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Abstract—In this paper, the problem of outer beamformer
design based only on channel statistic information is considered for
two-stage beamforming for multi-user massive MIMO downlink,
and the problem is approached based on signal-to-leakage-plus-
noise ratio (SLNR). To eliminate the dependence on the instan-
taneous channel state information, a lower bound on the average
SLNR is derived by assuming zero-forcing (ZF) inner beamform-
ing, and an outer beamformer design method that maximizes the
lower bound on the average SLNR is proposed. It is shown that the
proposed SLNR-based outer beamformer design problem reduces
to a trace quotient problem (TQP), which is often encountered in
the field of machine learning. An iterative algorithm is presented
to obtain an optimal solution to the proposed TQP. The proposed
method has the capability of optimally controlling the weighting
factor between the signal power to the desired user and the inter-
ference leakage power to undesired users according to different
channel statistics. Numerical results show that the proposed outer
beamformer design method yields significant performance gain
over existing methods.

Index Terms—Massive MIMO systems, two-stage beamform-
ing, signal-to-leakage-plus-noise ratio (SLNR), trace quotient
problem (TQP), adaptive weighting factor.

I. INTRODUCTION

THE multiple-input multiple-output (MIMO) technology
has prevailed in wireless communications for more than

a decade. The technology has been adopted in many wireless
standards since it improves the spectral efficiency and relia-
bility of wireless communication without requiring additional
bandwidth. Recently, the MIMO technology based on large-
scale antenna arrays at base stations, so-called massive MIMO,
is considered to further improve the system performance for
upcoming 5G wireless systems and vigorous research is being
performed on this topic. Massive MIMO can support high data
rates and energy efficiency and simplify receiver processing
based on the asymptotic orthogonality among user channels
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based on large antenna arrays [1], [2]. However, realizing the
benefits of massive MIMO in practical systems faces several
challenges especially in widely-used frequency division du-
plexing (FDD) scenarios. In contrast to current small-scale
MIMO systems, downlink channel estimation is a difficult
problem for FDD massive MIMO systems since the number
of available training symbols required for downlink channel
estimation is limited by the channel coherence time and the
number of channel parameters to estimate is very large [3]–[6].
Furthermore, channel state information (CSI) feedback over-
head for downlink user scheduling for massive FDD multi-user
MIMO can be overwhelming without some smart structure on
massive MIMO systems. To overcome these difficulties associ-
ated with massive MIMO, two-stage beamforming for massive
MIMO under the name of “Joint Spatial Division and Multi-
plexing (JSDM)” has been studied in [7]–[11]. The two-stage
beamforming idea is basically a divide-and-conquer approach,
and the key ideas of the two-stage beamforming strategy are 1)
to partition the user population supported by the serving base
station into multiple groups each with approximately the same
channel covariance matrix (this can be viewed as virtual sec-
torization) and 2) to decompose the MIMO beamformer at the
base station into two steps: an outer beamformer and an inner
beamformer, as shown in Fig. 1. The outer beamformer faces
the antenna array and roughly distinguishes different groups by
bolstering in-group transmit power and suppressing inter-group
interference, and the inner beamformer views the product of
the actual channel and the outer beamformer as an effective
channel, separates the users within a group, and provides spatial
multiplexing among in-group users [7]. Here, major complexity
reduction results from the approach that the outer beamformer
is properly designed based only on channel statistic information
not on CSI. In this case, the actually required CSI for the inner
beamformer adopting typical zero-forcing (ZF) or regularized
ZF (RZF) beamforming is significantly reduced since it only
requires the CSI of the effective channel with significantly
reduced dimensions.

Several researchers followed the aforementioned frame-
work for two-stage beamforming for massive MIMO. They
adopted linear beamforming such as ZF for the inner beam-
former and tackled the problem of outer beamformer design
based on channel statistic information [7], [10], [11]. In [7],
Adhikary et al. proposed a simple block diagonalization (BD)
algorithm for the outer beamformer design, which obtains the
outer beamformer by projecting the dominant eigenvectors of
the desired group channel covariance matrix onto the null

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KIM et al.: TWO-STAGE BEAMFORMER DESIGN FOR MASSIVE MIMO DOWNLINK 2201

Fig. 1. Multi-group massive MIMO downlink with two-stage beamforming [9].

space of the dominant eigenspace of all other group channel
covariance matrices. In [10], Chen and Lau considered the
outer beamformer design criterion of minimizing the total inter-
group interference power minus the weighted total desired
group signal power. In this case, for a given weighting value
between the total inter-group interference power and the total
in-group signal power, the outer beamformer is given by a set of
dominant eigenvectors of the weighted difference between the
total undesired group channel covariance matrix sum and the
desired group channel covariance matrix. In [11], Liu and Lau
considered the outer beamformer design from a fairness per-
spective. In this work, they designed the outer beamformer by
choosing a set of columns from a discrete Fourier transform
(DFT) matrix to maximize the minimum average rate among
all the users.

In this paper, we also consider the outer beamformer design
based only on channel statistic information for the aforemen-
tioned two-stage beamforming framework for massive MIMO.
As already shown in the previous works, computation of the
signal-to-interference-plus-noise-ratio (SINR) for each receiver
is difficult in this downlink scenario with interfering groups.
To circumvent this difficulty, as our design criterion we adopt
the average signal-to-leakage-plus-noise ratio (SLNR) criterion
[12], which is shown to be Pareto-optimal in the achievable
rate region in certain interference channel cases [13], [14],
and propose an average SLNR-based outer beamformer design
framework in single cell massive MIMO systems.1 The signal
power to the desired receiver and the leakage power to other
undesired receivers by the transmitter required for the SLNR
method cannot be computed by considering only the outer
beamformer. Instead, both the outer beamformer and the inner
beamformer should jointly be considered to derive the two
quantities. Thus, to simplify analysis we assume a ZF beam-
former with equal power allocation for the inner beamformer
although simulation is performed for both ZF and regularized
ZF (RZF) inner beamformers. Even with this assumption of
ZF for the inner beamformer, the derivation of average SLNR
is not straightforward due to the joint nature. Thus, exploiting
the fact that ZF is used for the inner beamformer, we derive a

1The multi-cell scenario considered in [10] can be cast into this single-cell
multi-group setting simply by considering each base station in the multi-cell
case as one group in the single-cell multi-group case.

lower bound on the average SLNR that is a function of only
channel statistics and the outer beamformer, and our design
criterion is to maximize this lower bound on the average SLNR
under the constraint that the outer beamformer matrix has
orthonormal columns.2 Then, we cast this constrained opti-
mization problem as a trace quotient problem (TQP), which is
often encountered in the field of pattern recognition, computer
vision, and machine learning [15]–[17]. To obtain an optimal
solution to the formulated TQP, we modify the algorithm in
[17] to fit into the considered case and show the optimality
and convergence of the modified algorithm based on existing
results [15]–[17]. Numerical results show that the proposed
outer beamformer design approach yields significant sum rate
gain over the existing algorithms in [7] and [10].

