
doi:10.1093/logcom/exv002

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

medium, provided the original work is properly cited.

3 © The Author, 2015. Published by Oxford University Press.Vol .28 No . ,

Published online February 16, 2015

Two-stage agent program verification

LOUISE A. DENNIS, MICHAEL FISHER and MATT WEBSTER, Department of

Computer Science, University of Liverpool, Liverpool, Merseyside, UK.

E-mail: L.A.Dennis@liverpool.ac.uk

Abstract

We describe an extension to the AJPF agent program model-checker so that it may be used to generate models for input into

other, non-agent, model-checkers. We motivate this adaptation, arguing that it potentially improves the efficiency of the model-

checking process and provides access to richer property specification languages. We illustrate the approach by describing the

export of AJPF program models to both the SPIN and Prism model-checkers. We also investigate, experimentally, the effect

the process has on the overall efficiency of model-checking.

Keywords: Model checking, BDI agent programming, AJPF, SPIN, Prism.

1 Introduction

Agent Java Pathfinder (AJPF) [7] is a model-checker for programs written in a range of Belief–

Desire–Intention (BDI) agent programming languages. It is built on top of Java Pathfinder (JPF), an

explicit state program model-checker for Java programs [29], and exhaustively checks the execution

of Java-based interpreters for BDI languages. AJPF has a property specification language based upon

Linear Temporal Logic (LTL) extended with descriptions of beliefs, intentions, etc.

AJPF (and JPF) are ‘program’ model-checkers, meaning that they work directly on the program

code, rather than on a mathematical model of the program’s execution (as is typical for standard

model-checking). Using a program model-checker gives the advantage that results derived apply

directly to the program under consideration without the need for an intermediate stage. However,

such program model-checkers utilize symbolic execution to internally build a model to be analysed

and, consequently, AJPF is slow when compared to traditional model-checkers. It is typically the

internal generation of the program model (created by executing all possible paths through the Java

program) that causes a significant bottleneck.

Hunter et al. [16] suggested alleviating this by using JPF to generate models of agent programs

that could then be checked in other model-checkers. The goal of this article is to expand upon this

idea showing how AJPF can be adapted to output models in the input languages of both SPIN and

Prism tools. Model generation remains slow, and it is unclear that efficiency improves on individual

runs, though there will be gains if one model is reused several times to check different properties.

More importantly, such translations give access to a wider range of property specification languages.

Consequently, AJPF can be used as an automated link between programs written in BDI languages

and a range of model-checkers appropriate for verifying properties of those programs.

We are particularly interested in applying program model-checking to the verification of hybrid

systems in which a BDI agent program controls a physical system consisting of sensors, actuators

and control systems [9]. Such systems necessarily involve probabilistic information about sensor and

actuator reliability and the end results of verification are, therefore, theorems involving probabilities.

For instance, we have been considering the verification of a robot-to-human handover task in which

a robot has to pass a table leg to a person (see, e.g. [11]). When the person gets the table leg they

will fix it to the table top. The end goal is for the robot and human to work together to manufacture a

(http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

500 Two-stage agent program verification

complete table. For the robot to let go of the table leg, it must be sure the person is ready to take hold

of the leg, otherwise the leg could be dropped (it determines this using several factors such as the the

person’s gaze, and the location of their hand). Given probabilistic information about the behaviour

of people and sensors involved in the task we would like to be able to formally verify (or formally

discover) properties such as the following:

• What is the probability that eventually the robot will drop some object such as the table leg?

• What is the probability that eventually the leg will be fixed to the table?

The key advantages of the approach outlined in this article are potential improvements in the efficiency

and scope of model-checking, and access to a richer set of logics for specifying program properties.

2 Background

2.1 AJPF

JPF is an explicit state model-checker for Java programs [29]. It is a program model-checker, meaning

that it takes as input an executable Java program rather than a model of a Java program and then

exhaustively explores all possible execution paths through this program to ensure that some property

holds. For example, using JPF, it is possible to explore all possible thread scheduling options for a

multi-threaded program to ensure that deadlock between threads never occurs.

AJPF [7] is, in turn, a program model-checker built on top of JPF. AJPF is specially designed

for model-checking programs for agents that use the BDI paradigm (see [31]) and whose execution

can be described in terms of rational, goal-directed behaviour. AJPF extends JPF with a LTL model-

checking algorithm based on [4, 10].1 Crucially, the property specification language contains shallow

modalities for agent concepts such as belief (B), goal (G), intention (I), etc., as well as the standard

LTL modalities ✸ (eventually) and ✷ (always).2 The BDI agent concepts [26] are mapped to specific

data structures in the Java program, allowing properties such as the following to be verified:

✷ ✸Ba reached(destination)

This property states that it is always the case that, eventually, agent a believes it has reached its

destination. AJPF is intended for use with BDI agent programming languages that have an explicit

operational semantics. This operational semantics is implemented in the Agent Infrastructure Layer

(AIL), a set of Java classes supporting AJPF and allowing the rapid construction of interpreters

for BDI agent programming languages [7]. The AIL also provides support for the Belief, Goal and

Intention modalities used by the formal property specification language. This language is discussed

more fully in [7] and summarized in Appendix A. Note, crucially, that temporal operators cannot be

nested within the belief, goal and intention operators.

There are two key (and related) advantages to using a program model-checker such asAJPF instead

of one with a specialized modelling language for input. First, this approach avoids the need for the

programmer (or designer) to create a separate model of the implementation for verification purposes.

Secondly, in cases where certification of the program is required (e.g. [30]), this approach increases

1
JPF does not currently support LTL model-checking, focusing instead on searching for deadlocks and exception freedom.

Work is currently in progress to re-integrate this support.
2The next operator ‘©’ was omitted partly because it is not always simple to determine the correct semantics for ‘next

step’ in a BDI program execution and partly because its omission simplifies the model-checking algorithm.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 501

the value of the evidence submitted to the certification authority since it provides direct information

about the system that will be deployed, rather than some idealized model.

These advantages come at a cost. The main disadvantage of program model-checking, particularly

in AJPF, is that it is very slow in comparison with existing specialized model-checkers such as

SPIN [15]. This has been (and continues to be) mitigated through updates to AJPF which have

decreased the time taken for model-checking. However, the fact remains that programs tend to be

more complex than models of programs and this causes program model-checking to be slower.3

Typically, to verify a program using AJPF requires minutes, hours or even days in extreme cases.

AIL provides a framework for implementing a wide range of well-known agent programming

languages (e.g. GOAL [14]). Typically, agent programming languages are separate from the

interpreters generally associated with those languages. Since different interpreters will use the same

operational semantics, choosing an AIL-based interpreter instead of the standard interpreter should

be similar to choosing between different C compilers. An AIL interpreter can be preferred, therefore,

where certification is an issue. In practice, the standard interpreters are often more efficient, user

friendly and up to date.

One issue to consider is whether it is preferable to use just JPF to verify agent programs given

that most standard interpreters are written in Java. This approach is certainly feasible, although the

interpreters would likely need significant modification to work with JPF. For example, adaptations

would be needed to access the AJPF Property Specification Language (or create something similar).

Also, to minimize the state space explored by JPF careful use of Java data structures is necessary

(e.g. all sets must be stored in a canonical form for state matching).

2.2 SPIN

SPIN [15] is a popular model-checking tool originally developed by Bell Laboratories in the 1980s.

