
ORIGINAL PAPER

Two-stage deep learning hybrid framework based on multi-factor
multi-scale and intelligent optimization for air pollutant prediction
and early warning

Jujie Wang1,2 • Wenjie Xu1 • Jian Dong1 • Yue Zhang1

Accepted: 28 February 2022 / Published online: 26 March 2022
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Effective prediction of air pollution concentrations is of great importance to both the physical and mental health of citizens

and urban pollution control. As one of the main components of air pollutants, accurate prediction of PM2.5 can provide a

reference for air pollution control and pollution warning. This study proposes an air pollutant prediction and early warning

framework, which innovatively combines feature extraction techniques, feature selection methods and intelligent opti-

mization algorithms. First, the PM2.5 sequence is decomposed into several subsequences using the complete ensemble

empirical mode decomposition with adaptive noise, and then the new components of the subsequences with different

complexity are reconstructed using fuzzy entropy. Then, the Max-Relevance and Min-Redundancy method is used to select

the influencing factors of the different reconstructed components. Then, a two-stage deep learning hybrid framework is

constructed to model the prediction and nonlinear integration of the reconstructed components using a long short-term

memory artificial neural network optimized by the gray wolf optimization algorithm. Finally, based on the proposed hybrid

prediction framework, effective prediction and early warning of air pollutants are achieved. In an empirical study in three

cities in China, the prediction accuracy, warning accuracy and prediction stability of the proposed hybrid framework

outperformed the other comparative models. The analysis results indicate that the developed hybrid framework can be used

as an effective tool for air pollutant prediction and early warning.

Keywords Feature extraction � Feature selection � Grey wolf optimization algorithm � Two-stage intelligent optimization �
Air pollutant prediction and early warning
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1 Introduction

In recent years, China’s rapid urbanization and industrial-

ization have brought about rapid economic development,

while air pollution in most Chinese cities has become

increasingly serious (Huang and Hu 2018). Air pollution

directly affects the quality of the environment and people’s

physical and mental health seriously, among which PM2.5

is one of the main components of air pollutants, mainly

composed of highly reactive toxic and harmful substances.

A large number of clinical cases and related studies have

proved that there is a correlation between the occurrence of

various respiratory and cardiovascular diseases and high

concentrations of PM2.5. PM2.5 comes not only from nat-

ural sources such as wind, sand, dust and forest fires, but

also mainly from human energy combustion and industrial

production (Samal et al. 2021). During the continuous

development of China’s economy, air pollution is in some

sense unavoidable. However, this does not mean that pol-

lution emissions cannot be effectively prevented and

controlled.

In order to strengthen air pollution control and improve

air quality, China has amended the Air Pollution Control

Law (Tao et al. 2013). In addition, accurate prediction of

PM2.5 concentrations is listed as one of the key objectives

of air pollution prevention in China’s Action Plan for the

Prevention and Control of Air Pollution, which was pro-

posed in 2018. Accurate PM2.5 concentration prediction

can help people understand future changes in air quality, so

that they can prepare protective measures in advance to

protect their health, such as wearing anti-haze masks (Zhu

et al. 2018). It can also help researchers to develop

response strategies in advance to prevent further deterio-

ration of air quality (Liu et al. 2018). Therefore, the

accurate prediction and early warning of PM2.5 concen-

tration has become a hot issue in the field of air pollution

management research (Wu et al. 2016).

In a review of related studies, prediction models for air

pollutant concentrations can be broadly classified into four

types: chemical transport models (CMT), statistical mod-

els, artificial intelligence (AI) techniques, and hybrid

models. CMT is a deterministic prediction based on the

sources and transport of chemical substances (Xu et al.

2021; Shin et al. 2021). However, the prediction accuracy

of CMT depends on the accurate description of the phys-

ical–chemical processes of pollutants and the quality of

emission data (Konovalov et al. 2009). Therefore, CMT is

more time consuming and complex than statistical models,

while the accuracy is not stable (Han et al. 2008). Common

statistical models are multiple linear regression and

autoregressive integrated moving average (ARIMA).

Donnelly et al. (2015) constructed a real-time air quality

prediction model using multiple linear regression. Garcı́a

et al. (2018) constructed ARIMA to predict daily PM10

concentrations in northern Spain with good prediction

accuracy. Zhang et al. (2018) used ARIMA to analyze the

trend of PM2.5 concentrations and found a significant

positive correlation with the changes in PM10, SO2 and

NO2 concentrations. Although a statistical model can

obtain valid prediction results, it is based on a set of sta-

tistical assumptions. This makes statistical models not

capable enough to capture nonlinear features from time

series (Li et al. 2021a, b, c). To overcome the limitations of

statistical models, AI models started to be applied to time

series forecasting.

