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straints on the feasible set of the objectives. An initial population 
size of 5&100 and up to 200 generations were tested. Various 
parameter values such as crossover and mutation probabilities 
were also examined. Results showed that convergence of the 
model was steady and fast. Deterministic results were also exam- 
ined and achieved. 
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Results: The optimised results were a population of chromosomes 
with matching objective values. However, because of the computa- 
tional complexity and dependence on the feeding system, the fre- 
quency response of the input VSWR was not considered as an 

objective, Thus, the results were also determined according to the 
travelling-wave mechanism of the TSA [3]. The optimised and 
measured sample is shown in Fig. 1. The measured frequency 
responses of the VSWR at the suddifference ports and the isola- 
tion between the two ports, which are the accumulated results of 
the reflection and cross-coupling of the antenna, the printed 
duplexer, and the microstrip-waveguide transitions, are shown in 
Figs. 2 and 3, respectively. The frequency bands for a VSWR < 2:l 
were 34.54O+GHz at the sum-port and 3 3 4 + G H z  at the differ- 
ence-port. The band for an isolation < 36dB was 33.%O+GHz. 
The computed and measured radiation patterns of the difference- 
beam and the sum-beam at the central frequency 37.5GHz are 
shown in Figs. 4 and 5, respectively. The null-depth of the differ- 
ence-beam is better than -40dB with a null-slant of +21". The -3dB 
beamwidth of the sum-beam was 10 x 15" (for the E- x H- plane). 
In addition, the measured gain of the sum-beam was 14dB. Fat- 
terns were also measured at 35 and 4OGHz. The results of the dif- 
ference-beams were a null-depth of -28dB with 26" null-slant and 
-27dB with 48", respectively; steep slopes at the beam-centre were 
also obtained. The results of the sum-beams were -3dB 
beamwidth of 12 x 15" and 14 x 26", and a gain of 12 and lOdB, 
respectively. The measured sidelobe levels were satisfactory. The 
measured cross-polarisation levels were sufficiently low and are 
not presented here for the sake of brevity. 

Conclusions: Although the linear-edged CTSA samples in our pre- 
vious research work produced good VSWR and isolation proper- 
ties, they were not capable of maximising the slope of the 
difference beam in a wide band. Although the optimised CTSA 
configuration appears to be counterintuitive, it performs better in 
terms of the desired aspects. With the fast development of com- 
puters, more refined objectives can be taken into consideration. 
Therefore, further improvements in terms of both the "/differ- 
ence beams and impedance matching are still possible. 
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Two-stage chaotic Colpitts oscillator 

A. TamaSeviEius, G. Mykolaitis, S. Bumeliene, 
A. Cenys, A.N. Anagnostopoulos and  E. Lindberg 

A novel version of the chaotic Colpitts oscillator is proposed. It 
contains two bipolar junction transistors coupled in series. The 
resonance loop consists of an inductor and three capacitors. The 
two-stage oscillator, compared with the classical circuit, enables 
the fundamental frequency of chaotic oscillations to be increased 
by a factor of three. The PSpice simulations performed with 9 
GHz threshold frequency transistors demonstrate that the highest 
fundamental frequencies of chaotic behaviour are 1 and 3GHz for 
the classical and the two-stage Colpitts oscillator, respectively. 