It has been in continuous development for over 30 years and is widely used in both industry and

academia (e.g. [13, 18, 19]). SPIN uses an input language called Promela. Typically a model of a

program and the property (as a ‘never claim’—an automaton describing executions that violate the

property) are both provided in Promela, but SPIN also provides tools to convert formulae written

in LTL into never claims for use with the model-checker. SPIN works by automatically generating

programs written in C, which carry out the exploration of the model relative to an LTL property.

SPIN’s use of compiled C code makes it very quick in terms of execution time, and this is further

enhanced through other techniques such as partial order reduction. In this article, we use SPIN version

6.2.3 (24 October 2012).

2.3 Prism

Prism [20] is a probabilistic symbolic model-checker in continuous development since 1999,

primarily at the Universities of Birmingham and Oxford. Prism provides broadly similar functionality

to SPIN but also allows for the model-checking of probabilistic models, i.e. models whose behaviour

can vary depending on probabilities represented in the model. Developers can use Prism to create a

probabilistic model (written in the Prism language) which can then be model-checked using Prism’s

own probabilistic property specification language, which subsumes several well-known probabilistic

3This is to be expected, since AJPF combines explicit-state representation with the use of symbolic execution to explore

the possible behaviours.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

502 Two-stage agent program verification

logics including PCTL, probabilistic LTL, CTL and PCTL*. Prism has been used to formally verify

a variety of systems in which reliability and uncertainty play a role, including communication

protocols, cryptographic protocols and biological systems [25]. In this article, we use Prism version

4.1.beta2.

2.4 Related work

As mentioned in the introduction, Hunter et al. [16] first suggested using JPF to generate models of

programs that could then be used with alternative model-checkers. Their work targets the Brahms [27]

agent programming language. They implemented a simulator for Brahms in Java and used JPF to

produce a Promela model of a Brahms program. They used this system to investigate examples in

air traffic control and health care and demonstrated that it is feasible to use JPF as a model building

tool. Their work did not, however, directly address the key BDI concepts of beliefs, intentions, etc.,

and it was a customized tool specifically aimed at the verification of Brahms programs. Their tool

also contains support for the export of models to Prism and NuSMV. In theory, the framework can be

applied to any multi-agent system, not just those implemented in Brahms, though no explicit support

exists for adapting systems for such use in a generic way.

The work here takes the ideas from Hunter et al. [16] as a starting point and aims to use them

within AJPF’s more generic framework to provide a general open source tool in which BDI programs

can be verified in a range of model-checkers and which allows BDI concepts such as beliefs and

goals to be easily and explicitly referred to as part of the specification of properties in a range of

input languages.

This work is an extension of a previous workshop paper by the same authors [6]. In this article,

we provide more details of the implementation. In particular, this article describes further work with

the Prism model checker which adds a new case study and discusses the time and memory resources

used during verification.

3 Generating program models using AJPF

JPF is implemented via a specialized Java virtual machine which stores, among other things,

backtracking points. This allows the program model-checking algorithm to explore the entire

execution space of a Java program. It is highly customizable, providing numerous hooks for Java

Listeners that monitor and control the progress of model-checking. In what follows, we will refer to

the specialized Java virtual machine used by JPF as the JPFJVM. JPF is implemented in Java itself,

therefore the JPFJVM is a program that executes in some underlying native Java virtual machine.

We refer to this native virtual machine as NatJVM. Listeners execute in the NatJVM.

AJPF’s checking process is constructed using a JPF Listener. As JPF executes, it labels each state

explored by the JPFJVM with a unique number. The AJPF Listener tracks these numbers as well

as the transitions between them and uses this information to construct a Kripke structure in the

NatJVM. The LTL model-checking algorithm is then executed on this Kripke structure. This is partly

for reasons of efficiency (the NatJVM naturally executes much faster than the JPFJVM) and also

to account for the need for LTL to explore states in the model several times if the model contains a

looping path and an until expression (e.g. true U p) exists in the LTL4 property (see [4] and [10]

for details).

4‘aUp’ means that ‘a is true continuously until b becomes true’; see Appendix D.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 503

AJPF running the Program in the

Listener in the Native Virtual Machine

Actual Program
Execution Trace

States include full java
state incl.

Beliefs, Intentions and
Goals

Mirror of Program
Execution

States are numbers
plus

tuples of atomic
properties and their

truth value in that state

Proposition
Objects
access

Java State
and records
Truth Value

Proposition
Objects
access

JPF Proposition
and grabs

Truth Value

Listens for transitions,
backtracks etc.,

Figure 1. The operation of AJPF w.r.t. the two Java Virtual Machines.

To determine whether the agents have particular beliefs, goals, etc., it is necessary for the LTL

model-checking algorithm to have access to these. However, these structures exist in the JPFJVM

not the NatJVM and so techniques (described in detail below) are required to create objects that

represent propositions of interest (e.g. ‘agent 1 believes the formation is a square’) in the JPFJVM,

and then track these from the NatJVM to label the states in the Kripke structure appropriately.

The process of adapting this system to produce a model for use with an alternative model checker

involves: (i) bypassing the LTL model-checking algorithm within AJPF
5 but continuing to generate

and maintain a set of propositional objects to label states in the Kripke structure; and (ii) exporting

the Kripke structure in a format that can subsequently be used by another model checker.

At the start of a model-checking run AJPF analyses the property being verified to produce a list of

logical propositions that are needed for checking that property (e.g. agent 1 believes it has reached

its destination, agent 2 intends to win the auction etc.). AJPF then creates objects representing each

of these propositions in both the JPFJVM and NatJVM. In the JPFJVM these propositional objects

can access the state of the multi-agent system and explicitly check that the relevant propositions

hold (e.g. that the Java object representing agent 1 contains, in its belief set, an object representing

the formula reached(destination)). A high level view of AJPF’s model checking process is shown in

Figure 1.

In detail, the system maintains three different types of objects representing non-temporal

propositions, one in the NatJVM (native propositions) and two in the JPFJVM (abstract and concrete

propositions). It is not strictly necessary to maintain two in the JPFJVM but the details of how the

three different types of proposition are created during parsing means that abstract propositions are

created first (in both JVMs) and linked by storing a reference to the JPFJVM version in the NatJVM.

5This is not strictly necessary but it increases the speed of model generation, and avoids the pruning of some model states

based on the property under consideration.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

504 Two-stage agent program verification

Once that is done, native propositions are created from the abstract propositions in the NatJVM while

concrete propositions are created from them in the JPFJVM.

When the NatJVM accesses an object in the JPFJVM using a reference (as the native propositions

access their corresponding abstract propositions), inspecting the values of its fields is straightforward

providing they contain values of a primitive data type (such as bool or int). This is achieved

using JPF’s Model Java Interface (MJI) interface [17]. The implementation is available via AJPF’s

SourceForge distribution.6

In the JPFJVM, the concrete propositions have methods for checking their truth against the current

agent system. These concrete propositions update a Boolean field in their corresponding abstract

proposition whenever their own truth is checked.

In the NatJVM, a Büchi Automaton is constructed from the property. This is the finite-state

automaton that will be used for checking the truth of the property during model-checking. When

checking the truth value of an individual state in the Büchi Automaton, at a particular point in an

execution, only the truth value of propositions are checked. Evaluating the truth of temporal properties

associated with the state is deferred for further exploration of the automaton. Therefore, each Büchi

state maintains a list of native proposition objects, and, when the truth of the state is checked these

consult the fields of their corresponding object in the JPFJVM.