Data-driven AI techniques have excellent nonlinear fit-

ting ability and robustness, so researchers have applied

them widely in air pollutant prediction (Ren et al. 2021).

Common AI models include artificial neural networks

(ANN) (Ogliari et al. 2021; Zhang et al. 1998), generalized

regression neural networks (GRNN) (Li et al. 2013), and

recursive neural networks (Biancofiore et al. 2017). Feng

et al. (2015) used air mass trajectory analysis to improve

the accuracy of ANN prediction for daily average PM2.5

concentrations. Combining ANN with effective training

algorithms can extract potential nonlinear relationships

between variables. It is demonstrated that a fast and eco-

nomical air pollution warning system can be constructed

using neural networks (Bo et al. 2021). Biancofiore et al.

(2017) used the measured meteorological parameters as

input variables to the recursive neural networks and pre-

dicted PM10 concentrations for the next one to three days.

Yan et al. (2021) used GRNN to predict PM2.5 concen-

tration levels in three urban clusters in China. The results

showed that GRNN could accurately predict PM2.5 con-

centration levels in these clusters. Time series prediction is

a prediction relative to data over a period of time. Using

only the latest PM2.5 concentration data for prediction,

information from past data will be lost. Unlike traditional

neural networks that ignore the long-term dependence of

time series, recurrent neural networks (RNN) are able to

maintain the memory of recent information. This gives it

excellent performance in processing time series data

(Wang et al. 2021). Long short-term memory neural net-

work (LSTM), as a variant of RNN, has long-time memory

capability and improves the problems of long-term

dependence and gradient explosion that exist in RNN

(Ahmed et al. 2021). Bai et al. (2019a, b) used LSTM to

forecast PM2.5 concentrations from two Beijing meteoro-

logical stations. The results demonstrate that LSTM can

effectively capture complex features in nonlinear sequen-

ces. Although AI models have some advantages in air

pollution prediction, single AI models still have problems

such as unstable prediction results and easy over-fitting.
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In order to further improve the performance and stability

of prediction models, researchers have developed various

hybrid models by effectively integrating different tech-

niques and methods. And among various types of hybrid

models, the hybrid model based on the idea of decompo-

sition and integration can effectively deal with nonlinear

and nonstationary time series and has excellent prediction

performance, which becomes one of the hot spots in time

series forecasting nowadays. Based on the idea of decom-

position followed by integration, the nonlinear time series

is first decomposed into several smoother subseries. Then,

a suitable prediction model is constructed based on the

characteristics of the decomposed time series, and finally

the obtained results are integrated. The decomposition and

integration method can effectively improve the prediction

accuracy and prediction stability of nonlinear and nons-

mooth time series.

As an important module for decomposing integrated

models, time series decomposition methods can extract

more meaningful information and reduce the difficulty of

prediction (Sun et al. 2022). Wavelet analysis is considered

to be an effective algorithm for decomposing time series

(Kisi and Alizamir, 2018). Huang and Wang (2018) used

db6 wavelets and wavelet neural networks (WNN) to

forecast four energy market price forecasts and experi-

mentally prove that the hybrid model has higher accuracy.

Nourani and Farboudfamm (2019) combined sym3 wavelet

decomposition with LSSVM and ANN models for

decomposing rainfall time series. However, the researcher

needs to select a suitable wavelet basis function subjec-

tively and without a specific theoretical basis when per-

forming wavelet analysis. Empirical mode decomposition

(EMD) is a data-driven adaptive method capable of

decomposing nonlinear and nonstationary signals. Huang

et al. (2012) constructed a decomposition integration

framework based on EMD and gated recurrent unit neural

network (GRU) for PM2.5 prediction. Due to the lack of a

complete theoretical basis itself, EMD algorithms suffer

from problems such as modal mixing and endpoint effects

(Li et al. 2021a, b, c). To solve the drawbacks of EMD, Wu

and Huang (2009) proposed ensemble empirical mode

decomposition (EEMD). Bai et al. (2019a, b) applied

EEMD to PM2.5 concentration prediction and improved the

prediction accuracy. Although increasing the number of

EEMD integrations can minimize the reconstruction error,

the reconstructed components still contain residual noise of

some magnitude. To extract more efficient features, Guo

et al. (2020) applied a combination of complete ensemble

empirical mode decomposition with adaptive noise

(CEEMDAN) and LSTM to chaotic sequence prediction.

Lin et al. (2021) used the CEEMDAN-LSTM model to

forecast the Chinese stock index, which proved to be the

best among developed and emerging stock markets.

CEEMDAN has almost zero reconstruction error by

adaptively increasing and weakening the white noise,

which allows it to extract more effective information.

