

∂s
(x, s) = d0(x, s) (ψ0(x, s))

1
n�(x) in Ω×R (5.29)

(compare with (5.7)). Since the functions
∂Ẑ0

∂s
(x, s) and ψ0(x, s) are bounded from below

and from above by strictly positive constants, the function d0(x, s) is correctly defined

by (5.28) and satisfies (2.12) (with constants α and β possibly different). Moreover, the

function d0(x, s) defined by (5.28) satisfies (2.11) (with a constant M possibly different);

indeed we have proved above that the function ψ0(x, s) is Lipschitz continuous in s, and

it can be proved that the function
∂Ẑ0

∂s
(x, s) is Lipschitz continuous in s uniformly in x.

This is due to the fact that
∂Ẑε

∂s
(x, s) is Lipschitz continuous in s uniformly in x and ε (see

(5.7), (2.11), (2.15) and (2.18)), and can be proved by a proof similar to the proof used to

prove the similar property for the functionM0(x, s) defined in Charalambakis and Murat

(2006b) (see the proof of (3.45) in that paper).

On the other hand, (5.10) and (5.25) imply that

∂Ẑ0(x, u0(t, x))

∂t
= |σ�|ξσδ in Q. (5.30)

Combining (5.29) and (5.30) yields

d0(x, u0) (ψ0(x, u0))
1

n�(x)
∂u0

∂t
= |σ�|ξσδ in Q,

which using (2.28) and (5.27) is equivalent to

d0(x, u0)
∂u0

∂t
= σ0 ∂v0

∂x
in Q.

We passed to the limit in (2.3) for the case uε = θε.

Let us complete this proof by giving another formula, equivalent to (5.28), for the

definition of the homogenized heat coefficient d0. Writing (5.28) at the point s = Ŷ 0(x, r)

and using the chain rule applied to the identity Ẑ0(x, (Ŷ 0(x, r))) = r yields

d0(x, Ŷ 0(x, r)) =
1

∂Ŷ 0

∂r
(x, r)

1

(ψ0(x, Ŷ 0(x, r)))
1

n�(x)

in Ω×R. (5.31)
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In conclusion, we passed to the limit in (2.3) and (2.4), and therefore proved that in the

setting of Propositions 3.1 and 4.1, the problem (2.1)–(2.8) is SbH, with n0(x) = n�(x),

d0(x, u) defined by (5.28) and ψ0(x, u) defined by (5.22). Note that the homogenized co-

efficients d0(x, u) and ψ0(x, u) satisfy (2.10)–(2.16) (with constants M , α and β possibly

different). �
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