Each time the interpreter for the agent programming language executes one step,7 all of the concrete

proposition objects check their truth and update the truth value field in the abstract propositions.

Precisely when this occurs is the choice of the interpreter designer. It is typically either each time a

transition is made in the operational semantics, or each time a full reasoning cycle in the operational

semantics completes.

Properties in the NatJVM are updated whenever JPF determines that a transition has been made

in the program running in the JPFJVM. When used in conjunction with partial order reduction JPF

typically detects a transition when there is a scheduling choice between agents (and possibly the

environment) or branching caused by the invocation of some random choice. It is at this point,

therefore, that the Native-level proposition objects examine the relevant fields in the abstract objects

stored in the JPFJVM and update their own fields. This process is illustrated informally in Figure 2.

3.1 Advantages

Ideally, a program is only model-checked once against a full set of requirements consisting of a

conjunction of many properties. However, it is our experience that it is more common to check

programs several times against smaller properties. For AJPF, this results in the program model being

generated from the Java bytecode multiple times, once for each property. Our experiences with AJPF

suggested that the most computationally complex part of the model-checking was in the generation

of this program model, and that this was the chief cause of the slow performance of AJPF compared

with other model-checkers. (This is unsurprising since, in AJPF, the generation of a transition in the

program model can involve the symbolic execution of significant amounts of Java bytecode.)

The first advantage of the approach described here, therefore, is that exporting the program model

prior to model-checking allows us to generate the program model only once, and thereafter we can

6http://mcapl.sourceforge.net
7The meaning of a ‘step’ in the semantics—as in the next point of interest to verification—is determined by the person

implementing the semantics. Typically this is either the application of a single rule from the semantics, or of a whole reasoning

cycle. This issue is discussed further in [7].

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 505

Buchi Automaton

Buchi State

Buchi State

Buchi State

Goal B

Bel A

Bel A

Goal B

Native JVM
JPF JVM

Bel A

Access to Agent

Mental State

and other

Complex Java

Classes

concrete proposition

concrete propositionGoal B

int objref

int objref
bool check()

bool truth_value

bool truth_value

bool check()

check() is called when AJPF detects a transition in the Java

Program,creating a new Java state with which it wishes to

pair this BuchiState in order to form a new state in the

Product Autonomaton. check() returns the value of

truth_value for the corresponding object in the JPF JVM

which is the truth of the proposition in the current state of

the Java Program

abstract

abstract

Each time an agent completes a reasoning step. The

truth of eachproposition is assessed and stored in

truth_value.

Figure 2. The relationship between proposition classes in AJPF.

use the far more compact Kripke structure representation, meaning that the time to model-check each

property is reduced (on average).

The second advantage is that other model-checkers (such as SPIN) have many years of development

invested in an accurate and efficient implementation of LTL model-checking. Compared to these,

there is a much weaker level of assurance that the LTL model-checking implemented in AJPF is

correct (although it has been tested against well-known pitfalls). Also, theAJPF LTL model-checking

algorithm is not highly optimized, being a direct adaptation of the algorithms in [4, 10]. Consequently,

it is desirable, for reasons of confidence and efficiency, to use a more well-developed implementation

of model-checking (such as SPIN) where possible.

The third advantage is that this technique will allow us to use richer specification languages than

LTL. For instance, when verifying hybrid systems, probabilistic values frequently appear both in

terms of the reliability of sensors, and the chance that an external action will achieve its expected

outcome. Exporting an AJPF program model into a probabilistic model-checker such as Prism will

allow us to verify properties stated in more expressive logics, such as probabilistic computation tree

logic (PCTL).

3.2 Disadvantages

While there are advantages to using AJPF just for model generation, there are clearly some

disadvantages as well.

First, it is arguable that the direct link between the implemented program and the system being

verified described in Section 2.1 has been lost. However, the LTL model-checking algorithm used in

AJPF was already operating upon an automatically generated abstraction of the system stored in the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

506 Two-stage agent program verification

NatJVM. Taking this abstracted model and exporting it to a different system does not, in our view, have

a significant effect on the overall correctness of any verification result. However, it has introduced

a further step into the process that could cause an issue with software certification concerning tool

qualification. Specifically, we have introduced another tool (SPIN) to the existing verification system

(AJPF) which would mean that both tools would now need to be qualified separately, and possibly

again as a combined tool, with additional associated costs (tool qualification can be very costly in

terms of time and finance). We do, nevertheless, provide a fully automatic route from implemented

code, through an abstraction of that code, to a formal verification result, which itself is preferable to

systems in which the abstraction from the implementation must be done ‘by hand’.

Secondly, the opportunity to exploit features of the property under test to prune model-checking has

been lost. In particular, when checking liveness properties (of the form ‘eventually p will happen’,

or ✸p) it is possible to prune the LTL model-checking search tree as soon as p occurs. It would

obviously still be possible to do this, if the user were confident that only this property will be checked

on the resulting model. Where the model may be used to check a number of properties such pruning

is no longer a possibility and the entire program state space must be explored. Similarly, although

we have not yet explored techniques such as property-based slicing [3] in AJPF, these would also be

difficult to exploit if a full model were to be exported. However, it is likely that, in many cases where

there are several properties to be checked, the additional time taken to produce a complete model

will be offset by the time saved in not having to reproduce this model each time a new property needs

to be verified. Similarly, the fact that we export the model as a Kripke structure means that we may

not be able to exploit potential optimizations available within the target model checker. It should be

noted, however, that some well-known optimization techniques, such as partial order reduction, are

implemented in JPF and so are applied during the model generation phase, hence the Kripke structure

is already in an optimized form.

4 Exporting AJPF models to SPIN

In this section, we describe the detailed process used to translate AJPF models to Promela for

verification in the SPIN model-checker, and some results of SPIN verification of the Promela

models generated.

4.1 Translation details

Both SPIN and AJPF’s LTL algorithm operate on similar automaton structures so translating between

the two is straightforward. In AJPF, a model can be viewed as a set of model states, ms, which are a

tuple of an integer, i, and a set of propositions, P. The model itself includes a function, F, that maps

an integer (representing a particular model state) to a set of integers (representing all the model states

that can be reached in one transition). In this way, the model describes a graph.

Since, within AJPF’s NatJVM, each state is assigned a number, e.g. 12. This is converted to

state12 in the SPIN input file. Then the list of propositional objects is examined recursively. Each

proposition is converted into a simple string (without spaces or brackets), and assigned either the

value true or false, depending upon its value in the state. Promela represents the transitions between

states as goto statements attached to states.

The process of translating these models into Promela is straightforward:

1. First we initialize the model: we convert all the properties in the model to strings (as described

above) and print these as a list of Boolean variables (‘bool’).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 507

2. Print active proctype JPFModel() {.

3. We then iterate through the states in the AJPF model. For each state we carry out the following:

(a) Print out statenum: where num is the state number.

(b) Iterate over all the propositions printing props = true or props = false as appropriate

(where props is the string representing the proposition).

(c) If there is more than one edge print if.

(d) Iterate over all the state’s outgoing edges, print goto statenum; where num is the

number of the next state.

