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Abstract

This paper examines the wide-spread practice where data envelopment analysis
(DEA) efficiency estimates are regressed on some environmental variables in a second-
stage analysis. In the literature, only two statistical models have been proposed in
which second-stage regressions are well-defined and meaningful. In the model consid-
ered by Simar and Wilson (2007), truncated regression provides consistent estimation
in the second stage, where as in the model proposed by Banker and Natarajan (2008a),
ordinary least squares (OLS) provides consistent estimation. This paper examines,
compares, and contrasts the very different assumptions underlying these two models,
and makes clear that second-stage OLS estimation is consistent only under very pecu-
liar and unusual assumptions on the data-generating process that limit its applicability.
In addition, we show that in either case, bootstrap methods provide the only feasible
means for inference in the second stage. We also comment on ad hoc specifications of
second-stage regression equations that ignore the part of the data-generating process
that yields data used to obtain the initial DEA estimates.
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1 Introduction

Two-stage estimation procedures wherein technical efficiency is estimated by data envel-

opment analysis (DEA) or free disposal hull (FDH) estimators in the first stage, and the

resulting efficiency estimates are regressed on some environmental variables in a second stage

(hereafter referred to simply as “second-stage regressions”), remain popular in the literature.

The Google Scholar search engine returned about 1,590 articles for the period 2007–2010 after

a search on “efficiency,” “two-stage,” and “dea” for the period 2007–2010 on 16 August 2010.

Replacing “dea” with “fdh” returned 194 hits. A large number of these papers use either

ordinary least squares (OLS) or tobit regression in the second stage and rely on conventional

methods for inference.

Simar and Wilson (2007, hereafter referred to as SW) considered a well-defined, coherent

statistical model in which a second-stage regression is meaningful in the sense that the

form of the second-stage regression equation is determined by the structure of the model in

the first stage where the initial DEA estimates are obtained. In an attempt to rationalize

studies where second-stage regressions have been estimated but no statistical model has

been specified, SW introduced assumptions that lead to a truncated regression in the second

stage which can be estimated consistently using the maximum likelihood (ML) method. As

discussed below in Section 2, the assumption leading to a truncated regression in the second

stage can be easily replaced to obtain a logistic or other parametric regression equation, or

even a fully non-parametric regression equation. In any case, however, conventional inference

methods fail to give valid inference due to the fact that in the second-stage, true efficiency

remains unobserved and must be replaced with DEA estimates of efficiency, and these are

correlated by construction. SW showed how bootstrap methods can be used for inference

in the case of a truncated regression, and these methods are easy to extend to cases where

different assumptions, leading to different forms of the second-stage regression equation in

their model, are made.

Banker and Natarajan (2008a, hereafter referred to as BN) proposed an alternative well-

defined, coherent statistical model in which a second-stage regression is meaningful. In the

1



BN model, the second-stage regression equation is log-linear, and OLS provides consistent

estimation. BN did not mention in their paper how inference might be made in the second

stage, but the on-line appendix (Banker and Natarajan, 2008b; hereafter referred to as BN2)

cited in their paper contains a proof of one of the propositions in their paper, and statements

in the proof indicate that conventional OLS standard error estimates can be used for making

inference in the usual way. However, as discussed below in Section 3, some statements in the

proof are demonstrably false. Moreover, consistency of OLS in the second-stage regression

depends crucially on the assumptions of the BN model. As also discussed below in Section

3, some of these assumptions are quite strong (i.e., restrictive), and should not be expected

to hold in general. As demonstrated below, OLS is inconsistent if any of several restrictive

assumptions in the BN model fail to hold.

Unfortunately, the BN paper makes a number of over-reaching statements, leaving the

impression that the usefulness of OLS in second-stage regressions is a general result, when

in fact the result is specific to the BN model and its restrictive assumptions as discussed

below in Section 3. Others have added to the confusion. For example, Sufian and Habibullah

(2009, page 341) write,

“In an influential development, Banker and Natarajan (2008a) provide proof that
the use of a two-stage procedure involving DEA followed by an ordinary least
square [sic] regression yields consistent estimators of the regression coefficients.”

Cummins et al. (2010, page 1526, third full paragraph) make similar statements. While BN

leave this impression (e.g., see the quote from BN, page 56, below in Section 3.1), the claim

that OLS yields consistent estimation in the second stage is not true in general as discussed

below in Section 3.2.

To our knowledge, SW and BN are the only papers to propose well-defined, coherent

statistical models that lead to meaningful second-stage regressions in the sense defined above.

Unfortunately, several topical papers, including Hoff (2007), McDonald (2009), and Ramalho

et al. (2010) have recently argued that log-linear specifications (estimated by OLS), censored

(i.e., tobit) specifications (estimated by ML), or other particular parametric specifications

should be used in the second stage, but these papers do so without specifying a well-defined
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statistical model in which such structures would follow from the first stage where the initial

DEA estimates are obtained. As such, these approaches are not structural, but instead are

ad hoc; given the lack of a statistical model, it is unknown what might be estimated by such

approaches. These problems are discussed in further detail in Section 4.

Unfortunately, BN, Hoff (2007), and McDonald (2009) have been cited by a number of

empirical researchers as justification for using OLS in second-stage regressions. In particular,

BN is often cited uncritically, without mentioning, considering, or testing the assumptions

of the BN model when OLS estimation is used in second-stage regressions. Worse, studies

that do this often provide OLS standard error estimates, which are inconsistent due to

the correlation of DEA efficiency estimates and hence fail to be useful for valid inference.

Examples include Chang et al. (2004), who cite a working paper version of BN and use OLS

to estimate a linear second-stage regression, despite the fact that DEA efficiency estimates

are bounded at unity. Examples also include Chang et al. (2008), Sufian and Habibullah

(2009), Barkhi and Kao (2010), Cummins et al. (2010), Davutyan et al. (2010), Maiti (2010),

and others.

In the following sections, we attempt to clear up some of the confusion that has devel-

oped. In the next section, we revisit SW in an attempt to state clearly, without too much

technicality, what the main points of SW were, and to dispel some myths that have arisen.

In Section 3, we critically examine the BN model by providing a detailed discussion of the

assumptions and claims in the BN paper. Section 4 provides some brief comments on ad

hoc specification of second-stage regression equations outside the context of a well-defined

statistical model. The final section gives a summary, where we compare the assumptions

required by the model considered by SW and those required by the BN model, letting the

reader decide which might be less restrictive or more useful in typical empirical situations.