Notation and Organization: We will make use of standard
notational conventions. Vectors and matrices are written in
boldface with matrices in capitals. All vectors are column
vectors. For a matrix X, X∗, XT , XH , [X]i,j, and Tr(X) in-
dicate the complex conjugate, transpose, conjugate transpose,
(i, j)-th element, and trace of X, respectively. In stands for
the identity matrix of size n (the subscript is omitted when
unnecessary). For vector x, ||x|| represents the 2-norm of x. diag
(x1, x2, · · · , xn) means a diagonal matrix with diagonal entries
x1, x2, · · · , xn. The notation x ∼ CN (μ,�) means that x is
complex circularly-symmetric Gaussian distributed with mean
vector μ and covariance matrix �. E{·} denotes the expectation.
ι �

√−1 and C is the set of complex numbers.
The remainder of this paper is organized as follows. The

system model is described in Section II. In Section III, a lower
bound on the average SLNR is derived and the outer beam-
former design problem is formulated as a TQP. An iterative
algorithm for the TQP is presented and its optimality and
convergence are shown. The performance of the proposed algo-
rithm is investigated in Section IV, followed by the conclusion
in Section V.

II. SYSTEM MODEL

We consider a single-cell massive MIMO downlink system
in which a base station with a uniform linear array (ULA) of
M transmit antennas serves K single-antenna users. We assume
that K users in the cell are partitioned into G groups such that
K = ∑G

g=1 Kg, where Kg is the number of users in group g, and
Kg users in group g have the same M × M channel covariance
matrix Rg as in [7], [9]–[11]. We assume a typical spatial
correlation channel model [4], [18]. That is, the channel of user
k in group g is given by

hgk = R1/2
g hi.i.d

gk
, (1)

where hi.i.d
gk

∈ C
M×1 i.i.d.∼ CN (0, IM). We assume that the outer

beamformer implements virtual sectorization, i.e., the outer

2The outer beamformer matrix’s having orthonormal columns is very desir-
able for effective downlink channel estimation [3] and downlink user schedul-
ing [8], [9] purposes under the two-stage beamforming framework for massive
MIMO.
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beamformer divides the overall azimuthal angle (typically 120
degrees in conventional cellular networks) into multiple vir-
tual sectors with roughly3 2� degrees for azimuthal coverage
for each virtual sector. A channel model considering such a
situation is the one-ring scattering model [19], [20], which
captures the base station’s elevation and local scattering around
the users. Under this model, the channel covariance matrix for
each sector covering 2� azimuthal angle centered at θ can be
precomputed as [19], [20]

[
Rg
]

k,l = 1

2�

∫ θ+�

θ−�

e−ι2π(k−l) d
λc

sin ωdω, (2)

where λc is the carrier wavelength, d is the antenna spacing, θ

is the angle of the center of the subsector, and � is the angle
spread (AS). From here on, we will assume that the channel
covariance matrices Rg, g = 1, · · · , G are given to the base
station.

As in [7]–[11], we consider two-stage beamforming for
downlink transmission with outer beamformers {Vg, g =
1, · · · , G} for group separation or virtual sectorization and an
inner beamformer Wg for user separation within group g for
each g = 1, · · · , G, as shown in Fig. 1. Denote the overall
K × M channel matrix as H = [

HH
1 , HH

2 , · · · , HH
G

]H
, where

Hg = [hg1, hg2 , · · · , hgKg
]H is the Kg × M channel matrix for

the users in group g. Then, the signal vector received by all the
users in the cell is given by

y = HVWs + n, (3)

where the overall outer beamformer matrix V is partitioned into
G submatrices as V = [V1, V2, · · · , VG] with Vg ∈ C

M×Mg

satisfying4

VH
g Vg = I; (4)

the overall inner beamformer W has a block diagonal struc-
ture as W = diag(W1, W2, · · · , WG) with the inner beam-
former Wg = [wg1 , wg2 , · · · , wgKg

] ∈ C
Mg×Sg for group g;

s = [sH
1 , sH

2 , · · · , sH
g ]H ∼ CN (0, IS) is the data vector with

sg ∼ CN (0, ISg); and n = [nH
1 , nH

2 , · · · , nH
G]H ∼ CN (0, σ 2IK)

is the noise vector. Thus, Mg is the dimension of the effective
MIMO channel seen by the inner beamformer Wg, and Sg

is the number of data streams for group g. We assume
that the base station has an average transmit power con-
straint as E[Tr(VWssHWHVH)] = Tr(VWE[ssH]WHVH) =
Tr(VWWHVH) = Tr(WWH) ≤ PT .

Combining HV, we can rewrite the data model (3) as

y = H̃Ws + n, (5)

3Each sector cannot be completely separated because the number of transmit
antennas is finite and there always exists some overlap among virtual subsec-
tors, even in the case we design the main coverage angle of 2� of each sector
to be small.

4The orthogonality constraint is desirable for random beamforming type user
scheduling [8] or ReDOS-PBR user scheduling [9] for two-stage beamforming
based massive MIMO.

where

H̃ � HV =

⎡⎢⎢⎢⎣
H1V1 H1V2 · · · H1VG

H2V1 H2V2 · · · H2VG
...

...
. . .

...