(e) If there is more than one edge print fi;

(f) If there are no outgoing edges print printf("end state\n").

4. Print }.

Figure 3 shows the NatJVM model of a simple agent program with one property (agent 1 believes

the proposition ‘bad’) compared to the result of exporting this model in Promela.

4.2 Results

We tested our SPIN implementation on the verification of a simple ‘leader’ agent intended to

coordinate a formation of satellites as described in [22]. This program was implemented in a version

of the Gwendolen BDI language [5]. We implemented a non-deterministic environment for the

agent in which messages from the satellite agents could randomly arrive each time the agent took an

action. This caused model-checking to explore all possible combinations of messages that the leader

agent could receive. The agent was designed to assign positions to four satellites and then wait for

responses. Since our hypothesis was that we would see gains in performance as the LTL property to

be checked became more complex we tested the system against a sequence of properties:

1. ✷¬Blead bad

(The lead agent never believes something bad has happened).

2. (✷(Blead informed(ag1)→ ✸Blead maintaining_pos(ag1)))→✷¬Blead bad

(If it is always the case that when the leader has informed agent 1 of its position then eventually

the leader will believe agent 1 is maintaining that position, then it is always the case that the

leader does not believe something bad has happened).

Figure 3. Equivalent program models in AJPF (left) and Promela (right).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

508 Two-stage agent program verification

The next three properties increase in complexity by adding subformulae for agents ag2, ag3 and

ag4. The final property adds another subformula that says that it is always the case that if the leader

believes that the formation is in the shape of a square, then eventually it believes that it has informed

agent ag1 of this.

3. (✷(Blead informed(ag2)→ ✸Blead maintaining_pos(ag2)))∧✷(Blead informed(ag1)→

✸Blead maintaining_pos(ag1)))→✷¬Blead bad

4. (✷(Blead informed(ag3)→ ✸Blead maintaining_pos(ag3))∧✷(Blead informed(ag2)→

✸Blead maintaining_pos(ag2))∧

✷(Blead informed(ag1)→ ✸Blead maintaining_pos(ag1)))→✷¬Blead bad

5. (✷(Blead informed(ag4)→ ✸Blead maintaining_pos(ag4))∧✷(Blead informed(ag3)→

✸Blead maintaining_pos(ag3))∧✷(Blead informed(ag2)→ ✸Blead maintaining_pos(ag2))∧

✷(Blead informed(ag1)→ ✸Blead maintaining_pos(ag1)))→✷¬Blead bad

6. (✷(Blead informed(ag4)→ ✸Blead maintaining_pos(ag4))∧✷(Blead informed(ag3)→

✸Blead maintaining_pos(ag3))∧✷(Blead informed(ag2)→ ✸Blead maintaining_pos(ag2))∧

✷(Blead informed(ag1)→ ✸Blead maintaining_pos(ag1)))∧✷(Blead formation(square)→

✸Blead informed(ag1)))→✷¬Blead bad

This sequence of increasingly complex properties was constructed so that each property had the form

P1 ∧ ...∧Pn →Q for some n≥0 and each Pi was of the form (✷(P′
i → ✸Qi)). With the addition of

each such logical antecedent the property automata became considerably more complex. Furthermore,

the antecedents were chosen so that we were confident that on at least some paths through the

program P′
i would be true at some point, necessitating that the LTL checker explore the product

automata for ✸Qi. We judged that this sequence of properties provided a good test for the way each

model-checker’s performance scaled as the property under test became more complicated.

SPIN model-checking requires a sequence of steps to be undertaken: the LTL property must be

translated to a ‘never claim’ (effectively representing the automaton corresponding to the negation

of the required property), then it is compiled together with the Promela description into C, which is

then compiled again before being run as a C program. We used the Ltl3ba tool [1] to compile the

LTL property into a never claim since this is more efficient than the built-in SPIN compiler. In our

results, we present the total time taken for all SPIN operations (SPIN Time) and the total time taken

overall including generation of the model in AJPF.

Table 1 shows the running times for model-checking the six properties on a 2.8 GHz Intel Core i7

Macbook running MacOS 10.7.4 with 8 GB of memory. There is no result for AJPF model-checking

of the final property since the system suffered a stack overflow error when attempting to build the

property automata.

Table 1. Comparing AJPF with and without SPIN model checking

Property AJPF AJPF + SPIN

Time Memory AJPF Time Memory SPIN Time Total Time

1 11m20s 413MB 11m17s 413MB 4s 11m21s
2 13m09s 410MB 13m04s 410MB 5s 13m09s
3 15m27s 410MB 15m30s 410MB 7s 15m37s
4 18m19s 408MB 18m18s 411MB 11s 18m29s
5 22m14s 411MB 21m54s 417MB 16s 22m10s
6 — — 22m3s 406MB 24s 22m27s

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 509

The results show that as the LTL property becomes more complex, model-checking using theAJPF

to Promela/SPIN translation tool is marginally less efficient than using AJPF alone. It should be

noted that, in the SPIN case, where AJPF is not performing LTL model-checking, and is using a

simple list of propositions (rather than an LTL property) the time to generate the model still increases

as the property becomes more complex. This is explained by the overhead involved in tracking

the proposition objects in the JPFJVM and the NatJVM: as more propositions are involved this time

increases. In fact, it is clear that the number of propositions are the major factor affecting the efficiency

of the model checking—not the complexity of the temporal expressions within the property itself.

Given that the SPIN version has additional overheads (the model needs to be written to a file and

then SPIN itself needs to be run) the overall time taken to model check tends to be slower, even if

the time taken to build the model is faster. If, however, a model is to be generated once and then

checked against a number of properties then using SPIN together with AJPF is clearly preferable.

It is interesting to note that AJPF could not generate a property automaton for property 6. Indeed,

this is a compelling argument that combining AJPF with SPIN or some other model-checker is

sometimes necessary. It also illustrates the point that SPIN is optimized for working with LTL where

AJPF is not.

5 Exporting AJPF models to Prism

This section describes the translation of AJPF models to Prism’s input language.

5.1 Translation details

Both AJPF’s NatJVM and SPIN operate on Kripke structures so it was a straightforward process to

translate between them. However, the Prism input language is based on probabilistic timed automata,

structures that are commonly used to model systems that exhibit both timed and probabilistic

behaviour, such as network protocols, sensors, biological models, etc. While we do not utilize

the timing dimension here, the probabilistic aspect is important. The key difference between the

automata considered earlier and their probabilistic counterparts is that transitions between states

are now probabilistic. Specifically, such automata typically incorporate a probability distribution

to inform the choice among the potential transitions [21]. Consequently, information about this

probability distribution is important in constructing probabilistic automata.

To support transitions with probability labels, it was necessary to make some alterations to AJPF.

JPF, and hence AJPF, is able to branch the search space when a random element is selected from a

finite set. However, the system does not record the probabilities of each branch created in a manner

accessible to the NatJVM.

To address this we made use of a JPF customization tool known as a native peer. The native peer

of a Java object can intercept the execution of particular methods associated with the object. When

a method is intercepted, alternative code associated with the native peer is executed in the NatJVM

instead of the existing code associated with the object. This can allow complex algorithms to be

executed natively for efficiency reasons or, as is the case here, to control branching in the program

model.

We developed a new class, Choice, in Java which represented a probabilistic choice from a finite

set of options. We also developed a native peer for this class.