2 Simar and Wilson (2007) Revisited

SW cited 48 published papers that regressed DEA efficiency estimates on some environmental

variables in a second stage, and commented that “as far as we have been able to determine,
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none of the studies that employ this two-stage approach have described the underlying data-

generating process.” SW went on to (i) define a statistical model where truncated (but not

censored, i.e., tobit, nor OLS) regression yields consistent estimation of model features; (ii)

demonstrated that conventional, likelihood-based approaches to inference are invalid; (iii)

and developed a bootstrap approach that yields valid inference in the second-stage regression

when such regressions are appropriate. It is important to note that SW did not advocate

two-stage procedures; rather, the point of the paper was (i) to rationalize what has been

done in the literature by providing a coherent, well-defined statistical model where a second-

stage regression would be appropriate; and (ii) to show how valid inference could be made

in the second-stage regression. With regard to the first point, as far as we know the model

provided by SW was the first complete description of a data-generating process (DGP) where

second-stage regression would be appropriate. SW did not claim that this was the only such

model; in fact, BN have introduced an alternative model as discussed below in Section 3.

The statistical model in SW is defined by Assumptions A1–A8 listed in their paper.

These assumptions augment the standard non-parametric production model where DEA

efficiency estimators are consistent (e.g., see Kneip et al., 1998, Simar and Wilson, or Kneip

et al., 2008) to incorporate environmental variables. Specifically, the Farrell (1957) output

efficiency measure δi is assumed to be a function ψ(Zi,β) of environmental covariates Zi

and parameters β plus an independently distributed random variable ǫi representing the

part of inefficiency not explained by Zi (see SW, Assumptions A2). In addition, since δi ≥ 1

by definition, ǫi is assumed (in Assumption A3 of SW) to be distributed N(0, σ2
ǫ ) with

left-truncation at 1− ψ(Zi,β). Assumption A2 of SW implies

δi = ψ(Zi,β) + ǫi ≥ 1; (2.1)

after rearranging terms, ǫi ≥ 1− ψ(Zi,β), which explains why ǫi must be truncated on the

left at 1− ψ(Zi,β).

SW note (pages 35–36) that their Assumptions A1–A2 imply a “separability” condition,

and that this condition may or may not be supported by the data, and hence that the

condition should be tested. Here, we use the word “separability” as it was used in SW,
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and differently than it is sometimes used. Specifically, by “separability,” we mean that the

support of the output variables does not depend on the environmental variables in Z. To

illustrate this condition, consider the two DGPs given by

Y ∗ = g(X)e−(Z−2)2U (2.2)

and

Y ∗∗ = g(X)e−(Z−2)2e−U (2.3)

where g(X) = (1− (X − 1)2)
1/2

, X ∈ [0, 1], Z ∈ [0, 4], and U ≥ 0 is a one-sided inefficiency

process. Setting U = 0 in (2.2)–(2.3) gives the frontiers for the two DGPs, as illustrated

in Figure 1, where the frontier corresponding to (2.2) is shown in the left panel, and the

frontier corresponding to (2.3) is shown in the right panel. To help visualize the frontiers,

Figure 2 shows contours of the two surfaces depicted in Figure 1. Clearly, the frontiers are

very different; it is clear that for a given level of the input variable X , the maximal output

level Y ∗ in (2.2) does not vary with Z, as indicated by the vertical, linear contours in the

left panel of Figure 2. However, the maximal output level Y ∗∗ in (2.3) does vary with Z, and

the corresponding contours in the right panel of Figure 2 are non-linear. The “separability”

condition discussed by SW is satisfied by the DGP in (2.2), but not by the DGP in (2.3).

To further illustrate the implications of the “separability” condition, consider the obser-

vations (0.5, 0.2, 1.75), (0.5, 0.2, 2.0), and (0.5, 0.2, 2.5) for (X, Y, Z). If the true DGP is as

given by (2.2), the some algebra reveals that the true Farrell output efficiencies for each of

the three observations are (approximately) 0.8660/0.2 = 4.33. On the other hand, if the

true DGP is given by (2.3), then the Farrell output efficiencies corresponding to the three

observations listed above are (approximately) 0.8136/0.2 = 4.068, 0.8660/0.2 = 4.33, and

0.6745/0.2 = 3.375 (respectively). As noted in the previous paragraph, the frontier corre-

sponding to (2.2) is invariant with respect to Z, while the frontier corresponding to (2.3)

is not. It is clear that whether the “separability” condition holds has an impact on the

underlying, true efficiency levels, and this impact may be large. In the example considered

here, the output efficiency level for the third observation is about 28.3 percent larger if the
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DGP is given by (2.2), where the “separability” condition is satisfied, as opposed to the case

where the DGP is given by (2.3), where the “separability” condition is not satisfied.

Daraio et al. (2010) provide a fully non-parametric test of this condition. If it is rejected,

then the conditional efficiency measures described by Daraio and Simar (2005, 2006) are

appropriate. The non-parametric estimators of these measures described by Daraio and

Simar (2005, 2006) use smoothing techniques, and statistical properties of the estimators

have been established by Jeong et al. (2010). In addition, Bădin et al. (2010) provide a

data-driven method for selecting bandwidths for use with these estimators.

To understand the importance of the “separability” condition, let X ∈ R
p
+ denote a

vector of p input quantities, and let Y ∈ R
q
+ denote a vector of q output quantities. In

addition, let Z ∈ Z ⊆ R
r denote a vector of r environmental variables with domain Z.

Let Sn = {(X i,Y i,Zi)}ni=1 denote a set of observations. Assumptions A1–A2 in SW imply

that the sample observations (X i,Y i,Zi) in Sn are realizations of identically, independently

distributed random variables (X,Y ,Z) with probability density function f(x,y, z) which

has support over a compact set P ⊂ R
p+q
+ × R

r with level sets P(z) defined by

P(z) = {(X,Y ) | Z = z, X can produce Y }. (2.4)

Now let

Ψ =
⋃

z∈Z

P(z) ⊂ R
p+q
+ . (2.5)

Under the “separability” condition, P(z) = Ψ ∀ z ∈ Z and hence P = Ψ × Z. If this

condition is violated, then P(z) 6= Ψ for some z ∈ Z; i.e., P(z) 6= P(z̃) for some z 6= z̃,

z, z̃ ∈ Z. Whether this is the case or not is ultimately an empirical question; again, Daraio

et al. (2010) provide a method for testing H0 : P(z) = Ψ ∀ z ∈ Z versus H1 : P(z) 6= Ψ

for some z ∈ Z. The null hypothesis constitutes a strong assumption, and we expect that

in many samples, the null will be rejected. As an example, Daraio et al. (2010) revisit the

empirical example based on Aly et al. (1990) that was presented in SW, and easily reject

separability. The model introduced by BN does not impose separability, but as discussed

below in Section 3, it imposes other restrictive conditions that are not likely to be satisfied

by real data.
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Returning to the illustration in Figure 1, given a sample {(X i,Y i,Zi)}ni=1, what would it

mean to estimate efficiency with DEA using the observations {(X i,Y i)}ni=1 if the underlying

technology is the one in the right-hand panel? The preceding argument makes the answer

clear: for a particular observation (X i,Y i), DEA would estimate the distance not to the

frontier P(Zi), but to the boundary of the set Ψ described in (2.5). In terms of the right-

hand panel in Figure 1, the frontier of the corresponding set Ψ is identical to the frontier

shown in the left-hand panel of Figure 1. Hence the DEA estimator, for a point (X i,Y i),

measures distance not to the technology, but to a frontier that is very different from the

frontier shown in the right-hand panel of Figure 1.