HGV1 HGV2 · · · HGVG

⎤⎥⎥⎥⎦ (6)

and H̃g � HgVg ∈ C
Kg×Mg is the effective MIMO channel seen

by the inner beamformer Wg for group g. We assume that the
CSI of the effective MIMO channel H̃g, g = 1, · · · , G, is avail-
able to the transmitter (please see [3]) and the inner beamformer
Wg ∈ C

Mg×Sg (Mg ≥ Sg) for each g = 1, 2, · · · , G is designed
as a zero-forcing beamformer with equal power ||wgk ||2 = 1 for
each user based on the effective CSI H̃g, i.e.,

Wg = VH
g HH

g

(
HgVgVH

g HH
g

)−1
Pg, (7)

where Pg = diag(pg1 , · · · , pgSg
), and pgk is the transmit power

scaling factor for user k in group g for satisfying ‖wgk‖2 = 1.
The received signal vector for the users in group g is given by

yg = HgVgWgsg +
∑
g′ 
=g

HgVg′Wg′sg′ + ng, (8)

where sg = [sg1, sg2 , · · · sgSg
]T ∈ C

Sg×1 and ng = [ng1, ng2 , · · ·
ngKg

]T ∈ C
Kg×1 are the data and noise vectors for group g,

respectively. The received signal of user k in group g is
given by

ygk = hH
gk

Vgwgk sgk +
∑
k′ 
=k

hH
gk

Vgwgk′ sgk′

+
∑
g′ 
=g

Kg′∑
j=1

hH
gk

Vg′wg′
j
sg′

j
+ ngk , (9)

where the second and third terms in the right-hand side (RHS)
of (9) are the intra-group and inter-group interference, respec-
tively. With the assumed ZF inner beamforming the intra-group
interference is completely eliminated, and the signal-to-
interference-plus-noise ratio (SINR) at user k in group g is
given by

SINRgk =
∣∣∣hH

gk
Vgwgk

∣∣∣2∑
g′ 
=g

∑Kg′
j=1

∣∣∣hH
gk

Vg′wg′
j

∣∣∣2 + σ 2
. (10)

Using the SINR as the optimization criterion, one could try to
design the outer beamformer {Vg, g = 1, · · · , G} to maximize
a relevant measure such as the sum rate. However, this criterion
generally leads to a challenging nonconvex optimization prob-
lem since each user’s SINR is jointly dependent on {Vg, g =
1, · · · , G} in a nonconvex manner [12], [13]. To circumvent the
difficulty, we here adopt the SLNR approach proposed in [12]
and [13].
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The SLNR approach considers the ratio between the signal
power to the desired receiver and the power of the total inter-
ference (to undesired receivers caused by the desired signal)
plus noise, not the power of the total interference received at
the desired receiver. The rationale for this approach is that
it is reasonable for the transmitter to maximize the signal
power to the desired receiver for a given allowed level of
interference to undesired receivers in multi-user interference
channels. The SLNR method is shown to be Pareto-optimal in
the rate region in certain MIMO interference channel scenarios
[13], [14]. Under the assumption of ZF inner beamforming
with equal power allocation, the SLNR for user k in group g is
given by

SLNRgk =
∣∣∣hH

gk
Vgwgk

∣∣∣2∑
g′ 
=g

∑Kg′
j=1

∣∣∣∣hH
g′

j
Vgwgk

∣∣∣∣2 + σ 2

. (11)

Note that the key difference between (10) and (11) is that
the SINR of user gk (at the receiver side) is a joint function
of {Vg, g = 1, · · · , G}, whereas the SLNR of user gk (at the
transmitter side) is a function of only Vg not of {Vg′, g′ 
= g}.
Note also that the SLNR of user gk is a function of the chan-
nel {hgk , hg′

j
, g′ 
= g, j = 1, · · · , Kg′ } and the inner beamformer

wgk in addition to Vg.

III. OUTER BEAMFORMER DESIGN

CRITERION AND OPTIMIZATION

Recall that the main advantage of the two-stage beam-
forming results from the fact that the outer beamformer is
designed without knowing the CSI of the actual channel
{hgk , k = 1, · · · , Kg, g = 1, · · · , G} [7]–[11]. Thus, the outer
beamformer should be designed based only on the channel
covariance matrices {Rg, g = 1, · · · , G} and this leads to using
the average SLNR as our design criterion. Hence, we formulate
the outer beamformer design problem as follows:

P1 : V∗
g = arg max

VH
g Vg=I

Kg∑
k=1

E[SLNRgk ] (12)

for each g = 1, 2, · · · , G. Although Problem P1 is conceptu-
ally simple, solving the optimization problem is not straight-
forward. The first difficulty is the derivation of the average
SLNR since the random quantities (i.e., the channel vec-
tors) are both in the numerator and the denominator as seen
in (11) and a closed-form expression of the average SLNR
is not available. To circumvent this difficulty, we first de-
rive a lower bound on the average SLNR and maximize
this lower bound on the average SLNR under the constraint
VH

g Vg = I.
For a given outer beamformer Vg and a given inner beam-

former Wg, the SLNR of user gk averaged over channel real-

izations is lower bounded as follows:

E
{
SLNRgk

}
= E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣hH

gk
Vgwgk

∣∣∣2∑
g′ 
=g

∑Kg′
j=1

∣∣∣∣hH
g′

j
Vgwgk

∣∣∣∣2 + σ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (13)

(a)≥ E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣hH

gk
Vgwgk

∣∣∣2∑
g′ 
=g

∑Kg′
j=1

∥∥∥∥hH
g′

j
Vg

∥∥∥∥2

‖wgk‖2 + σ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (14)

(b)= E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣hH

gk
Vgwgk

∣∣∣2∑′
g 
= g

∑Kg′
j=1

∥∥∥∥hH
g′

j
Vg

∥∥∥∥2

+ σ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (15)

(c)= E

{∣∣∣hH
gk

Vgwgk

∣∣∣2}E
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1∑
g′ 
=g

∑Kg′
j=1

∥∥∥∥hH
g′

j
Vg

∥∥∥∥2

+ σ 2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(d)≥ E

{∣∣∣hH
gk

Vgwgk

∣∣∣2} 1

E

{∑
g′ 
=g

∑Kg′
j=1

∥∥∥∥hH
g′

j
Vg

∥∥∥∥2

+ σ 2

} ,

=
E

{∣∣∣hH
gk

Vgwgk

∣∣∣2]
∑

g′ 
=g
∑Kg′

j=1 Tr

(
VH

g E

{
hg′

j
hH

g′
j

}
Vg

)
+ σ 2

, (16)

(e)=
E

{∣∣∣hH
gk

Vgwgk

∣∣∣2}
Tr
(

VH
g Rg,2Vg

) . (17)

Here, (a) follows from the sub-multiplicativity of norm ‖AB‖ ≤
‖A‖‖B‖; (b) follows from the equal power allocation ‖wgk‖=1;
(c) follows from the independence between the desired-group
channels and other group channels; (d) results from Jensen’s
inequality since the function f (x) = 1

x is convex for x ≥ 0; and
(e) follows from

Rg,2 �
∑
g′ 
=g

Kg′Rg′ + σ 2

Mg
I. (18)

The next difficulty in deriving a lower bound on the average
SLNR is that the ZF inner beamformer wgk is based on the
CSI of the effective channel HgVg. However, at the time of
designing Vg this effective channel is not determined. This
difficulty is properly circumvented by exploiting the property
of ZF inner beamforming and a lower bound on the average
signal power appearing in the numerator of the RHS of (17) is
given in the following theorem.