A Choice object consists of an array of Options. An Option is a tuple comprising both a

probability and a value (of whatever class is needed for the results of the choice). The probabilities

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

510 Two-stage agent program verification

Figure 4. The choice class (simplified).

of the options in the array add up to one (at least in theory). At a high level, when asked to pick

a choice the class returns one of the options from the array. When not executing in JPF, the class

selects the option by using a standard ‘roulette wheel’ algorithm to select an option according to the

probability distribution. When executing in JPF, the method that performs roulette wheel selection

is intercepted and, instead, a choice generator is created. This sets a backtrack point in the system

and each time the execution returns to that backtrack point a different option is selected until all

choices have been explored. The Choice class maintains, as a field, the probability of the current

choice allowing this to be accessed by the AJPF Listener and used to annotate the edges of the

model.

Figure 4 shows a simplified version of the Java code for the Choice and Option classes. When

asked to pick a choice, the class calls first its choosemethod, which in turn calls the pickChoice

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 511

Figure 5. (Simplified) native peer for the Choice class.

method. pickChoice returns an index to the Option array. choose then selects the relevant

option from the array and returns it to the rest of the program. We used a two-stage process because

it allowed us to deal just with primitive datatypes in the pickChoice method (which made

programming the native peer considerably simpler). When not executing in JPF, pickChoice

uses a roulette wheel algorithm to select an option. When the choose method is invoked outside

AJPF, therefore, the effect is to randomly return one of the values from the list according to the

distribution specified. Once pickChoice has returned a value, then choose updates the field,

thischoice_probability, with the current probability and returns the relevant option to the

program.

We cannot use the generation of a random double-precision floating point number to branch

the search space in JPF since there are 264 choices and the search space would increase in size

considerably. Instead, we branch the search space with one branch for each of the possible options

in the Choice class. This is done by using a native peer for the Choice class a (very simplified)

version of which is shown in Figure 5. When running in JPF, the native peer intercepts calls to

pickChoice and creates a choice generator (a branch point in the program automaton) with one

branch for each index to the Option array. The version of pickChoice in the JPFJVM is not

executed and instead the version in the native peer is used. Each branch of the choice generator

returns a different index to the Option array. In this way, the exploration of successive branches

causes every index to be returned to the choose method.

In AJPF, a specialized Probability Listener, executing in the NatJVM, listens for invocations of

the choose method. The listener does not replace the code in choose but acquires a reference to

the Choice object itself and after execution of the method completes, it can access the value stored

in thischoice_probability. This allows the Listener in the NatJVM to annotate the edge

created in the model by the choice generator with the appropriate probability, thus annotating the

relevant branch with the probability of taking that transition. Similar specialized Listeners could be

used to annotate branches with other information (e.g. actions, time estimates) were the system to be

adapted for use with other more expressive model-checking systems.

In short, programming with the Choice class, in the normal execution of the program, simply

picks an element from a set based on some probability distribution. When executed within AJPF,

the Choice class causes the system to explore all possible choices and label each branch with its

probability.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

512 Two-stage agent program verification

5.2 Translation to Prism

After this, the process of translating these models into Prism’s input language is straightforward.

1. First we initialize the model. We set it as a discrete time Markov chain (dtmc), list the numbers

of all states and state the initial state (0), and list all the propositions in the property and initialize

them to false.

2. We then iterate through the states in the AJPF model. For each state we:

(a) Print out state = num where num is the state number, followed by “->”.

(b) Iterate over all its outgoing edges. For each edge, we:

i. Print out the probability of that edge being traversed.

ii. Print out the state number and the values of the propositions in the property for the

resulting state.

5.3 Case studies

5.3.1 A simple unmanned aircraft

As an example we consider a simple program based on [30] in which an autonomous unmanned

aircraft (UA) must detect and avoid potential collisions. The UA’s radar is only 90% reliable, so it

does not always perform an ‘evade’ manoeuvre when a collision is possible. The agent controlling

the UA is implemented in Gwendolen which does not contain any probabilistic aspects. However,

the agent was executed within an environment model programmed in Java where the Choice class

was used to represent the unreliability of the sensor when the agent requested incoming perceptions.8

The code for this simple UA can be found in Appendix B.

The model is tracking two predicates: P(collision), which means a potential collision is perceptible

in the environment, and Auaevade, which means the last action performed was the UA agent taking

an evade manoeuvre. In the construction of a Java environment to be used by an AIL it is necessary to

provide a set of percepts. These form a list of predicates that are theoretically perceptible. Precisely

because we wish to explore issues of an agent failing to perceive something, the property specification

language allows these to be referred to separately from internal ‘mental’ states of the agent. In this

instance, P(collision) can be interpreted as meaning that in the environment a collision is going to

occur irrespective of whether the agent has perceived this fact. This allows us to describe properties

that capture the potential unreliability of sensors. The agent was programmed to make ‘evade’

manoeuvres when it believed there would be a collision. It only believed there would be a collision

if a collision was perceptible and the sensor conveyed that information to the agent.

A fragment of the AJPF model for this program, adapted to show the probability of transitions

is shown in Figure 6 alongside the full model exported in the Prism input language.9 Figure 7

provides a brief outline of some key features of Prism’s property specification language, a fragment

of PCTL [12]. Its full semantics can be found in [24].

We model-checked the above program in Prism against the property

P
=?

✷(P(collision)→ ✸Auaevade)

to establish that the probability that the UA would evade a collision, if one were possible, was 90%.

8We would also be able to investigate properties of BDI programming languages with probabilistic features, providing

their AIL implementation used the Choice class—see Section 6.1.
9Note that the nature of rounding in Java means that 0.1 is, in several places, represented as 0.09999999999999998.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 513

Figure 6. Comparison of models for AJPF and Prism.

For comparison purposes we also model-checked the program in AJPF. Since AJPF does not

support probabilistic reasoning we checked a different property:

Buacollision→ ✸Auaevade (1)

i.e. that if the UA came to believe there would be a collision then it would eventually make an evade

manoeuvre.

AJPF AJPF outputing to Prism

Time Memory Time Memory

3 s 229 MB 3 s 360 MB

Prism itself, then took 1.8 s to build and check a model from the file produced by AJPF.

5.3.2 A more complex UA

The BDI agent program described in the previous section is quite basic: the BDI agent in control of the

autonomous UA can only perform ‘cruise’ and ‘detect/avoid’ manoeuvres. To test the capabilities of

the AJPF to Prism translator, and to validate the Prism models it generates, we used a more complex

BDI agent program based on work described in [30]. The program described in Section 5.3.1 has one

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

514 Two-stage agent program verification

Figure 7. The Prism property specification language.

agent, UA (the autonomous UA’s decision-making system), consisting of three Gwendolen plans

(see Appendix B). The program described here contains two agents (one for the UA and one for

an Air Traffic Control system—ATC) and a total of 22 plans divided between the two agents (see

Appendix C).