In terms of the specific example considered above, note that in both (2.2) and (2.3),

output levels range from 0 to 1. Figure 3 shows, for X = 0.5, the frontiers corresponding

to the two DGPs in (2.2)–(2.3), with the left panel of Figure 3 corresponding to (2.2) and

the right panel corresponding to (2.3). The maximum output level shown in the right-hand

panel of Figure 3 is the same as the maximum output level for any value of Z in the left-hand

panel of Figure 3, since g(X) is the same in (2.2)–(2.3). If the separability condition is not

satisfied, as in the right-hand panel of Figure 3, measuring efficiency while ignoring this

fact leads to meaningless results in the first stage of any two-stage estimation procedure. In

terms of Figure 3, if the true DGP is given by (2.3), the Farrell output efficiency measure

projects the three hypothetical observations listed above onto a horizontal line tangent to

the frontier in the right-hand panel of Figure 3 instead of projecting the observations onto

the actual frontier.

In situations where the “separability” condition is satisfied, if the δi were observed, it

would be straightforward to estimate (2.1). One might assume ψ(Z,β) = Zβ and estimate

the model by the ML method using standard software; note, however, that in the model

given by (2.2), the relation between Farrell output efficiency and Z is given by

δ =
g(X)

Y ∗
= e−(Z−2)2U (2.6)

and hence is non-linear in Z. One could model this explicitly if the true DGP in (2.2) were

known, or alternatively, one could allow ψ(Z,β) and the distribution of ǫ to be nonparametric
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and estimate ψ(·) using the local likelihood method discussed by Park et al. (2008).

Unfortunately, however, the δi are not observed. SW present two approaches for dealing

with this problem. In the first approach, DEA estimates δ̂i from the first stage estimation are

used to replace the unobserved δi in (2.1) with ψ(Zi,β) = Ziβ. Since the DEA estimates

are consistent under the assumptions of the model in SW, ML estimation of the truncated

regression

δ̂i = Ziβ + ξi ≥ 1 (2.7)

appearing in equation (13) of SW yields consistent estimates of β. However, as SW note,

inference is problematic due to the fact that δ̂i has replaced the unobserved δi, and while the δ̂i

consistently estimate the δi, the DEA estimators converge slowly, at rate n−2/(p+q+1), and are

biased. Consequently, the inverse of the negative Hessian of the log-likelihood corresponding

to (2.7) does not consistently estimate the variance of the ML estimator of β. The bootstrap

procedure given in Algorithm #1 in SW is the only method that has been shown to be valid

for making inference about β when (2.7) is estimated by ML.

As an alternative, SW show how bootstrap methods can be used to construct bias-

corrected estimates
̂̂
δi of the unobserved δi. Replacing the δi in (2.7) with the bias-corrected

estimator
̂̂
δi and setting ψ(Zi,β) = Ziβ yields another truncated regression model in which

ML estimation produces consistent estimates of β. However, the issues for inference remain

as before. In this alternative procedure, the bootstrap given in Algorithm #2 of SW is the

only known method for making valid inference about β since conventional methods fail to

give valid inference.

In either of the algorithms given by SW, it would be straightforward to allow ψ(Zi,β)

as well as the distribution of ǫ to be nonparametric, and to replace ML estimation of the

truncated regression in Algorithms #1 and #2 with nonparametric estimation methods as

mentioned above. The assumption of linearity of ψ(Zi,β) in SW was made to correspond

to what is typically done in the literature, and to what was done in the numerous articles

cited in the introduction of SW. One could also assume different parametric forms, such as

a logistic regression.
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It is important to note that SW did not advocate using two-stage methods. As noted

earlier, the goal was to provide a well-defined statistical model that could rationalize what has

been done in the literature. In the end, the model in SW requires truncated regression in the

second stage. Within the assumptions of the model in SW, tobit regression constitutes a mis-

specification. The simulation results presented by SW confirm that under the assumptions

of the model in SW, tobit estimation in the second stage yields biased and inconsistent

estimates.

As far as we are aware, no statistical model in which second-stage tobit regression of DEA

efficiency estimates on some environmental variables would produce consistent estimates

has been presented in the literature. Similarly, BN (Section 4.3) also remark, “we cannot

theoretically justify the use of a tobit regression in the second stage in terms of an underlying

DGP....” A number of papers (e.g., Hoff, 2007) argue that tobit regression is appropriate

since in a given sample, a number of DEA estimates will equal unity. This is by construction.

However, under standard assumptions where properties of DEA estimators have been derived

(e.g., Kneip et al., 2008), it is clear that the mass of estimates equal to one are due to the

bias of the DEA frontier estimator. In other words, the estimates equal to one are spurious.

If one were able to observe a sample of true efficiencies, one would not see a group of values

equal to one.1

In the next section, we examine the alternative model proposed by BN.

3 The Model of Banker and Natarajan (2008)

3.1 Model Structure

BN present a model containing a one-sided inefficiency process, a two-sided, but bounded,

noise process, and with “contextual variables affecting productivity,” referring to environ-

mental variables as contextual variables. In their abstract, BN state that

1 One could perhaps assume that the joint density of input-output vectors includes a probability mass
along the frontier, but given the bias of the DEA frontier estimator and the resulting mass of observations for
which the corresponding DEA efficiency estimate will equal unity, it is difficult to imagine how such a model
could be identified from the model in Kneip et al. (2008). In addition, the properties of DEA estimators in
such a model are unknown.
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“Conditions are identified under which a two-stage procedure consisting of DEA
followed by ordinary least squares (OLS) regression analysis yields consistent es-
timators of the impact of contextual variables. Conditions are also identified
under which DEA in the first stage followed by ML estimation (MLE) in the sec-
ond stage yields consistent estimators of the impact of contextual variables. This
requires the contextual variables to be independent of the input variables.”

As will be demonstrated below, these claims are true, but only under a set of assumptions

that are rather restrictive. Unfortunately for the inattentive reader, BN give the impression

at various points in their paper that their claims hold in general; e.g., in discussing their

contributions in Section 5 of their paper, on page 56, they state:

“Specifically, we prove that when data are generated by a monotone increasing
and concave production function separable from a parametric function of the con-
textual variables, a two-stage approach comprising a DEA model followed by an
ordinary least squares (or ML estimation) model yields consistent estimators of
the impact of the contextual variables.”