However, multi-scale decomposition of nonlinear time

series using signal decomposition algorithms often results

in a new set of subseries. Previous studies usually predict

each subsequence, but this also leads to an increase in the

computational complexity of the model and may bring

problems such as the accumulation of errors in prediction.

The existence of similar trends and complexity among

different subsequences is often overlooked, and the effec-

tive treatment of decomposed subsequences still needs

further research.

Although the hybrid model based on the decomposition

integration framework has been successfully applied to the

prediction of various pollutant concentrations. However,

PM2.5 concentration variation is affected by complex fac-

tors such as meteorological and environmental factors (Hu

et al. 2013), such as topography, vegetation, wind speed

and temperature (Zhu et al. 2017). The training data con-

sisting of only historical time series of PM2.5 concentra-

tions cannot provide enough valid information, which will

undoubtedly hinder the prediction accuracy and general-

ization performance of the model (Wang et al. 2015).

Related studies have shown that meteorological factors and

pollutants have a strong influence on PM2.5 fluctua-

tions. Yoo et al. (2014) analyzed Korean PM2.5 data

between 2000 and 2012 and found a significant negative

correlation between atmospheric precipitation and PM2.5.

Ma et al. (2021) found that factors such as precipitation,

temperature, and wind direction can affect the concentra-

tion and dispersion range of PM2.5. Bai et al. (2019a, b)

concluded that meteorological data had a significant sea-

sonal effect on PM2.5 and used Kendall correlation analysis

to extract the relationship between meteorological factors

and PM2.5. Gu et al. (2020) collected meteorological and

pollutant data and divided PM2.5 concentration data into

environmental factors, temporal factors, and selected

samples to construct a new superposition selective inte-

gration support predictor to achieve effective prediction of

PM2.5. However, there may be redundancy and similarity

among different influencing factors, and if all factors are

directly introduced into the prediction model, it may bring

the problem of error accumulation and reduce the accuracy

of the prediction model (Feng et al. 2021). Therefore, it is

still challenging and needs further research to select the

appropriate influencing factors for prediction.

From the above literature review, it can be found that

although the hybrid model has excellent predictive per-

formance and robustness, it still has some drawbacks. First,

the similar complexity between decomposed subsequences

is often ignored by researchers. Modeling each subseries

separately not only increases the computational complexity
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of the model, but also may lead to the accumulation of

errors making the prediction accuracy lower. Second, many

previous studies often use historical time series data of

PM2.5 for modeling, ignoring the influence of complex

influencing factors on PM2.5 fluctuation trends, which

limits the prediction performance of the models. Third,

deep learning models, as the main prediction models, are

very sensitive to the selection of their hyperparameters.

Different subsequences have different data characteristics,

and choosing appropriate hyperparameters to model them

can effectively improve the accuracy and stability of pre-

diction. However, in previous studies, the selection of

hyperparameters relied on empirical selection or repeated

debugging, which made it difficult to determine the optimal

hyperparameters. Fourth, after obtaining the prediction

results for each subsequence, the present integration

methods are mainly limited to linear integration, i.e., the

predicted values are accumulated to obtain the final pre-

diction results. Due to the errors in the prediction process,

the linear integration method is not applicable to all cases

and may lead to a decrease in prediction accuracy and

stability. The nonlinear integration method can explore the

intrinsic features among subseries to further improve the

prediction accuracy.

Based on the above considerations, this study proposes a

multi-factor multi-scale and intelligent optimization based

two-stage deep learning hybrid framework for air pollutant

forecasting and early warning, including CEEMDAN,

fuzzy entropy (FE), the max-relevance and min-redun-

dancy (mRMR), Gray Wolf Optimization algorithm

(GWO) and LSTM. First, the PM2.5 concentration

sequence is decomposed into several subseries using

CEEMDAN to reduce the complexity of the sequence and

make it smoother. Then, each subsequence is reconstructed

into several new components based on its FE value, which

reduces the complexity of the model and improves the

computational efficiency. Then, the mRMR algorithm is

used to select several exogenous variables for each

reconstructed component that have a large impact on it for

prediction. Next, a two-stage intelligent optimization pre-

diction model based on GWO algorithm and LSTM is

developed to predict and nonlinearly integrate the recon-

structed components to obtain the final PM2.5 concentration

prediction results. Finally, based on the accurate PM2.5

concentration prediction results, an effective air pollution

warning is achieved. In this paper, historical data of PM2.5

concentrations in three Chinese cities are selected to vali-

date the proposed hybrid framework. Compared with other

benchmark models, the proposed model has good perfor-

mance and prediction accuracy.

As shown above, the main contributions and innovations

of this paper are as follows:

(1) Considering the similar trend and complexity

between different decomposition patterns, this paper

develops a novel feature extraction method combin-

ing CEEMDAN and FE to effectively decompose

PM2.5 concentration sequences and extract different

types of components from them, which improves the

computational efficiency and accuracy of the pre-

diction model.