In this more complex BDI agent program, the UA begins on the ground (the airport ramp) at the

start of its mission. The UA agent then requests clearance to taxi from the ATC agent. Clearance is

either given or denied. If it is denied, the UA will repeatedly ask for taxi clearance until it receives

permission to taxi. When the UA receives taxi clearance it directs the UA into the runway holding

position, a position to the side of the runway where the aircraft waits until it has clearance from

the ATC agent to manoeuvre onto the runway itself. Once in the runway holding position the UA

will request permission to manoeuvre onto the runway (‘line up’). Once clearance is given the UA

manoeuvres onto the runway where it lines up ready for take-off. Once again, the UA requests

clearance from air traffic control, this time to take-off. When take-off clearance is given, the UA

agent directs the UA to take-off. Once in flight the UA may receive messages from a forward-looking

infrared (FLIR) sensor system on-board the UA, which is modelled within a Java class representing

the UA agent’s environment. If the sensor detects that there is another aircraft approaching on a

collision course, it informs the UA via a percept, ‘collision’, that the UA is on a collision course.

Upon receiving this percept the UA directs the UA to perform an evasive manoeuvre using the action

‘evade’. Finally, the UA will land when the navigation subsystem (again, modelled within the Java

class representing the UA agent’s environment) indicates the destination has been reached by adding

a percept, ‘landing’. The full Gwendolen code for this example can be seen in Appendix C.

In this example, the sensor is given an accuracy of 90%, which means that if there is another

aircraft on a collision course, then the sensor will accurately determine that this is the case with a

probability of 0.9. We were able to use the Prism model generated by AJPF to determine that the

following probability was, indeed, 0.9:

P
=?

✷¬(✸(P(collision)∧¬(✸Auaevade)))

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 515

This property expresses the probability that it is never the case that the possibility of collision is

perceptible yet the UA fails to take evasive action. In other words, there is a probability of 0.9 of the

UA taking evasive action, which we would expect as the environment model contains a faulty sensor

which has an accuracy of 90%.

We can also verify the following property:

P
=?

✷(✸(P(collision)∧¬(✸Auaevade)))

This property expresses the probability that it is always the case that the possibility of collision is

perceptible yet the UA fails to take evasive action. Prism calculates this probability to be 0.1, as

would be expected by inspection of the model.

Therefore, these results validate the accuracy of the Prism model generated fromAJPF and verified

using Prism, at least for these properties.

5.3.3 Computational resources

In Section 4.2, we compared the time taken by AJPF to verify a set of properties using (i) the JPF

model checker and (ii) the SPIN model checker. We were able to compare these timings as AJPF

and SPIN were working on the same Kripke structure of the agent program and the outputs of both

model checkers were a simple Boolean value indicating the presence of an error in the model. Prism,

in contrast to SPIN and AJPF, uses probabilistic timed automata instead of Kripke structures and

returns a probability for each property verified.10 Therefore, it is not possible to compare JPF’s

performance to Prism’s performance, as both model checkers are fundamentally different, and JPF

cannot be used to verify probabilistic models. However, we can compare the computational resources

used by the two case studies presented in this section: the simple UA and the more complex UA. The

computational resources used were as follows:

Generation (AJPF) Verification (Prism)

Model States Time (s) Memory (MB) Time (s) Memory (MB)

Simple UA 16 1 235 1.3 0.24

Complex UA 42 3 427 1.3 0.24

Complex UA 2 98 6 486 1.3 0.26

Complex UA 3 200 10 486 1.3 0.28

Complex UA 4 408 19 488 1.3 0.31

These results are summarized in Figures 8 and 9. In addition to the simple and complex UA

examples given earlier, we tested three further agent programs (‘Complex UA [2–4]’). These models

were extensions of the Complex UA agent program designed to increase the number of states

required for model-checking. These modifications consisted of additional interactions with the agent’s

environment at the start of its execution. These results were obtained using an 8-core Intel® Core

i7-3720QM 2.60GHz CPU laptop with 16 GB of memory running 64-bit Ubuntu Linux 12.04 LTS.

In the table above, and in Figures 8 and 9, ‘States’ refers to the number of states generated by AJPF

and used in the Prism model. The time and memory used for generation of the Prism models by AJPF

is shown under ‘Generation’ and in Figure 8. The time and memory used for verification is shown

10It should be noted that it is possible to use Prism as a non-probabilistic model checker when using non-probabilistic

models. It is also possible to receive a Boolean value as output, e.g. when checking that a resulting probability is within a

certain range. However, the typical use of Prism is to discover probabilities associated with probabilistic models.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

516 Two-stage agent program verification

Figure 8. Time and memory resources used by AJPF for the generation of Prism models.

Figure 9. Time and memory resources used by Prism for the verification of models generated by

AJPF.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 517

under ‘Verification’ and in Figure 9. It can be seen in Figure 8 that the amount of time used by AJPF

to generate the models increases approximately linearly with the number of states. The memory used

by AJPF for generation increased rapidly at first, but then levelled out, in line with typical AJPF

usage. It can be seen in Figure 9 that the time used by Prism during verification was constant,11 but

the memory used increased with the number of states in an approximately linear fashion. However,

the amount of memory used was minimal: in all cases less that 0.4 MB. Prism’s minimal overheads

are not surprising given that it is an efficient symbolic model checker, and therefore any time and

memory used for such simple models should be similar.

In Section 4.2, we compared the efficiency of using AJPF with SPIN to using AJPF alone. In the

case of Prism verification, we cannot report a similar result as we could not compare verification

times between (i) AJPF and (ii) AJPF with Prism, as AJPF does not support probabilistic model-

checking. However, as in Section 5.3.1, we could verify the program in AJPF alone against a similar

but non-probabilistic property, (1). We show the time and memory consumption for this verification

below.

Model States Time (s) Memory (MB)

Simple UA 4 1 235

Complex UA 33 3 235

Complex UA 2 81 4 297

Complex UA 3 167 7 429

Complex UA 4 343 13 305

However, clearly the advantage in using AJPF with Prism over AJPF alone is precisely when we

wish to verify properties that cannot be expressed in AJPF; exporting models of agent programs from

AJPF enables them to be model checked using probabilistic model checkers like Prism. In principle

it should be possible to export agent programs for other types of model checkers to model check

agent programs in other ways. For instance, it may be possible to use AJPF to generate real-time

agent program models (from a language such as AgentSpeak(RT) [28]) that could be model checked

using a real-time model checker like Uppaal [2]. Of course, this would depend on a real-time agent

programming language interpreter being implemented using the AIL (see Section 2.1).

6 Conclusion

We have shown how AJPF can be used to generate models of BDI agent programs for formal

verification using other model checkers in a two-step process. This work generalizes the work of

Hunter et al. [16], in which JPF was used to generate models of Brahms programs for model-checking

using SPIN. The work described in the article provides a generic tool for producing models of agent

programs implemented in a wide range of BDI languages. These models can then be exported into

the input languages of the model-checker of choice; the SPIN and Prism model-checkers are used as

examples in this article. Where such a model-checker operates on Kripke structures there is a direct

translation from AJPF’s own internal model to that of the target model-checker. For model-checkers

using richer input structures it is still relatively easy, using the customization options available with

JPF, to enrich AJPF’s models so that they can be exported appropriately. We provided an example

of one such adaptation allowing BDI programs to be probabilistically model-checked via the Prism

11This is because the bulk of the time, when considering small models (i.e. those with a few hundred states) is taken up

by system overheads which are the same for all runs.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

518 Two-stage agent program verification

model-checker. In both cases, this provides a viable, two-stage route to more flexible agent program

verification.