This is not true in general. In fact, as will be shown below, considerably more is assumed

than what is revealed in this statement. The claims are specific to the BN model, and hold

only under a number of restrictive conditions as will be explained below.

BN present their DGP in Section 2 of their paper in terms of a univariate output (i.e.,

q = 1); the DGP can be represented by

Y = φ(X)e−Zβ+V−U (3.8)

where Y is an output quantity, X is an input quantity, Z is a vector of r environmental

variables, β is a vector of r parameters, U is a one-sided inefficiency process, and V is a

two-sided noise process. On page 50 of their paper, BN list their assumptions, including

(i) X ≥ 0; (ii) U ≥ 0; (iii) Z ≥ 0; (iv) β ≥ 0; (v) −V M ≤ V ≤ V M , where V M ≥ 0

is a constant; (vi) X , Z, U , and V are mutually independent; (vii) each random variable

has finite variance; and (viii) E(V ) = 0. In addition, though not stated explicitly, both U

and V are assumed to be distributed identically across all observations; i.e., both U and

V are assumed to have constant variance, constant mean, and the same distribution for all

observations.

10



In terms of the notation used in Section 2, the production set defined by (2.4) corre-

sponding to (3.8) is given by

P(z) =
{
(X, Y ) | Z = z, X ≥ 0, Y ≤ φ(X)eV

M−Zβ
}
, (3.9)

and the set Ψ defined by (2.5) is given by

Ψ =
{
(X, Y ) | X ≥ 0, Y ≤ φ(X)eV

M

}
. (3.10)

Hence the DGP in (3.8) does not satisfy the “separability” condition described by SW

since the support of Y depends on Z. Moreover, since Z is assumed to be independent

of U , the environmental variables cannot be interpreted as affecting inefficiency; instead,

they affect the shape of the frontier in the BN framework. In addition, if V M > 0, then

standard efficiency measures (e.g., the Shephard, 1970 output distance function) cannot be

interpreted as measures of inefficiency in the context of (3.8) since they confound information

about inefficiency, determined by U , with the boundary on the noise process, V M .

On the surface, the assumptions required by the BN model seem innocuous. In fact,

some of them are very restrictive, and at least one is almost certain to be violated by most

data empirical researchers are likely to encounter. First, the assumption that all of the

coefficients on the environmental variables are non-negative means that the researcher must

know a priori the direction of the effects of the environmental variables. In some cases, this

might be reasonable, but in many cases it is not. For example, one might use for elements of

Z variables describing various regulatory regimes faced by firms in an industry. Depending

on the nature of the regulation, and the actions of the regulating authority, regulations

faced by businesses might hinder production, or to the extent that they limit competition,

they might stimulate production by firms that are allowed to operate. Presumably, one of

the reasons for engaging in empirical research is to check what the data have to say about

whether there is an effect from a variable, what its direction might be, and only finally,

what the magnitude of the effect might be. Assuming a priori the direction of the effect of

environmental variables will surely be problematic in some, perhaps many, applications.
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Second, the assumption that X and Z are independent is not likely to hold in economic

data. For example, in agricultural applications, one might use rainfall as an environmental

variable, but farmers surely do not choose input levels independently of rainfall—farmers in

Belgium do not irrigate their crops, but farmers in west Texas must do so. One might consider

replacing the elements of Z with instrumental variables in order to satisfy independence

with X , but this is problematic for several reasons. Instruments are often not available,

and introduce measurement error. Furthermore, using instruments in nonlinear models is

problematic, and there is no theory for what the implications might be for doing so in a

frontier model. The implications are perhaps even more uncertain in the context of a non-

parametric or semi-parametric model.

Third, the implicit assumption of homoskedasticity and homogeneity for V and U are

not likely to hold. Larger firms are likely to have better access to good managers than small

firms, and hence may be more efficient than small firms. Similarly, output is likely to be more

variable for large firms than for small firms, implying the assumption of constant variance

for the noise term V is dubious. In cross-sectional regressions involving production or cost

functions, one typically finds heteroskedasticity, further calling into question the assumptions

required by this model.2

Fourth, the assumption that noise is bounded is problematic. Apart from the question

of why noise should be bounded, and what its economic meaning might be, one might ask if

it is bounded, why should it be bounded symmetrically? Moreover, why should the bounds

be the same for all firms? As noted above, output is likely more variable for large firms than

for small firms, which are constrained by smaller capacity. Yet, the assumptions of constant

bounds, constant variance, and identical distribution for V are essential for estimation of

efficiency with the Gstach (1998) method used in the BN framework. Moreover, it should

be noted that none of the 48 papers cited in the Introduction of SW assumed a noise term

2 In the model considered by SW, inefficiency explicitly depends on the environmental variables which
may account for heteroskedasticity in the inefficiency process. SW did not consider heteroskedasticity in
the error term of the second stage regression, but this could be modeled using standard techniques; i.e., σ2

ε

appearing in Assumption A3 of SW could be parameterized in terms of additional covariates. See also Park
et al. (2008).
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or used the Gstach method.

Fifth, BN assume the DGP is as given in (3.8). In particular, this implies several impor-

tant restrictions in their model. Perhaps most important, the support of Y , i.e., the frontier,

decreases in Z monotonically and at a partially parametric rate for a given input level since

∂Y

∂Z ′
= −βφ(X)e−Zβ+V−U = −βY < 0. (3.11)

Hence Z is assumed to have a specific, monotonic influence on the frontier. This is not plau-

sible for some environmental variables. For example, returning to the agricultural example

given above, more rainfall would likely benefit farmers in west Texas, but farmers on the

Meghalaya plateau in northeastern India have far too much rain; the optimal amount of rain

is somewhere between these two extremes, implying a non-monotonic relationship between

crop production and rainfall.3

Sixth, Z affects the support of Y , not the inefficiency process, thereby violating the

“separability” condition discussed by SW. This means that the environmental variables are

assumed to only affect the production possibilities, but not the level of inefficiency.4 While

this might be reasonable for some situations, it is a maintained assumption that should be

tested. In addition, this is rather different from the numerous papers cited by SW, where

environmental variables affect the level of efficiency, but not the production possibilities

themselves. Moreover, the fact that Z is assumed to have a monotonic effect on the frontier

means that the environmental variables could be transformed (e.g., by taking their recipro-

cals) so that their effects are positive (instead of negative) and then treated as inputs. This

was the approach of Banker and Morey (1986), which is not mentioned in BN. The Banker

and Morey approach allows dependence between Z and X , and is more flexible in the sense

that it allows Z to affect efficiency as well as the frontier. In addition, bootstrap methods

3 The Meghalaya plateau in northeastern India is considered to be one of the rainiest places on earth
(Murata et al., 2007).

4 On page 50, in the fourth through seventh lines after equation no. 2), it is stated that

“The contextual variables are measured such that the weights βs, s = 1, . . . , S, are all

nonnegative—i.e., the higher the value of the contextual variables, the higher is the inefficiency

of the DMU.”