Theorem 1: When the outer beamformer Vg is given and the
inner-beamformer Wg = [wg1, wg2 , · · · , wgKg

] is a ZF beam-

former with equal power allocation, E[|hH
gk

Vgwgk |2] is lower-
bounded as

E

{∣∣∣hH
gk

Vgwgk

∣∣∣2} ≥ Tr
(

VH
g RgVg

)
− (Kg − 1)λg, (19)



2204 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 6, JUNE 2015

where λg is the largest eigenvalue of the channel covariance
matrix Rg of group g.

Proof: See Appendix. �
Applying Theorem 1 to (17), we obtain a lower bound on the

average SLNR, given by

E
[
SLNRgk

] ≥
E

[∣∣∣hH
gk

Vgwgk

∣∣∣2]
Tr
(

VH
g Rg,2Vg

) ,

≥
Tr
(

VH
g RgVg

)
− (Kg − 1)λg

Tr
(

VH
g Rg,2Vg

) ,

=
Tr
(

VH
g Rg,1Vg

)
Tr
(

VH
g Rg,2Vg

) , (20)

where Rg,1 is defined as

Rg,1 � Rg − (Kg − 1)

Mg
λgI. (21)

Note that the derived lower bound on the average SLNR
depends only on the group index g not on the user index k.
This makes sense since we assume that each user in the same
group has the same channel statistics. Finally, the proposed
outer beamformer design based only on the channel statistic
information {Rg, g = 1, · · · , G} is formulated as

P2 : V∗
g = arg max

VH
g Vg=I

Tr
(

VH
g Rg,1Vg

)
Tr
(

VH
g Rg,2Vg

) (22)

for each g = 1, 2, · · · , G, where Rg,1 and Rg,2 are given by
(21) and (18), respectively. Note that in Problem (22), the outer
beamformer design is performed for each group separately. This
is an advantage of the proposed design method; complicated
joint optimization is not required.

Note that in Problem P2, Rg,1 is Hermitian and Rg,2 is
positive definite due to the added identity matrix in Rg,2 in
(18). Problem P2 maximizes the quotient (or ratio) of two
traces under the constraint VH

g Vg = I, and is known as a trace
quotient problem (TQP) or trace ratio problem (TRP), which
is often encountered in linear discriminant analysis (LDA) for
feature extraction and dimension reduction [15], [16]. Several
research works have been performed to understand the theoret-
ical properties of TQP and to develop numerical algorithms for
TQP [15]–[17].

If we relax the orthogonality constraint VH
g Vg = I for the

outer beamformer, then Problem P2 reduces to the following
simpler optimization problem:

P3 : V	
g = arg max

Tr
(

VH
g Rg,1Vg

)
Tr
(

VH
g Rg,2Vg

) (23)

for each g = 1, 2, · · · , G. It was shown in [12] that the op-
timal V	

g of Problem P3 is the Mg generalized eigenvectors
corresponding to the Mg largest generalized eigenvalues of the
matrix pencil Rg,1 − λRg,2. There exist many available fast
algorithms to obtain the generalized eigenvectors of the positive
definite matrix pencil Rg,1 − λRg,2 [21], [22]. Note that the
obtained generalized eigenvectors from Problem P3 do not
satisfy the orthogonality constraint VH

g Vg = I in general. The

optimal solution V	
g of Problem P3 can be decomposed by thin

singular value decomposition (SVD) as

V	
g = �gDg�g, (24)

where �g is an M × Mg matrix satisfying �H
g �g = I; Dg is

an Mg × Mg diagonal matrix; and �g is an Mg × Mg unitary
matrix. By setting

Vg = �g, (25)

we can obtain an outer beamformer satisfying the constraint
VH

g Vg = I. Although this approach does not necessarily yield
an optimal solution to Problem P2, this solution is useful for
the proposed iterative algorithm in the next section to reduce the
computational complexity. Specifically, the solution (25) can be
used as an initialization point for the iterative algorithm. The
performance of this initialization and random initialization will
be evaluated in Section IV.

A. Optimal Solution to TQP

In this section, we briefly discuss the optimal solution to the
TQP P2. In Theorem 2.1 of [16], the optimal solution V	

g to the
TQP P2 is known as the eigenvectors corresponding to the Mg
largest eigenvalues of

Eρ(Vg) � Rg,1 − ρ(Vg)Rg,2, (26)

when the value ρ(Vg) �
Tr(VH

g Rg,1Vg)

Tr
(
Vg

HRg,2Vg
) is maximized. In [16]

and [23], it is also shown that M = {Vg ∈ CM×Mg |Eρ(Vg)Vg =
VgMVg and VH

g Vg = IMg} is the set of all Karush-Kuhn-Tucker
(KKT) points of TQP P2, where MVg = VH

g Eρ(Vg)Vg. This
implies that any KKT point Vg of the TQP P2 is an orthonormal
eigenbasis of the matrix Eρ(Vg) with the sum of the correspond-
ing eigenvalues zero, i.e., Tr(MVg) = 0. (It is easy to see the
fact that Tr(MVg) = 0 from (26).) Note that (26) is a nonlinear
eigenvalue problem since the weighting factor ρ(Vg) itself is a
function of the design variable Vg. It is known that there is no
closed-form solution to the TQP [15]–[17]. In [16], however, it
is shown that any iterative method that monotonically converges
to a KKT point in M achieves a global maximizer V	

g for
the TQP by repeatedly applying the update strategy for ρ(Vg)

specified in Section IV of [16]. The update strategy is that
in every iteration step, ρ(Vg) is computed as ρ(V(n)

g ), where

V(n)
g is determined as the eigenvectors corresponding to the Mg

largest eigenvalues of Rg,1 − ρ(V(n−1)
g )Rg,2. The proof of this

is based on the gradient and Hessian of the cost function and
optimization theory [16]. Although the statement was proved in
the case that Rg,1 and Rg,2 are real symmetric and real positive-
definite symmetric, respectively, in [16], the statement can eas-
ily be extended to the case that Rg,1 and Rg,2 are Hermitian and
positive-definite, respectively. Interested readers are referred
to [16].