6.1 Further work

One of our primary motivations in performing this work was to enable the probabilistic model-

checking of BDI agents, particularly in practical health care and hybrid systems scenarios. We intend,

therefore, to explore more sophisticated and realistic examples in which an implemented BDI-based

agent program is executed in AJPF and then model-checked in Prism. The aim is to produce results

about the overall reliability of systems based on probabilistic analyses of systems with sensors of

varying reliability.

We are also interested in exploring the verification of multi-agent properties involving strategies.

This would involve both adapting our output format for anATLmodel-checker, such as MCMAS [23],

and adapting the internal models so that transitions are labelled with actions. We may also wish to

extend the AIL so that agents can explicitly reason about their own strategies. We would also like

to investigate BDI programming languages that incorporate probabilistic features, something which

will likely require that their AIL implementation uses the Choice class.

It would be possible to adapt AJPF to save and then re-import its own models, avoiding the model

generation bottleneck while retaining the entire verification process within a single system. While

this would lose some of the benefits (e.g. assurance and efficiency), it would provide a simpler tool

and might be more attractive in certification situations.

Finally, we aim to assess (and, hence, optimize) the model extraction process to (a) be as streamlined

as possible; (b) produce structures that can potentially still take advantage of symbolic encodings in

target model checkers; and (c) carry out simple abstractions, where appropriate. We will also explore

the limits of this technique by identifying classes of programs that generate structures that are too

complex to be verified using particular target model checkers.

Acknowledgements

The authors were partially funded by EPSRC projects EP/J011770/1 (Reconfigurable Autonomy)

and EP/K006193/1 (Trustworthy Robotic Assistants) and through the ERDF/NWDA-funded Virtual

Engineering Centre.

References

[1] T. Babiak, M. Kretínský, V. Rehák and J. Strejcek. LTL to Büchi automata translation: fast

and more deterministic. In Proceedings of the 18th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), vol. 7214 of Lecture Notes

in Computer Science, pp. 95–109. Springer, 2012.

[2] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson and W. Yi. Uppaal—a tool suite for

automatic verification of real–time systems. In Proceedings of Workshop on Verification and

Control of Hybrid Systems III, number 1066 in Lecture Notes in Computer Science, pp. 232–243.

Springer, 1995.

[3] R. H. Bordini, M. Fisher, M. Wooldridge and W. Visser. Property-based slicing for agent

verification. Journal of Logic and Computation, 19, 1385–1425, 2009.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 519

[4] C. Courcoubetis, M. Vardi, P. Wolper and M. Yannakakis. Memory-efficient algorithms for the

verification of temporal properties. In Formal Methods in System Design, pp. 275–288, 1992.

[5] L. A. Dennis and B. Farwer. Gwendolen: a BDI language for verifiable agents. In Proceedings

of the AISB 2008 Symposium on Logic and the Simulation of Interaction and Reasoning, Society

for the Study of Artificial Intelligence and Simulation of Behaviour, pp. 16–23, 2008.

[6] L. A. Dennis, M. Fisher and M. Webster. Using agent JPF to build models for other model

checkers. In Proceedings of International Workshop on Computational Logic in Multi-Agent

Systems (CLIMA), vol. 8143 of Lecture Notes in Computer Science, pp. 273–289. Springer,

2013.

[7] L. A. Dennis, M. Fisher, M. Webster and R. H. Bordini. Model checking agent programming

languages. Automated Software Engineering, 19, 5–63, 2012.

[8] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, pp. 996–1072. Elsevier, 1990.

[9] M. Fisher, L. A. Dennis and M. P. Webster. Verifying autonomous systems. ACM

Communications, 56, 84–93, 2013.

[10] R. Gerth, D. Peled, M. Y. Vardi and P. Wolper. Simple on-the-fly automatic verification of linear

temporal logic. In Proceedings of the 15th IFIP WG6.1 International Symposium on Protocol

Specification, Testing and Verification XV, pp. 3–18, London, UK, 1996. Chapman & Hall, Ltd.

[11] E. C. Grigore, K. Eder, A. G. Pipe, C. Melhuish and U. Leonards. Joint action understanding

improves robot-to-human object handover. In Proceedings of the IROS, pp. 4622–4629. IEEE,

2013.

[12] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of

Computing, 6, 102–111, 1994.

[13] K. Havelund, M. Lowry, S. Park, C. Pecheur, J. Penix, W. Visser and J. L. White. Formal analysis

of the remote agent before and after flight. In Proceedings of 5th NASA Langley Formal Methods

Workshop, Virginia, USA, 2000.

[14] K. V. Hindriks, F. S. de Boer, W. van der Hoek and J.-J. Meyer. Agent programming with

declarative goals. In Intelligent Agents VII, vol. 1986 of LNAI, pp. 228–243. Springer, 2001.

[15] G. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2004.

[16] J. Hunter, F. Raimondi, N. Rungta and R. Stocker. A synergistic and extensible framework

for multi-agent system verification. In Proceedings of the 13th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pp. 869–876. IFAAMAS, 2013.

[17] JPF… the Swiss Army Knife of JavaTM verification. http://babelfish.arc.nasa.gov/trac/jpf/.

Accessed 2013-06-09.

[18] P. Kars. The application of Promela and Spin in the BOS project (Abstract), 1996. http://spinroot.

com/spin/Workshops/ws96/Ka.pdf. Accessed 2013-05-30.

[19] M. T. Kirsch, V. A. Regenie, M. L. Aguilar, O. Gonzalez, M. Bay, M. L. Davis, C. H.

Null, R. C. Scully and R. A. Kichak. Technical support to the National Highway Traffic

Safety Administration (NHTSA) on the reported Toyota Motor Corporation (TMC) Unintended

Acceleration (UA) Investigation. NASA Engineering and Safety Center Technical Assessment

Report, January 2011.

[20] M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: verification of probabilistic real-time

systems. In Proceedings of 23rd International Conference on Computer Aided Verification,

vol. 6806 of Lecture Notes in Computer Science, pp. 585–591. Springer, 2011.

[21] M. Kwiatkowska, G. Norman, R. Segala and J. Sproston. Automatic verification of real-time

systems with discrete probability distributions. Theoretical Computer Science, 282, 101–150,

2002.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://spinroot.com/spin/Workshops/ws96/Ka.pdf
http://spinroot.com/spin/Workshops/ws96/Ka.pdf

520 Two-stage agent program verification

[22] N. K. Lincoln, S. M. Veres, L. A. Dennis, M. Fisher and A. Lisitsa. Autonomous asteroid

exploration — agent based control for autonomous spacecraft in complex environments. IEEE

Computational Intelligence, 8, 25–38, 2013.

[23] A. Lomuscio, H. Qu and F. Raimondi. MCMAS: a model checker for the verification of multi-

agent systems. In Proceedings of 21st International Conference on Computer Aided Verification

(CAV), 2009.

[24] G. Norman, D. Parker and J. Sproston. Model checking for probabilistic timed automata. Formal

Methods in System Design, pp. 1–27, 2012.

[25] PRISM: Probabilistic Symbolic Model Checker. http://www.prismmodelchecker.org. Accessed

2013-05-31.

[26] A. S. Rao and M. P. Georgeff. An abstract architecture for rational agents. In Proceedings of

International Conference on Knowledge Representation and Reasoning (KR&R), pp. 439–449.

Morgan Kaufmann, 1992.

[27] M. Sierhuis and W. J. Clancey. Modeling and simulating work practice: a method for work

systems design. IEEE Intelligent Systems, 17, 32–41, 2002.