This is false due to the structure in (3.8) and the independence of Z and U .
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could be used to test whether Z has an effect on the production process.

Seventh, BN state in their footnote number 3 (page 50),

“Our extension to the multiple-output case involves an additional vector of ran-
dom variables specifying the proportion of each output. The DGP then determines
the output vector Yj as in the single-output case on the ray defined by the vector
of random variables specifying the output mix.”

Due to the imprecision, it is difficult to know with certainty what is meant by this. Ap-

parently, this means one should use the right-hand side of (3.8) to generate a quantity

Y ∗, then draw q − 1 (for q > 1) random variables αj on [0, 1], and finally compute

Y1 = α1Y
∗, . . . , Yq−1 = αq−1Y

∗ and Yq = (1 − ∑q−1
j=1 αj)Y

∗. However, although Y ∗ is

by construction a convex combination of Y1, . . . , Yq, the resulting technology is not nec-

essarily convex if inputs are also multivariate (i.e., p > 1). Hence, extending the model in

(3.8) to allow for multiple outputs (i.e., q > 1) while preserving convexity of the production

set is problematic.

3.2 OLS in the Second Stage

BN (Section 3.1) propose using OLS in a second-stage regression of Gstach (1998) efficiency

estimates on the environmental variables Z. Specifically, they define

φ̃(X) = φ(X)eV
M

(3.12)

and

θ̃ = e(V −V M )−U−Zβ ≤ 1, (3.13)

which is the quantity estimated by the Gstach (1998) estimator. Then

Y = φ̃(X)θ̃ (3.14)

after substituting (3.12)–(3.13) into (3.8) and where θ = θ̃eV
M

.

From (3.8) and (3.13) it follows that

log θ̃ = β0 −Zβ + δ (3.15)
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where β0 = E(V −U)− V M and δ = V −U −E(V −U) so that E(δ) = 0; this corresponds

to BN’s equation (10) after correcting typos in their paper (note that we have re-defined δ

here as a residual, in order to follow the notation appearing in BN). BN observe correctly

that θ̃ is unobserved, and propose replacing log θ̃ on the left-hand side of (3.15) with

log
̂̃
θ = log θ̃ + η, (3.16)

i.e., the log of the estimate
̂̃
θ obtained using the usual DEA estimator and sample observations

on X and Y . Doing so yields

log
̂̃
θ = β0 −Zβ + δ̃ (3.17)

where δ̃ = δ + η. Proposition 1 in BN states that the OLS estimator β̂ of β in (3.17)

is consistent. Indeed, (3.17) is asymptotically equivalent to (3.15) under the assumptions

discussed above.5

While this is true under the assumptions of their model, at this point it should be clear

that several of BN’s assumptions are crucial to their results. In particular, if Z and U are

not independent, then OLS estimation of β in (3.17) will not be consistent. In addition, if

X and Z are dependent, and if X and U are dependent (as would be the case, for example,

if larger firms are more efficient than smaller firms), then the OLS estimator will again be

inconsistent. If V M is not constant, then it is not clear what would be estimated by OLS

(or any other estimator) in (3.17); apart from this, if V M varies systematically with X

(and hence the size of the firm, which may be likely as argued above), OLS is once again

inconsistent.6

An additional problem arises in the proof of Proposition 1 appearing in BN2 and refer-

enced on page 52 of the BN paper, where it is claimed that

n1/2
(
β̂ − β

)
d−→ N

(
0, σ2Q−1

)
(3.18)

5 BN write (3.17) as log
̂̃
θ = β̃0 −Zβ̃+ δ̃ in their equation (11), but substitution of the right-hand side of

(3.16) for θ̃ on the left-hand side of (3.15) does not change the parameters on the right-hand side of (3.15).
Equation (3.16) appears as equation (A3) in BN2, where it is noted that η ≥ 0.

6In addition, if V M is not constant, it is equally unclear what is estimated in the first stage.
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where Q = Plim
(

Z′Z
n

)
is a positive definite matrix. While the claim is true for p+ q < 3, as

demonstrated in the Appendix the claim is false for cases where p+ q ≥ 3. Moreover, as also

explained in the Appendix, the variance expression appearing in BN’s proof and in (3.18)

is incorrect. This is because in the proof, the role of the correlation among DEA estimates

is ignored. This correlation is bounded, and disappears asymptotically, but only at a slow

rate; see Simar and Wilson (2010b) for details. Since the bias and variance are unknown, the

asymptotic normality result cannot be used for inference about β. Consequently, bootstrap

methods along the lines of SW are needed for inference, after adapting the methods of SW

to account for the particular features of the BN model.

Unfortunately, a number of unsuspecting empirical researchers have taken the BN results

at face value. For example, Maiti (2010) obtains some DEA estimates in a first stage exercise,

then regresses these using OLS in a second stage regression while citing BN to justify this,

but without testing or even questioning the assumptions of the BN model. The results that

are reported in Table 5a of Maiti (2010) for OLS estimates of β include standard error

estimates, which are presumably the usual OLS standard error estimates suggested by the

claim in the proof of BN’s Proposition 1. As discussed in the previous paragraph, however,

the stated result in the proof is incorrect, and the OLS standard error estimates do not give

consistent estimates of the standard error of
̂̃
β.7

3.3 Maximum Likelihood Estimation in the Second Stage

BN discuss in Section 3.2 of their paper how β can be estimated by ML, and claim in their

Proposition 2 on page 52 that the maximum likelihood estimator of β̃ is consistent. However,

since the estimation here involves replacing a true efficiency measure with a DEA estimate,

the implications for the ML estimator and for inference are similar to the case where OLS

is used in the second stage: the problem is similar to that described by SW. In particular,

bootstrap methods along the lines of those described by SW are the only available method

7 Maiti (2010) is not alone in taking statements in BN uncritically and without question. Both McDonald,
(2009, page 797) and Ramalho et al., (2010, Section 2, eighth paragraph) state that the DGP proposed by
BN is less restrictive than that considered by SW, without mentioning the various restrictions required by
the BN model. This issue is revisited below in Section 5.
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for valid inference about β.

In addition to these problems, the approach here requires that one assume specific forms

for the inefficiency and noise terms. In this respect, their approach is no less restrictive than

the assumption of truncated normality by SW. Following either approach, distributional

assumptions are required; while various assumptions can be made, both approaches require

a distributional assumption in the second stage.

In Section 3.3 of their paper, BN discuss estimation of individual efficiencies when max-

imum likelihood has been used in the second stage. Their approach is similar to that of

Jondrow et al. (1982); the conditional density of U given V −U is derived while accounting

for the bounds on V , and use this to derive the conditional mean E(U | V − U).