Introduction: Classical oscillators such as the Colpitts, the Hartley 
and the Wien-bridge, are commonly used to generate periodic 
waveforms. However, with special sets of circuit parameters and 
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circuitry modifications these oscillators can exhibit chaotic behav- 
iour. For example, the classical Colpitts oscillator (Fig. 1) with a 
bipolar junction transistor (BJT) has been demonstrated to gener- 
ate chaos at the fundamental frequencyf = IOOkHz [1]. Various 
features of the chaotic Colpitts oscillator have been considered in 
[2, 31. Chaos in the Colpitts oscillator has also been studied in the 
H F  range. Using the general purpose 2N2222A type BJT with 
threshold frequency f r  = 300MHz, chaotic oscillations have been 
observed atf = 25MHz [4]. The PSpice simulations indicate that 
for chaotic oscillations the highest f achievable with the 2N2222A 
type transistor is -30MHz, i.e. ten times less than the f p  Mean- 
while periodic oscillations can be generated at frequencies very 
close to thefP In the UHF range chaos has been predicted in the 
Colpitts oscillator with the Avantek AT41486 type BJT (fT = 
3GHz) by means of PSpice simulations atf = SOOMHz [4]. Very 
recently, the Colpitts oscillator has been shown experimentally to 
generate chaos in the UHF range [5]. Employing a 2T938A-2 type 
transistor (Russian n-p-n silicon BJT with f r  c- 5GHz) and a 
microstrip line based distributed resonator, much more compli- 
cated than the L-C1-C2 in Fig. I, the authors of [5]  have demon- 
strated narrowband (Af = l0Y0) chaos in the UHF range at f = 
900 to 1000MHz. 

In this Letter we propose a novel version of the chaotic Colpitts 
oscillator, specifically a two-stage circuit. The modified circuit, 
compared with the classical Colpitts oscillator, is shown to move 
the highest fundamental frequency J* from approximately 0.1 to 
0,3fT, i.e. essentially closer to the threshold frequency fT. 
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(Fig. 1) it contains an extra transistor, Q2, coupled in series with 

tion), and an extra capacitor, C3. The lower stage based on the Q2 
acts as a current source for the upper stage based on the Q1, of 
both the DC and the AC signals. The emitter of the Q1 is supplied 
with the feedback signals V, and Va+c3 from the capacitor C2 
via the 4 2  and directly from the capacitor C3. 
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Results: To compare the features of the classical Colpitts oscillator 
and of the novel chaotic oscillator, simulations of the circuits in 
Figs. 1 and 2 were performed by means of the Electronics Work- 
bench Professional simulator, based on the PSpice software. The 
BFG520 type BJTs with fr = 9GHz were used in both circuits. 
The simulation results are shown in Figs. 3 and 4. The fundamen- 
tal frequencyf of the chaotic oscillations for the classical Colpitts 
oscillator was not higher than 1 GHz. Meanwhile, the f as high as 
3GHz can be achieved with the same type of BJT in the novel 
oscillator, i.e. f could be increased by a factor of three. 

This result was confirmed experimentally with the 2N3904 type 
BJTs having similar characteristics to the above-mentioned 
2N2222A transistors. The f could be shifted from 25MHz in the 
classical chaotic Colpitts oscillator to 90MHz in the novel one. 

Conclusion: The suggested modification of the chaotic Colpitts 
oscillator allows shifting of the fundamental frequencies to higher 
ones, closer to the threshold frequencies of the transistors. 
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Fault tolerant computation of large inner 
products 

L. Imbert and G.A. Jullien 

A new technique for applying fault tolerance to modulus 
replication RNS computations by adding redundancy to the 
independent computational channels is introduced. This technique 
provides a low-overhead solution to fault tolerant large inner 
product computations. 

Introduction: In the MRRNS system, numbers are represented as 
polynomials of indeterminates which are powers of 2. As an exam- 
ple, if we use the indeterminate x = 8, we have 

79 = x 2  +Z f 7  = x2 + 2 2  - 1 = 2%’ -62  - 1 = . . .  (1) 
The MRRNS system makes use of the fact that every polynomial 
of degree n can be uniquely defined by its values at n + 1 distinct 
points, and that closed arithmetic operations can be performed 
over completely independent channels [I]. Another advantage of 
using the reduced dynamic range channels is the ability to imple- 
ment the arithmetic over finite fields GF(P) [2]. If we choose p as a 
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Fermat prime, i.e. a number of the form 22n + 1 , modular multi- 
plication can be much simplified [3]. 