[28] K. Vikhorev, N. Alechina, R. Bordini and B. Logan. An operational semantics for

AgentSpeak(RT) (Preliminary Report). In Proceedings of 9th International Workshop on

Declarative Agent Languages and Technologies (DALT), pp. 79–94, Taipei, Taiwan, May 2011.

[29] W. Visser, K. Havelund, G. P. Brat, S. Park and F. Lerda. Model checking programs. Automated

Software Engineering, 10, 203–232, 2003.

[30] M. Webster, N. Cameron, M. Fisher and M. Jump. Generating certification evidence for

autonomous unmanned aircraft using model checking and simulation. Journal of Aerospace

Information Systems, 11, 258–279, 2014.

[31] M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

Received 6 January 2015

Appendix

A The AJPF property specification language

A.1 AJPF property specification language syntax

The syntax for property formulæ φ is as follows, where ag is an ‘agent constant’ referring to a specific

agent in the system, and f is a ground first-order atomic formula:

φ ::= Bag f |Gagf |Aagf |Iagf |P(f) |φ∨φ |¬φ |φUφ |φRφ

Here, Bag f is true if ag believes f to be true, Gagf is true if ag has a goal to make f true, and so on

(with A representing actions, I representing intentions, and P representing percepts, i.e. properties

that are true in the environment).

A.2 AJPF property specification language semantics

We summarize those aspects of the semantics of property formulae relevant to this article. Consider

a program, P, describing a multi-agent system and let MAS be the state of the multi-agent system at

one point in the run of P. MAS is a tuple consisting of the local states of the individual agents and of

the environment. Let ag∈MAS be the state of an agent in the MAS tuple at this point in the program

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 521

execution. Then
MAS |=MC Bag f iff ag |=Bag f

where |= is logical consequence as implemented by the agent programming language. The semantics

of Gagf and Iagf similarly refer to internal implementations of the language interpreter. The

interpretation of Aagf is:
MAS |=MC Aagf

if, and only if, the last action changing the environment was action f taken by agent ag. Finally, the

interpretation of P(f) is given as:
MAS |=MC P(f)

if, and only if, f is a percept that holds true in the environment.

The other operators in the AJPF property specification language have standard PLTL semantics [8]

and are implemented as Büchi Automata as described in [4, 10]. Thus, the classical logic operators

are defined by:
MAS |=MC ϕ∨ψ iff MAS |=MC ϕ or MAS |=MC ψ

MAS |=MC ¬φ iff MAS 	|=MC φ.

The temporal formulae apply to runs of the programs in the JPF model checker. A run consists of

a (possibly infinite) sequence of program states MASi, i≥0 where MAS0 is the initial state of the

program (note, however, that for model checking the number of different states in any run is assumed

to be finite). Let P be a multi-agent program, then:

MAS |=MC ϕUψ iff in all runs of P there exists a state MASj

such that MASi |=MC ϕ for all 0≤ i< j

and MASj |=MC ψ.

MAS |=MC ϕRψ iff either MASi |=MC ϕ for all i or there

exists MASj such that MASi |=MC ϕ

for all 0≤ i≤ j and MASj |=MC ϕ∧ψ.

The common temporal operators ✸ (eventually) and ✷ (always) are, in turn, derivable from U and

R in the usual way [8].

B Simple UA code

B.1 Syntax

Gwendolen uses many syntactic conventions from BDI agent languages: +!g indicates the addition

of the goal g; +b indicates the addition of the belief b; while -b indicates the removal of the belief.

Plans then consist of three parts, with the pattern

trigger: guard <- body;

The ‘trigger’ is typically the addition of a goal or a belief (beliefs may be acquired thanks to the

operation of perception and as a result of internal deliberation); the ‘guard’ states conditions about

the agent’s beliefs (and, potentially, goals) which must be true before the plan can become active;

and the ‘body’ is a stack of ‘deeds’ the agent performs to execute the plan. These deeds typically

involve the addition and deletion of goals and beliefs as well as actions (e.g. evade) which refer to

code that is delegated to non-rational parts of the systems.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

522 Two-stage agent program verification

The Gwendolen code for the simple UA case study is as follows:

C More complex UA code

The Gwendolen code for the more complex UA case study is as follows:

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Two-stage agent program verification 523

D Syntax and semantics of temporal logics

The syntax of LTL is

φ ::= true |false |p |¬φ |φ∧φ

ψ ::= ©φ |φUφ

Where p∈� such that � is a countable set of propositions.

Temporal formulae are interpreted over a discrete, linear model of time, M with an interpretation

function, I :N→2� which maps each point in time (represented as a natural number) to a set of

propositions.

〈M,i〉 |=p iff p∈ I(i) (A1)

〈M,i〉 |=¬φ iff 〈M,i〉 	|=φ (A2)

〈M,i〉 |=φ∧ψ iff 〈M,i〉 |=φ and 〈M,i〉 |=ψ (A3)

〈M,i〉 |=©φ iff 〈M,i+1〉 |=φ (A4)

〈M,i〉 |=φUψ iff ∃j≥ i.〈M,j〉 |=ψ and ∀i≤k ≤ j.〈M,k〉 |=φ (A5)

The syntax of PCTL is

φ ::= true |a |φ∧φ |¬φ |P⊲⊳p[ψ]

ψ ::= ©φ |φU≤kφ |φUφ

where a is an atomic proposition, ⊲⊳∈{≤,<,≥,>}, p∈Q≥0, and k ∈N.

We interpret PCTL formulae over discrete-time Markov chains (DTMCs) which capture a

probabilistic branching model of time. Instead of evaluating a formula at a particular time point

i as we did for LTL, we evaluate for a state s. Paths, π , through the DTMC are sequences of states

s0(a1,µ1)s1(a2,µ2)s2 ..., where ai is the i-th action taken to transform state si−1 into state si and

µi is the probability of that action occurring. Paths(s) is the set of all paths that start in state s. The

probability of a path, π is the product of the probability that each state in π transitions to the next

state in π . The probability of a set of paths, Pr, is the sum of the probability of each individual path.

〈M,s〉 |=p iff p∈ I(s) (A6)

〈M,s〉 |=¬φ iff 〈M,s〉 	|=φ (A7)

〈M,s〉 |=φ∧ψ iff 〈M,s〉 |=φ and 〈M,s〉 |=ψ (A8)

〈M,π〉 |=©φ iff 〈M,s1〉 |=φ (A9)

〈M,ω〉 |=φU≤kψ iff ∃i≤k.〈M,si〉 |=ψ and∀j< i.〈M,sj〉 |=φ (A10)

〈M,π〉 |=φUψ iff ∃k ≥0.〈M,π〉 |=φU≤kψ (A11)

〈M,s〉 |=P
⊲⊳p[ψ] iff Pr({π ∈Paths(s) | 〈M,π〉 |=ψ})⊲⊳p (A12)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/lo
g
c
o
m

/a
rtic

le
/2

8
/3

/4
9
9
/2

9
1
7
7
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

	Two-stage agent program verification
	1 Introduction
	2 Background
	3 Generating program models using AJPF
	4 Exporting AJPF models to SPIN
	5 Exporting AJPF models to Prism
	6 Conclusion
	A The AJPF property specification language
	B Simple UA code
	C More complex UA code
	D Syntax and semantics of temporal logics