BN remark (in the fourth line after their equation 15 on page 52) that

“E(U | ǫ) is a consistent estimator of U given ǫ,”

where ǫ = V − U . This is not true. First, E(U | ǫ) contains unknown parameters which

must be estimated. If these unknown parameters are replaced with consistent estimators,

then the resulting expression is a random variable depending on ǫ, which is unobserved. Of

course, ǫ can be replaced with an estimated residual, but the result cannot be an estimator of

U because U is a random variable. Random variables can be predicted, but not estimated;

in addition, any meaningful and interesting prediction of a continuous random variable

necessarily involves an interval, as opposed to a point. Moreover, U is unidentified; only

the difference V − U can be identified in the model. Within the model, it is impossible to

distinguish, for example, U = 0.5, V = 1.5 from U = 1, V = 2, or an infinite number of

other possibilities. It is also important to remember that consistency, while a fundamental

property of an estimator, is also a weak property—nothing can be learned from a consistent

estimate unless valid inference can be made. Simar and Wilson (2010a) discuss in their

Sections 3.2–3.3 what can be estimated consistently from composite error models such as

the one considered by BN as well as how valid inference can be made.
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3.4 Simulations

In Section 4.1 of their paper, BN describe the design of their Monte Carlo experiments.

Their simulated technology (they only consider p = q = 1) is a cubic polynomial in inputs.

In all of their experiments, their true model is

Y = (−37 + 48X − 12X2 +X3)e−0.2Z+V−U , (3.19)

where X is uniform on [1, 4], Z is uniform on [0, 1], U ∼ N+(0, 0.0225), and V is truncated

N(0, 0.0016) with truncation at −0.24 and 0.24. In addition, the random variables X , Z,

U , ad V are drawn independently, consistent with the assumptions of the BN model. The

frontier corresponding to (3.19) is plotted in Figure 4. From the illustration, the effect of

the assumption that the environmental variable has a monotonic effect on the frontier is

clear. It is equally clear from Figure 4 that if 1/Z were included as an input, efficiency

could be estimated in one stage, avoiding the problems of two-stage estimation. One could

use either ordinary DEA estimators or perhaps directional distance functions in order to

estimate efficiency for given levels of Z.

In the experiments described in Section 4 of their paper, BN consider 12 different esti-

mation procedures. The different procedures are evaluated in terms of the point estimates

of β produced by each method, using root mean square error and mean absolute deviations

as criteria by which to evaluate performance. BN do not attempt to make inferences about

β in their experiments, nor do they consider inference about efficiency or anything else in

their model. As noted above, conventional inference in the second stage is invalid; bootstrap

methods along the lines of those used by SW provide the only methods known to be valid

for obtaining valid inference about β in the BN model.

Since the simulated model represented by (3.19) is fully parametric, BN are able to

consider various parametric estimation approaches as well as DEA. Their methods #5–12

involve either maximum likelihood, OLS, or corrected OLS estimation of translog or Cobb-

Douglas functions, which mis-specify the simulated model in (3.19). It should be no surprise

that these approaches do not provide good estimates of β. However, in Section 5 of their
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paper, in the sentence following the second quote given above in the first paragraph of Section

3.1, BN state that

“Results from extensive Monte Caro simulations indicate that two-stage DEA-
based procedures with OLS, ML, or even tobit estimation in the second stage
significantly outperform the parametric methods.”

This is similar to what is written in the abstract:

“Simulation results indicate that DEA-based procedures with OLS, maximum like-
lihood, or even tobit estimation in the second stage perform as well as the best
[emphasis added] of the parametric methods in the estimation of the impact of
contextual variables on productivity.”

A similar statement is made at the end of the seventh paragraph of Section 1 in BN. None

of these statements are true in general. It is true that the DEA-based methods outperform

estimation with the mis-specified parametric models, which is not surprising. But as the

results in Table 1 of the BN paper clearly show, the DEA-based methods do not perform as

well as the parametric methods when the model is correctly specified (method no. 3 in BN).

Moreover, as discussed above, the DEA-based methods perform well under the numerous

assumptions of the BN model discussed above, but cannot be expected to perform well in

general. The results are specific to the model defined by BN, with all of its restrictions.

4 The “Instrumentalist” Approach

With regard to second-stage regressions of DEA efficiency estimates on environmental vari-

ables, it is apparently not uncommon to adopt the view that in the second stage, the DEA

“scores” are simply astatistical, atheoretical measures of distance to an observed “best-

practice frontier” (e.g., Hoff, 2007; McDonald, 2009; and Ramalho et al., 2010). McDonald

(2009) calls this the “instrumentalist” approach. Ramalho et al. (2010) summarizes the view

by noting that in this framework,

“...DEA scores are treated as descriptive measures of the relative technical ef-
ficiency of the samples DMUs. Given this interpretation, the frontier can be
viewed as a (within-sample) observed best-practice construct and, therefore, in
stage two, the DEA scores can be treated like any other dependent variable in re-
gression analysis. Hence, parameter estimation and inference [emphasis added]
in the second stage may be carried out using standard procedures.”
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One can certainly view DEA scores as simply measured distance to an observed best-

practice frontier. However, one might reasonably ask whether if an entrepreneur starts a

new firm, will it lie beyond this observed best-practice frontier, and if so, how far might it

lie beyond? Or one might ask whether the observed firms can improve their performance,

and if so, by how much? Can the firms on the observed “best-practice” frontier improve

their performance? Again, if so, by how much? Such questions can only be answered

by inference. And, to be meaningful, inference requires a coherent, well-defined statistical

model describing the DGP and providing a probabilistic structure for inputs, outputs, and

environmental variables. Such a model is conspicuously absent in Hoff (2007), McDonald

(2009) and Ramalho et al. (2010).

In addition, if one posits a second-stage regression model with DEA “scores” on the

left-hand side, then these must be viewed as random variables if a stochastic error term is

included on the right-hand side. If inference is to be made in the second-stage regression,

then the error term must be stochastic, for inference is neither meaningful nor well-defined

otherwise. If the error term, and hence the DEA scores are viewed as random, then one must

consider from where the DEA scores have come. In two-stage approaches, the DEA scores

come from a first stage; hence the first-stage model will determine what is appropriate in

the second stage regression.

As the discussion in Sections 2 and 3 have revealed, the structure assumed in the first

stage is crucial for determining what type of model should be estimated in the second stage.

In the model considered by SW, the “separability” condition discussed in Section 2 in or-

der to interpret the first-stage efficiency estimates sensibly. In the BN model, it is equally

important that the environmental variables be independent of inefficiency and have a mono-

tonic, exponential-linear effect on the frontier for similar reasons. Simply positing an ad hoc

second-stage regression equation without considering a statistical model for the first stage

amounts to a type of reduced form model in which it is hard to know what is being estimated.
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5 Summary and Conclusions

Footnote 1, near the end of Section 1 in the BN paper, states that

“The DGP assumed by Simar and Wilson is more restrictive than the DGP con-
sidered in this study because it does not contain a two-sided noise term and also
imposes a DMU-specific truncated normal density on the inefficiency term. Based
on their restrictive setup, Simar and Wilson argue that ML estimation of a trun-
cated regression rather than Tobit is the preferred approach in a second-stage
analysis that relates the DEA productivity estimator to the contextual variables.”