B. The Outer Beamformer Design Algorithm and Its
Convergence

In [17], an iterative algorithm was proposed under the con-
dition that Rg,1 and Rg,2 are both real symmetric positive
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semidefinite. However, in our case, Rg,1 is Hermitian and Rg,2
is positive-definite. Thus, to apply the iterative algorithm in [17]
to our case, we need slight modification of the algorithm from
the real matrix case to the complex matrix case. Basically, the
presented algorithm iteratively optimizes the objective function
subject to the orthogonality constraint with ρ(Vg) update spec-
ified in [16].

Denote the objective function of Problem P2 at the n-th
iteration by

ρn =
Tr
(

V(n−1)
g

H
Rg,1V(n−1)

g

)
Tr
(

V(n−1)
g

H
Rg,2V(n−1)

g

) , (27)

where V(n−1)
g is the outer beamformer at the (n − 1)-th iter-

ation. The outer beamformer V(n)
g is updated by solving the

following trace difference problem:

V(n)
g = arg max

VH
g Vg=I

Tr
(
Vg

H(Rg,1 − ρnRg,2)Vg
)
, (28)

where ρn is given by (27). The outer beamformer V(n)
g of the

trace difference problem in the n-th iteration is updated by the
Mg eigenvectors corresponding to the Mg largest eigenvalues
of the Hermitian matrix Rg,1 − ρnRg,2 for given ρn. This
procedure is iterated until the iteration converges. The proposed
algorithm for Problem P2 is summarized in Algorithm 1. Note
that in the proposed algorithm the initialization of V(0)

g is done
based on (25). This initialization significantly reduces the re-
quired number of iterations compared to random initialization.

The monotonic increase of the objective function ρn by
Algorithm 1 is guaranteed by the following theorem:

Algorithm 1 Outer BeamformerDesignby TQP Based on [17]

Require: The channel covariance matrices {Rg,g=1, · · · ,G},
the noise variance σ 2, and the stopping tolerance ε > 0.
Construct Rg,1 and Rg,2 by (21) and (18).

Set ρ−1 = −∞ and initialize V(0)
g by (25).

for n = 1, 2, · · · do
Compute the trace ratio ρn from V(n−1)

g :

ρn =
Tr
(

V(n−1)
g

H
Rg,1V(n−1)

g

)
Tr
(

V(n−1)
g

H
Rg,2V(n−1)

g

)
.

(29)

Solve the trace difference problem

V(n)
g = arg max

VH
g Vg=I

Tr
(
Vg

H(Rg,1 − ρnRg,2)Vg
)
. (30)

That is, update V(n)
g =[v(n)

g,1, v(n)
g,2, · · · , v(n)

g,Mg
] by solving

(Rg,1 − ρnRg,2)v
(n)
g,k = ν

(n)
k v(n)

g,k, (31)

where v(n)
g,k is the eigenvector corresponding to the k-th

largest eigenvalue ν
(n)
k of Rg,1 − ρnRg,2.

if |ρn − ρn−1| < ε

Break the loop.
end if

end for

Theorem 2: Algorithm 1 monotonically increases the trace
quotient ρn, i.e., ρn+1 ≥ ρn for all n.

Proof: See Appendix. �
Furthermore, the boundedness of the objective function ρn

for all n can also be shown, as stated in the following theorem:
Theorem 3: Let ψ1 ≥ ψ2 ≥ · · · ≥ ψM and ϕ1 ≥ ϕ2 ≥ · · · ≥

ϕM > 0 be the sorted eigenvalues of Rg,1 and Rg,2(� 0), re-
spectively. Then, the objective function of the TQP is lower-
bounded and upper-bounded as follows:

i)

Mg∑
k=1

ψM−k ≥ 0 and

Mg∑
k=1

ψk ≥ 0 :

∑Mg
k=1 ψM−k∑Mg

k=1 ϕk

≤ ρ(Vg) ≤
∑Mg

k=1 ψk∑Mg
k=1 ϕM−k

,

ii)

Mg∑
k=1

ψM−k < 0 and

Mg∑
k=1

ψk ≥ 0 :

∑Mg
k=1 ψM−k∑Mg
k=1 ϕM−k

≤ ρ(Vg) ≤
∑Mg

k=1 ψk∑Mg
k=1 ϕM−k

,

iii)

Mg∑
k=1

ψM−k < 0 and

Mg∑
k=1

ψk < 0 :

∑Mg
k=1 ψM−k∑Mg
k=1 ϕM−k

≤ ρ(Vg) ≤
∑Mg

k=1 ψk∑Mg
k=1 ϕk

.

Proof: See Appendix. �
Theorems 2 and 3 together imply that the proposed outer

beamformer design algorithm monotonically converges by the
monotone convergence theorem. The convergence of the pro-
posed algorithm actually guarantees its global optimality. Let us
first assume that the proposed algorithm converges in the n-th
iteration, i.e., ρn+1 = ρn. Then, the same trace difference prob-
lem (30) in the (n + 1)-th iteration as that in the n-th iteration
will be solved by eigenvalue decomposition. Thus, it is easy to
see that the obtained solution Vg from the proposed algorithm
is a KKT point in M. This implies the local optimality of the
proposed algorithm. In Theorem 1.1. of [16], it was shown that
any local optimum is also a global optimum for the TQP P2. In
addition to this, Algorithm 1 adopts the ρ(Vg) update strategy
specified in [16]. As the optimality result in [16] explained in
Section III-A, Algorithm 1 yields a global optimizer for the
TQP P2.

C. Discussion

Now consider the difference between the proposed outer
beamformer design method and the algorithm in [10]. (In
Section IV, it will be seen that both algorithms perform better
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than the outer beamformer design method in [7].) The algorithm
in [10] basically minimizes⎛⎝∑

g′ 
=g

Rg′

⎞⎠− wRg, (32)

where w is an arbitrary chosen constant weighting factor. Prob-
lem (32) is equivalent to maximizing

Rg − λ

⎛⎝∑
g′ 
=g

Rg′

⎞⎠ , (33)

where λ = 1/w. Note that the first difference is that Rg and∑
g′ 
=g Rg′ are respectively used in [10] instead of Rg,1 and

Rg,2 used in the proposed algorithm. Thus, in the proposed
algorithm there is slight change in the signal power by including
the impact of ZF inner beamforming and the inclusion of the
thermal noise in the leakage part. However, the major difference
of the proposed approach from the existing method in [10] is
the formulation of the trace ratio in Problem P2. As already
mentioned in Section III-A, it was shown by Zhang et al. that
the optimal solution of TQP P2 is the Mg dominant eigen-
vectors of

Rg,1 − ρ(Vg)Rg,2 (34)

with ρ(Vg) (= a lower bound of E{SLNRgk}) achieving its
maximum value [16]. Thus, the proposed algorithm updates the
weighting factor ρ(Vg) for different channel statistics by solv-
ing a nonlinear eigenvalue problem5 (note that the weighting
factor itself is a function of the design variable Vg), whereas
the existing method solves a linear eigenvalue problem by
simply fixing the weighting factor. The procedure of updating
the weighting factor of the proposed outer beamformer design
approach can yield significant performance gain over the exist-
ing method, as seen in Section IV.