As in [4] we express our algorithm in term of matrix transfor- 
mations and denote Mp and Mil as the matrices used for the 
evaluation and the interpolation steps, respectively. In the follow- 
ing, we shall use mk to denote the vector composed of the kth row 
of Mi1,  and S for the set of N distinct points. It is important that 
N must be large enough, not only to represent the input poly- 
nomials, but more importantly the result of the computation(s). 

The technique is very efficient for computing many additions 
and multiplications in between the mapping and recovery stages, 
particularly where we can restrict the number of cascaded multi- 
plications to one in any signal flow path. Fortunately, inner prod- 
uct computations, which are heavily used in DSP algorithms, 
allow this restriction for an arbitrary inner product length. 

The advantages of implementing VLSI include reducing the 
interconnect span in the computational data path; this leads to 
easier testing and lower power [3]. Since the computations are 
independent we can also purposely skew the clocks between the 
independent data paths, thus reducing the clock current spike. 

One of the potential advantages of independent computations is 
the ability to perform fault detection and correction at a much 
redudd complexity compared to more classical computational 
fault tolerant techniques. Although this has been previously 
explored at the circuit level [5], no one has yet taken advantage of 
the algebraic structure of the MRRNS. In this Letter we open the 
exploration of a new technique for fault tolerance using the inde- 
pendent computational structure of the MRRNS system. 

Error detection: The detection technique we propose is based on 
being able to easily compute the constant term of the final polyno- 
mial since it depends only on the constant term of each of the ini- 
tial polynomials involved in the computation, 

Definition 1: If U, v are two vectors in G a y ,  we denote d(u, v) 
the distance between U and v as the number of coordinates in 
which U and v differ. 

Thus, if U is the correct result and v is the vector obtained after 
the inner product, d(u, v) gives the number of errors. This defini- 
tion can be seen as an extension of the Hamming distance used in 
classical coding theory. The following theorem can be used to 
detect a single error. 

Theorem I: Let w, z be the correct and computed vectors, 
respectively, and let Q(x) = qo + qlx + q2x2 +...+ qnx“ be the final 
polynomial. Let us assume 0 E ml (this is the case if 0 E S), and 
d(w, z) S 1 , i.e. that at most one error occurred. Then d(w, z) = 1 
iff ml . z f  qo. 

Prooj See [6]. 

Error correction: Let us consider the following example. We com- 
pute the inner product 79 x 47 + 121 x 25 = 6738 with correction 
for one channel in error. We first define four polynomials that 
correspond to the values 79, 47, 121, 25; let the indeterminate x = 
8, and assign the following polynomial representations: 79 -+ -1 + 
2x + xz, 47 +-1 + 6x, 121 -+ 1 + 7x + x2 and 25 -+ 1 + 3x. Since 
the final polynomial is third-order, four distinct points are suffi- 
cient for its representation, but to correct for one error, we add a 
redundant channel; i.e. we compute over five points. We will Iet S 
= {-1, 1, -2, 2, 3). If we express the evaluation step in terms of . 
matrix operations, the vectors composed of the polynomial coeffi- 
cients now have five co-ordinates, the last one clearly being equal 
to 0. We also assume that the coefficients of the final polynomial 
belong to the set 1-128, ..., 128}, which allows us to compute over 
Gq257). Evaluating the polynomials at these five points gives the 
vectors u1 = (-2, 2, -1, 7, 14), v1 = (-7, 5, -13, 11, 17), u2 = (-5, 9, 
-9, 19, 31) and v2 = (-2, 4, -5, 7, 10). The component-wise opera- 
tions then give: w1 = u1 0 v1 = (14, 10, 13, 77, -19), w2 = u2 0 v2 
= (10, 36, 45, -124, 53) and w = w1 0 w2 = (24, 46, 58, -47, 34). 
The final result is recovered by computing 

q=M,- , :xw 
-128 1 77 128 -77 24 

85 -85 -107 107 0 
= I 75 -22 -107 22 3 2 1  x [[!j 

43 -43 107 -107 0 
-75 -107 30 107 45 

= (2,2,33,9,0) (2) 
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