This refrain has been repeated almost verbatim by others, including McDonald (2009, page

797) and Ramalho et al. (2010, Section 2, eighth paragraph). It is true that BN allow for

noise, while SW do not. However, as discussed above in Section 3, the noise allowed by BN

must be (i) bounded, and (ii) the bounds must be constant. The second assumption—that

the bounds must be constant—was shown in Section 3 to be critical to the success of the BN

approach. However, this is a strong assumption, akin to assuming homoskedasticity, which

is frequently violated with cross-sectional data, and especially with data used in production

or cost functions.

It is also true that SW assume a truncated normal density in their Assumption A3. Neces-

sarily, the numerous studies that have employed tobit estimation in second-stage regressions

have assumed a censored normal density. Again, the goal of SW was to match as closely as

possible what empirical researchers have been doing while providing a well-defined statistical

model in which a second-stage regression would be meaningful. Other assumptions can be

made, or the second stage regression can be estimated non-parametrically using the local

ML method discussed by Park et al. (2008). Moreover, as discussed above in Section 3.3, BN

also introduce distributional assumptions when ML estimation is used in the second stage.

In addition, as the discussions in Sections 2 and 3 have made clear, the BN model

requires several additional assumptions that are much more restrictive than those required

by the model described by SW. The BN model assumes that the effects of the environmental

variables are monotonic; the model described by SW does not. The BN model assumes

that the environmental variables are independent with respect to the input variables; the

model described by SW does not. The BN model assumes that the inefficiency process is
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independent of the input variables; the model described by SW does not.

The BN model assumes that the environmental variables only affect the frontier, but not

the inefficiency process; the model described by SW assumes that the environmental variables

only affect the inefficiency process, but not the frontier (this is the “separability” condition

described above). Hence both models are restrictive in terms of what the environmental

variables are assumed to affect. As noted above, SW warn that the “separability” condition

should be tested, and a method for testing this has been provided by Daraio et al. (2010).

The corresponding assumption in the BN model should also be tested. In situations where

environmental variables affect the frontier as well as the inefficiency process, one can use

estimators of conditional measures of efficiency described by Daraio and Simar (2005).

Footnote 1 in the BN paper continues with the following:

“Although the Simar and Wilson paper substantially differs from this study in
theoretical development and research design, our main result, that OLS is ap-
propriate to evaluate the impact of contextual variables on productivity, is more
robust and more appropriate for productivity research than Simar and Wilson’s
result that is valid under only much more restrictive assumptions about the DGP.”

The reader can decide, in view of the preceding discussion, whether the model described by

SW is more or less restrictive than the BN model. However, as the discussion in Section

3 has made clear, the claims that OLS is (i) appropriate for second stage regressions, and

(ii) more robust and more appropriate than the approach described by SW are not true

in general, but instead depend crucially on the numerous assumptions underlying the BN

model. As we have noted above, several of the assumptions required by the BN model are

likely to be unsupported by economic data, and should in any case be tested.

Even if one were to accept all of the assumptions required by the BN model, problems

remain for inference. It is not enough to obtain point estimates of β in the BN model; one

must make inference before anything can be learned. Since the asymptotic bias and variance

of OLS and ML estimators of β in the BN model are unknown, bootstrap methods along

the lines of the methods described by SW are to date the only feasible method for inference

about β.
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We do not recommend the use of second-stage regressions involving DEA efficiency scores.

However, if one chooses to do so, the issues that have been raised here should be considered

carefully. Regardless of whether one adopts the model considered by SW, the BN model,

or some other model yet to be presented, one should carefully consider what restrictions

are necessary, and whether these are reasonable. Ideally, restrictions should be tested. In

addition, one should carefully consider how valid inference can be made. To do these things,

one must have a coherent, well-defined statistical model. Finally, let the buyer beware—

caveat emptor.

A Appendix: OLS Estimation in BN’s Second Stage

The first stage estimation in BN’s approach provides an estimator
̂̃
θi ≤ 1 of θ̃i for

i = 1, . . . , n where i indexes observations. The properties of DEA estimators have been

developed by Korostelev et al. (1995a, 1995b), Kneip et al. (1998), Kneip et al. (2008,

2010), Park et al. (2010) and Simar and Wilson (2010b), and depend on assumptions about

returns to scale. In particular, if variable returns to scale (VRS) are assumed, then the DEA

estimator converges at rate n2/(p+q+1), which is slower than the usual parametric rate n1/2

for p + q > 3. BN ignore this in the proof (appearing in BN2) of their Proposition 1, and

this leads to important errors and false statements.

BN suggest re-writing (3.16) as

log θ̃ = log
̂̃
θ − η (A.1)

and using the right-hand side of this to replace log θ̃ in (3.15) to obtain (3.17). Then the

error term δ̃ appearing in (3.17) is equal to δ + η. BN propose estimating (3.17) by OLS,

and claim in their proof of their Proposition 1 that

√
n
(
β̂ − β

)
d−→ N

(
0, σ2Q−1

)
(A.2)

where Q = Plim(n−1Z ′Z).8 As shown below, these claims are false.

8 In the statement of their Proposition 1, BN correctly define Q as Plim(n−1Z ′Z), but in equation (A4)
of the proof appearing in BN2, Q is implicitly defined as n−1Z ′Z. We use the definition Q = Plim(n−1Z′Z)
in all that follows.
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Recall that ηi ≥ 0 for all i = 1, . . . , n, with i indexing the sample observations. Simar

and Wilson (2010b) prove, under mild regularity conditions,

nγηi
L−→ G(µ0, σ

2
0), (A.3)

where G(·) is an unknown, non-degenerate distribution with mean µ0 > 0 and variance

σ2
0 > 0 (both finite and unknown), and γ = 2/(p+ q+1) for the VRS case (or γ = 2/(p+ q)

for the constant returns to scale (CRS) case). In addition, as shown in Kneip et al. (2008,

2010), the asymptotic covariances between ηi and ηj is asymptotically non-zero for a bounded

number of observations j = 1, . . . , n, j 6= i. To summarize, as n→ ∞,

E(ηi) ≈ n−γµ0, (A.4)

VAR(ηi) ≈ n−2γσ2
0, (A.5)

and

COV(ηi, ηj) ≈
{
n−2γα for a bounded number of observations j 6= i;

0 for the remaining observations
(A.6)

for some bounded but unknown constant α.