Now consider the difference between Problem P2 and
Problem P3. The optimal solution to Problem P3 is given by
the set of Mg dominant generalized eigenvectors of (Rg,1, Rg,2)

satisfying [12]

Rg,1ξ i = λiRg,2ξ i, i = 1, · · · , Mg, (35)

where λ1 ≥ · · · ≥ λMg . Since Rg,1 is Hermitian and Rg,2 is
positive-definite, {ξ i} are Rg,2-orthogonal [24], i.e.,

ξH
j Rg,2ξ i = 0, i 
= j.

Thus, Vg = [ξ1, · · · , ξMg
] does not satisfy the orthogonality

constraint VH
g Vg = I unless Rg,2 = cI for some constant c.

However, the matrix in (34) is Hermitian and thus, it is diago-
nalizable by unitary similarity, i.e., it has orthonormal eigenvec-
tors [25]. Hence, it yields an outer beamformer satisfying the
orthogonality constraint. Note that (33) involves a linear Her-
mitian eigen-system composed of a weighted matrix difference
with a fixed weighting factor and Problem P3 involves a linear

5This procedure is clearly seen in Algorithm 1.

generalized eigen-system (35) with a matrix pencil, whereas
the proposed problem P2 involves a nonlinear Hermitian eigen-
system (34) again composed of a weighted matrix difference
but with a weighting factor depending on the design variable.

IV. NUMERICAL RESULTS

In this section, we provide some numerical results to evaluate
the performance of the proposed outer beamformer design
method in Section III. Throughout the simulation, we consid-
ered a massive multiple-input single-output (MISO) downlink
system in which a base station is equipped with a ULA of M =
128 antenna elements and each of K users has a single receive
antenna. The K users were grouped into four groups (G = 4),
and the base station supported five users simultaneously for
each group, i.e., Kg = 5 for each g = 1, 2, 3, and 4. Mg and
Sg were set as Mg = M/G and Sg = Kg for g = 1, 2, 3, and 4.
The channel covariance matrix for each group is specified by (2)
with the center angle θ and the AS parameter �. The channel
vector for each user was independently generated according to
the model (1). The stopping tolerance of the proposed outer
beamformer design algorithm was set as ε = 10−4. The noise
power is set as σ 2 = 1. From here on, all dB power values are
relative to σ 2 = 1.

Fig. 2(a) shows the sum rate performance of the proposed
outer beamformer design algorithm and two existing algorithms
in [7] and [10]. (Throughout the simulation, the weighting
factor for the algorithm in [10] was set as w = 1.) We also
considered regularized ZF (RZF) [26] inner beamforming with
the same outer beamformer designed by the proposed algo-
rithm under the assumption of ZF inner beamforming. The
regularization factor was set as α = K/PT , which is approxi-
mately optimized based on [26], [27]. The parameters for four
virtual sectors covering a conventional cell sector were θ =
−45◦,−15◦, 15,◦ and 45◦ with � = π/13 (i.e. 2� = 27.7◦).
Note that still inter-group interference leakage comes in even
though 2� < 30◦ for the channel covariance model (2) when
the number of transmit antennas is finite. The power azimuth
spectrum (PAS) for this setting is shown in Fig. 2(b). The curves
in Fig. 2(a) is the average sum rate over 2000 independent
channel realizations according to the model (1) and (2). It is
seen that the proposed algorithm has significant gain over the
other two algorithms. It is also seen that in the low SNR region
the proposed outer beamformer combined with RZF inner
beamforming has performance gain over the proposed outer
beamformer combined with ZF inner beamforming as expected.
Although it is not shown due to space limitation, similar relative
performance is observed for different channel models such as
truncated Gaussian and Laplacian power azimuth spectra.

Fig. 3 shows the sum of the total signal power to each desired
group and the sum of the total leakage power to undesired
groups corresponding to each group under the same setting
as in Fig. 2. The shown curves are average values over 2000
channel realizations. Now the cause of the performance gain
of the proposed algorithm over the existing algorithms is clear.
It achieves almost the same signal power to the desired group
with reduced leakage power to undesired groups compared to
the two other algorithms, by solving a nonlinear eigenvalue
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Fig. 2. M = 128, G = 4, Mg = 32, Kg = Sg = 5,� = π/13, and θ = −45◦,−15◦, 15,◦ and 45◦: (a) average sum rate versus transmit power and (b) PAS of
the model (2). (Note that the dB transmit power in the x-axis in Fig. (2)(a) is not the received SNR because of the channel gain and the beamforming gain.)

Fig. 3. (a) Total desired groups’ power versus transmit power, (b) total interference leakage power versus transmit power, (c) total desired groups’ power in a dB
scale versus transmit power, and (d) total interference leakage power in a dB scale versus transmit power (M = 128, G = 4, Mg = 32, Kg = Sg = 5, � = π/13,
and θ = −45◦, −15◦, 15◦ and 45◦).

problem with adaptive weighting resulting from the trace quo-
tient formulation for the signal power and the leakage power.
In the case of the algorithm [10], the performance can change
with respect to the weighting factor between the desired-group
signal power and the inter-group interference power. However,

the optimal weighting factor depending on the channel statistics
is not known a priori in the case of a constant weighting factor,
and the weight factor is not adaptively optimized according to
the given channel statistic information in [10]. Thus, we evalu-
ated the sum rate performance for different channel covariance
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Fig. 4. Average sum rate over various algorithms versus angle spread (M =
128, G = 4, Mg = 32, Kg = Sg = 5, PT = −10 dB, and θ = −45◦, −15◦,
15,◦ and 45◦).

Fig. 5. Average SLNR versus each group for various algorithms (M = 128,
G = 4, Mg = 32, Kg = Sg = 5, � = π/13, PT = 15 dB, and θ = −45◦,
−15◦, 15,◦ and 45◦).

matrix setup to see the impact of a fixed weighting factor. The
channel covariance matrix is a function of the center angle and
angular spread according to the model (2). We fixed the center
angles of four virtual subsectors as θ = −45◦,−15◦,−15◦,
and 45◦ but varied AS �. Fig. 4 shows the average sum rate
performance with respect to � when the transmit power is
−10 dB. (Note the transmit power −10 dB point in Fig. 2.)
It is seen that at a certain AS, the fixed weighting factor w =
1 yields good performance but deteriorated performance for
different AS’s. Thus, the optimization of the weighting factor
depending on different channel statistics is necessary for good
performance for arbitrary channel statistics.

Fig. 5 shows the average SLNR performance for each group
under the same setting as in Fig. 2. The shown values are
average values over 2000 channel realizations. It is seen that
the proposed algorithm outperforms the other two algorithms.
The algorithm in [7] has relatively poor performance compared
to the other algorithms since it only considers the subspace
spanned by the dominant eigenvectors of each channel covari-
ance matrix. The channel component generated by the non-
dominant eigenvectors can result in nonnegligible interference.

Moreover, the algorithm in [7] is based on the sequential
projection from Group 1 to Group 4. Thus, the effective channel
power for each group is degraded at every projection step, and
this is clearly shown in Fig. 5.

Finally, we tested the convergence of the proposed algorithm.
Fig. (6)(a) shows the objective value ρn of the TQP for each
group by the proposed algorithm as a function of iteration time.
It is seen that the proposed algorithm monotonically converges,
as expected from Theorem 2, and furthermore the proposed
algorithm converges after only a few iterations. Next, we tested
the convergence of the proposed algorithm with different initial
points. Fig. 6(b) shows the objective value ρn of the TQP for
Group 1 for different initial points. It is seen that the algo-
rithm with the proposed initial point based on (25) converges
much faster than the other two random initial points. Since the
proposed algorithm requires eigenvalue decomposition (EVD)
for each iteration step, the number of required iterations di-
rectly translates into computational complexity. Thus, the ini-
tialization based on (25) reduces computational complexity
significantly compared to random initialization, although the
algorithm with a random initial point also converges eventually.

V. CONCLUSION

In this paper, we have considered the outer beamformer
design problem based only on channel statistic information
for two-stage beamforming for massive MIMO downlink and
have proposed an outer beamformer design method which
maximizes a lower bound on the average SLNR. We have
shown that the proposed SLNR-based outer beamformer design
problem reduces to a TQP, which is often encountered in
the field of machine learning, and have presented an iterative
algorithm to obtain an optimal solution to the proposed TQP.
Numerical results show that the proposed outer beamformer
design method yields significant performance gain over existing
methods. The proposed method can easily be adapted to the
multi-cell scenario in which each base station serves one group
of users.

APPENDIX A
PROOF OF THEOREM 1

Using similar techniques to those used in the proof of Lemma
1 in [28] and the proof of Theorem 1 in [11], we first prove
several lemmas necessary for proof of Theorem 1.

Lemma 1: For ZF inner beamforming, we have∣∣∣hH
gk

Vgwgk

∣∣∣2 = hH
gk

VgŨgk ŨH
gk

VH
g hgk , (36)

where the column space of Ũgk is the null space of the compos-
ite effective channel matrix H̃g,−k except the channel of user gk,
i.e., H̃g,−k � [VH

g hg1 , · · · , VH
g hgk−1 , VH

g hgk+1 · · · VH
g hgKg

]H .

Proof: H̃g,−k ∈C(Kg−1)×Mg(Kg ≤Mg) is decomposed by
singular value decomposition (SVD) as

H̃g,−k = ϒgk Dgk

[
UH

gk

ŨH
gk

]
, (37)
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Fig. 6. (a) The objective value of the TQP for each group versus iteration number and (b) the objective value of the TQP of Group 1 for various initial points
versus iteration number (M = 128, G = 4, Mg = 32, Kg = Sg = 5, � = π/13, and θ = −45◦, −15◦, 15◦, and 45◦).

where ϒgk is a (Kg − 1) × (Kg − 1) unitary matrix, Dgk is a
Mg × Mg diagonal matrix, Ugk is a Mg × (Kg − 1) submatrix
whose column space is the row space of H̃g,−k, and Ũgk is a
Mg × (Mg − Kg + 1) submatrix whose column space is the null
space of H̃g,−k. The ZF inner beamformer wgk with equal power
can be expressed by the projection of the effective channel
VH

g hgk of user gk to Ũgk as [28]

wgk = Ũgk ŨH
gk

VH
g hgk∥∥∥Ũgk ŨH

gk
VH

g hgk

∥∥∥ . (38)

By (38), |hH
gk

Vgwgk |2 is expressed as∣∣∣hH
gk

Vgwgk

∣∣∣2 = hH
gk

Vgwgk wH
gk

VH
g hgk ,

= hH
gk

VgŨgk ŨH
gk

VH
g hgk hH

gk
VgŨgk ŨH

gk
VH

g hgk∥∥∥Ũgk ŨH
gk

VH
g hgk

∥∥∥2
,

= hH
gk

VgŨgk ŨH
gk

VH
g hgk .

This concludes the proof. �
Lemma 2: The conditional expectation of ‖hH

gk
Vgwgk‖2 for

given H̃g,−k is given by

E

{∣∣∣hH
gk

Vgwgk

∣∣∣2 |H̃g,−k

}
= Tr(�gk), (39)

where

�gk = ŨH
gk

VH
g RgVgŨgk (40)

and Ũgk is defined in (37) in Lemma 1.
Proof: By Lemma 1, we have |hH

gk
Vgwgk |2=hH

gk
Vg̃Ugk ŨH

gk

VH
g hgk . For given H̃g,−k, Ũgk is also given because Ũgk determin-

istically depends on H̃g,−k according to (37). Define ξgk
�

ŨH
gk

VH
g hgk . Then, ξgk

|H̃g,−k is a zero-mean complex Gaussian

random vector with the covariance matrix �gk = ŨH
gk

VH
g RgVg

Ũgk , i.e., ξgk
|H̃g,−k ∼ CN (0,�gk), since hgk ∼ CN (0, Rg)

from (1). Let the eigenvalue decomposition of �gk be

�gk = Ugk�gk U
H
gk

,

where �gk = diag(λ̄gk,1, · · · , λ̄gk,Ng) and Ng = Mg − Kg + 1.
Then, ξgk

can be expressed as

ξgk
|H̃g,−k = �1/2

gk
η = Ugk�

1/2
gk

η,

where η ∼ CN (0, IMg−Kg+1). Thus, |hH
gk

Vgwgk |2 can be rewrit-
ten as ∣∣∣hH

gk
Vgwgk

∣∣∣2 = hH
gk

VgŨgk ŨH
gk

VH
g hgk ,

= ξH
gk

ξgk
= Tr

(
ξgk

ξH
gk

)
,

= Tr
(

Ugk�
1/2
gk

ηηH�
H/2
gk

U
H
gk

)
. (41)