Recall that the error term δ̃ in (3.17), i.e., the equation that BN estimate by OLS, equals

δ+η as shown above. Consequently, the properties of η play an important role in determining

the properties of the OLS estimator β̂ of β. Let Z be an n × (r + 1) matrix with ith row

given by
[
1 −Zi

]
, and let Y =

[
log

̂̃
θ1 . . . log

̂̃
θn

]′
. In addition, let β∗ =

[
β0 β′

]′
and

β̂
∗

=
[
β̂0 β̂

′
]′
. Then OLS estimation on (3.17) yields

β̂
∗

=
(
Z

′
Z
)−1

Z
′
Y

=
(
Z

′
Z
)−1

Z
′

(
Zβ∗ + δ̃

)
(A.7)

where δ̃ =
[
δ̃1 . . . δ̃n

]′
. Taking expectations,

E
(
β̂

∗ | Z
)
= β∗ +

(
Z

′
Z
)−1

Z
′E(δ̃ | Z)

= β∗ +
(
Z

′
Z
)−1

Z
′E(δ | Z) +

(
Z

′
Z
)−1

Z
′E(η | Z)

= β∗ +
(
Z

′
Z
)−1

Z
′E(η | Z)

≈ β∗ + n−γc1 (A.8)
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as n → ∞, where c1 is a non-zero, bounded constant, due to the result in (A.4) and since

(by BN’s assumptions) E(η | Z) = E(η), E(δ | Z) = 0, and where δ =
[
δ1 . . . δn

]′
and

η =
[
δ1 . . . δn

]′
.

From the last line in (A.8) it is clear that as n→ ∞,

√
n
(
β̂

∗ − β
)
≈ n

1

2
−γc1 > 0. (A.9)

Recalling that γ = 2/(p+ q + 1) for the VRS case, it is obvious that
√
n
(
β̂

∗ − β
)
does not

converge to zero, as claimed in the proof of Proposition 1 of BN, but instead converges to a

strictly positive constant for p + q = 3, and converges to infinity for p + q > 3. In the CRS

case, γ = 2/(p + q), and hence
√
n
(
β̂

∗ − β
)
converges to a strictly positive constant for

p = q = 1, and converges to infinity for p + q > 2. In their Monte Carlo experiments, BN

considered only the case where p = q = 1 with VRS, and consequently did not notice the

errors in their proof of their Proposition 1.

Combining the results in (A.4)–(A.6), and using standard central-limit theorem argu-

ments, we have

√
n
(
β̂

∗ − β∗ − n−γc1

)
d−→ N

(
0,Q−1

(
σ2 + n−2γc2

))
, (A.10)

where σ2 = VAR(δ) = VAR(V ) + VAR(U) (as in BN) and the cj 6= 0, j = 1, 2 are bounded,

non-zero constants.9 The result in (A.10) is very different from (A.2), which is the result

claimed at the end of the proof appearing in BN2 of BN’s Proposition 1. Although the

OLS estimator β̂
∗

of β∗ is consistent, (A.2) cannot be used for valid (asymptotic) inference.

Moreover, the correct result in (A.10) contains unknown constants; since it is unclear how

these might be estimated, bootstrap methods seem to provide the only feasible avenue toward

valid inference in cases where p + q ≥ 3 when VRS is assumed, or where p + q ≥ 2 when

CRS is assumed.10

9 In their proof appearing in BN2, BN ignore the role of the intercept β0. Consequently, their expression
for the variance of their OLS estimator would be wrong even if the rest of their derivations were correct,
which they are not.

10 Most, if not all, of the papers that have used OLS to regress DEA efficiency scores on environmental
variables while citing BN for justification have numbers of dimensions greater than three in their first-stage
estimation. To give just a few examples, Cummins et al. (2010) use p+ q = 8 or 9; Banker et al. (2010a) use
p+ q = 6; Banker et al. (2010b) use p+ q = 5. Each of these rely on the usual OLS standard error estimate
to make inference in the second-stage regressions, and consequently the inference in these papers is invalid.
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The preceding discussion also illustrates how the numerous restrictive assumptions im-

posed on the BN model are crucial for consistency of OLS estimation in the second-stage

regression. For example, if Z and U—which determines inefficiency—are correlated, then

the error terms δ and δ̃ must be correlated with Z, in which case OLS estimation in (3.17)

would yield inconsistent estimates. As another example, if V M , the bound on the noise pro-

cess, is not constant, then OLS estimation may be problematic. If V M = V M + ζ , where V M

is constant and ζ is random with E(ζ) = 0, then β0 can be written as β0 = E(V −U)−V M ,

but δ would have to be written as δ = V − U − E(V − U) − ζ . If E(ζ) 6= 0, then OLS

estimation of β0 will be biased and inconsistent. Worse, regardless of whether E(ζ) = 0, if

ζ is not independent of Z, then OLS estimation in (3.17) would yield inconsistent estimates

of both β0 and β. If the environmental variables are related to the size of firms, and if the

error bounds vary with firm size, the Z and ζ would clearly be correlated; this is likely to

be the case in some applications.

Even more troubling is the assumption that V M is finite, which implies that the noise term

V is symmetrically truncated at −V M and V M . Suppose, for example, that V ∼ N(0, σ2
V ),

and suppose the researcher has a sample of n iid draws {V1, . . . , Vn} from the N(0, σ2
V )

distribution. Of course, one can easily find the sample maximum, and the maximum value in

a normal sample of finite size will certainly be less than infinity. But, it is necessarily difficult,

and maybe impossible, to test whether the distribution is truncated at a finite value. In

situations in econometrics where truncated regression is used, the truncation typically arises

from features of the sampling mechanism (e.g., survey design) or model structure (e.g., in

SW, truncation arises from the fact that inefficiency has a one-sided distribution; it would

make little sense to assume otherwise). Imposing finite bounds on a two-sided noise process,

however, is a far more uncertain prospect.

If V M is infinite, then the first-stage estimation using DEA estimators is inconsistent.

From (3.12), it is clear that if V M is infinite, then φ̃(X) must be infinite. Re-arranging terms

in (3.14) indicates that θ̃ = Y/φ̃(X) for the case of a univariate output considered by BN;

hence if V M is infinite, then θ̃ is undefined, in which case BN’s second-stage regression is an
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ill-posed problem without meaning.
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Figure 1: Illustration of “Separability” Condition Described by Simar and Wilson (2007)

Y ∗ = g(X)e−(Z−2)2U Y ∗∗ = g(X)e−(Z−2)2e−U
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Figure 3: Slices of Production Sets Corresponding to Equations (2.2)–(2.3) with X = 0.5

Y ∗ = g(X)e−(Z−2)2U , U = 0, X = 0.5 Y ∗∗ = g(X)e−(Z−2)2e−U , U = 0, X = 0.5
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Figure 4: Frontier in Simulations of Banker and Natarajan (2008)
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