Using (41), we now take the conditional expectation of
|hH

gk
Vgwgk |2 for given H̃g,−k:

E

{∣∣∣hH
gk

Vgwgk

∣∣∣2 |H̃g,−k

}
= E

{
Tr
(

Ugk�
1/2
gk

ηηH�
H/2
gk

U
H
gk

)
|H̃g,−k

}
,

= Tr
(

Ugk�
1/2
gk

E
{
ηηH|H̃g,−k

}
�

H/2
gk

U
H
gk

)
,

= Tr
(

Ugk�
1/2
gk

�
H/2
gk

U
H
gk

)
,

=
Ng∑
i=1

λgk,i = Tr(�gk). (42)

�
Lemma 3: [25] [Corollary 4.3.18] Let M be any J × J

Hermitian matrix and let j be a given integer such that 1≤ j≤J.
Then, we have

λ1 + λ2 + · · · + λj = min
UHU=Ij

Tr(UHMU), (43)

and

λJ−j+1 + λJ−j+2 + · · · + λJ = max
UHU=Ij

(UHMU), (44)
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where λk is the k-th smallest eigenvalue of M and equality
holds if the columns of the J × j matrix U are chosen to be
the orthonormal eigenvectors associated with the corresponding
eigenvalues of M.

Lemma 4: For the matrix �gk defined in Lemma 2, (�gk) is
lower bounded as

Tr(�gk) ≥ Tr
(

VH
g RgVg

)
− (Kg − 1)λg, (45)

where Vg is the outer beamformer for group g satisfying
VH

g Vg = I, Rg is the channel covariance matrix of group g, and
λg is the largest eigenvalue of Rg.

Proof: Applying the Rayleigh quotient technique, one
can easily show that the maximum eigenvalue of the matrix
VH

g RgVg is less than or equal to λg, where λg is the largest
eigenvalue of Rg, since Vg has orthonormal columns. That is,

λmax

(
VH

g RgVg

)
≤ max

xHVH
g RgVgxH

xHx
,

= max
xHVH

g RgVgxH

xHVH
g Vgx

,

= max
x̃HRgx̃H

x̃H x̃
,

= λg.

Define 
g � 1
λg

VH
g RgVg and let 0 ≤ χ1 ≤ χ2 ≤ · · · , χMg be

the eigenvalues of 
g. Then, the maximum eigenvalue χMg of

g is less than or equal to one from the above. Note from (40)
that 1

λg
�gk = ŨH

gk

gŨgk , where ŨH

gk
Ũgk = I. Applying Lemma

3 to 1
λg

�gk with M = 
g, we have

1

λg
Tr(�gk) ≥

Ng∑
k=1

χk, (46)

(a)≥
Mg∑
k=1

χk − (Kg − 1)χMg , (47)

(b)≥
Mg∑
k=1

χk − (Kg − 1), (48)

= Tr(
g) − (Kg − 1), (49)

where (a) follows from the relationship Ng = Mg − Kg + 1 and
the fact that χMg is the maximum eigenvalue of 
g and (b)
follows from the fact that χMg ≤ 1. Multiplying both sides of
(49) by λg, we obtain the desired result. �

Proof of Theorem 1: Finally, we prove Theorem 1 by
using the above lemmas. By Lemma 2 and Lemma 4, the con-
ditional expectation of |hH

gk
Vgwgk |2 for given H̃g,−k is lower-

bounded as

E

{∣∣∣hH
gk

Vgwgk

∣∣∣2 |H̃g,−k

}
= Tr(�gk), (50)

≥ Tr
(

VH
g RgVg

)
−(Kg−1)λg, (51)

where (50) is by Lemma 2 and (51) is by Lemma 4. Note that
the lower bound (51) is independent of H̃g,−k and is a constant.

By taking expectation over H̃g,−k on both sides of (51). The

left-hand side (LHS) becomes E

{
|hH

gk
Vgwgk |2

}
by the law of

iterated expectation and the RHS does not change since the
RHS is a constant. Hence, we have

E

{∣∣∣hH
gk

Vgwgk

∣∣∣2} ≥ Tr
(

VH
g RgVg

)
− (Kg − 1)λg. (52)

APPENDIX B
PROOF OF THEOREM 2

As in the proof of Lemma 1 in [17], we first define fn(Vg) �
Tr(Vg

H(Rg,1 − ρnRg,2)Vg). Then, we have fn(V
(n−1)
g ) = 0

from (27). The step (30) of Algorithm 1 maximizes fn(Vg) over

the set {Vg : VH
g Vg = I} which includes V(n−1)

g , and V(n)
g is the

maximizer of fn(Vg). Hence, we have

fn
(

V(n)
g

)
≥ fn

(
V(n−1)

g

)
= 0. (53)

Based on the positive-definiteness of Rg,2, fn(V
(n)
g ) =

(V(n)
g

H
(Rg,1 − ρnRg,2)V

(n)
g ) ≥ 0 can be rewritten as

ρn+1 =
Tr
(

V(n)
g

H
Rg,1V(n)

g

)
Tr
(

V(n)
g

H
Rg,2V(n)

g

) ≥ ρn. (54)

This concludes the proof. �

APPENDIX C
PROOF OF THEOREM 3

By Lemma 3, the numerator and denominator of the objective
function of TQP are lower-bouned and upper-bounded as

Mg∑
k=1

ψM−k ≤ Tr
(

VH
g Rg,1Vg

)
≤

Mg∑
k=1

ψk and

Mg∑
k=1

ϕM−k ≤ Tr
(

VH
g Rg,2Vg

)
≤

Mg∑
k=1

ϕk. (55)

Rg,1 is Hermitian and Rg,2 is positive-definite. Hence, we

have
∑Mg

k=1 ϕM−k > 0 and
∑Mg

k=1 ϕk > 0. We consider three

cases: i)
∑Mg

k=1 ψM−k ≥0 and
∑Mg

k=1 ψk ≥0, ii)
∑Mg

k=1 ψM−k <0

and
∑Mg

k=1 ψk ≥ 0, and iii)
∑Mg

k=1 ψM−k < 0 and
∑Mg

k=1 ψk < 0.
By applying (55) to each case, we have the desired result. �
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