(2) Most previous studies have focused on prediction

models based on historical PM2.5 concentration time

series. This paper develops an mRMR-based feature

selection method that uses PM2.5 data and multi-

influence factor data as input features in the model-

ing process to construct a multi-influence factor-

based hybrid prediction framework.

(3) In order to further improve the prediction perfor-

mance and stability of the neural network, this paper

uses GWO to intelligently seek the optimal hyper-

parameters of the LSTM. Based on GWO-LSTM, a

two-stage intelligent optimization model is devel-

oped to model and predict each reconstruction

component separately and integrate the predictions

nonlinearly.

(4) In this paper, a two-stage deep learning hybrid

prediction framework based on multi-factor multi-

scale and intelligent optimization are proposed for

the first time. The hybrid framework outperforms all

comparative models and has good prediction accu-

racy and stability. Based on this hybrid prediction

framework, an air pollution prediction and early

warning system is established to achieve effective

forecasting and warning of future air pollutant

concentrations and air pollution conditions.

The rest of the paper is structured as follows: Sect. 2

outlines the methods used in this paper. Section 3 details

the structure of the hybrid prediction framework and the

evaluation metrics of prediction performance. Section 4

describes the data preprocessing, forecasting process and

comparative experiments. Finally, Sect. 5 shows conclu-

sions and outlook.
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2 Methodology

2.1 Complete ensemble empirical mode
decomposition with adaptive noise
(CEEMDAN)

Huang et al. (1998) proposed an adaptive signal processing

method for handling nonlinear nonstationary data, namely

EMD. EMD does not require assumptions on the data and

can decompose complex nonstationary signals and preserve

the time scale of the data. However, in practical applica-

tions, EMD often encounters the problem of modal mixing

(Sun et al. 2022). Therefore, Wu et al. (2009) proposed

EEMD based on EMD. EEMD decomposes the data by

repeatedly adding varied white noise to the original signal,

based on the condition that white noise’s average value is

zero. This can effectively improve the modal mixing

problem, but it also has the problems of large upper

reconstruction error and long computation time. For this

reason, the EEMD-based CEEMDAN is proposed to solve

the above problems. CEEMDAN not only effectively

overcomes the problem of modal mixing by adding adap-

tive white noise, but also removes the reconstruction error

and reduces the computing cost (Li et al. 2021a, b, c).

Therefore, CEEMDAN can handle nonsmooth and non-

linear data more effectively.

The CEEMDAN algorithm is implemented in the fol-

lowing steps.

Step 1: The Gaussian white noise with mean zero is first

added to the original signal s tð Þ to obtain the preprocessed

signal siðtÞ for k experiments.

siðtÞ ¼ exiðtÞ þ sðtÞ; i ¼ 1; 2; :::k ð1Þ

where xiðtÞ is the Gaussian white noise of the ith pro-

cessing, e is the noise ratio bar. Then the first intrinsic

mode function (IMF) component IMFi
1ðtÞ is obtained by

decomposing siðtÞ using EMD, and its mean value is found

as the first IMF component IMF1ðtÞ obtained by CEEM-

DAN decomposition.

IMF1ðtÞ ¼
1

k

Xk

i¼1

IMFi
1ðtÞ ð2Þ

Step 2: To calculate the first residual r1ðtÞ, subtract the
first IMF from the initial sequence.

r1ðtÞ ¼ sðtÞ � IMF1ðtÞ ð3Þ

Step 3: Gaussian white noise is added into the residual

signal of the jth stage obtained from the decomposition,

and the EMD decomposition is continued.

IMFjðtÞ ¼
1

k

Xk

i¼1

E1ðrj�1ðtÞ � ej�1Ej�1ðdiðtÞÞÞ ð4Þ

rjðtÞ ¼ rj�1ðtÞ � IMFjðtÞ ð5Þ

where IMFjðtÞ is the jth IMF obtained from the CEEM-

DAN decomposition, Ej�1 is the jth IMF component

obtained by performing the EMD decomposition, and ej�1

is the noise factor added to the residual component of

the stage j� 1. Finally, rjðtÞ is the residual component of

the i-th stage.

Step 4: Repeat steps 1 to 3 until the number of extreme

value points of the residual components is less than or

equal to 2, and the decomposition process of CEEMDAN is

finished when the decomposition cannot continue. At this

time, the PM2.5 concentration sequence is decomposed into

several IMF components and one residual component.

2.2 Fuzzy entropy (FE)

In order to strike a balance between the computational

efficiency of the model and the accuracy of the prediction,

a method to measure the complexity of time series is

adopted, which is called fuzzy entropy (FE). The FE

algorithm is an improvement of the sample entropy (SE)

and approximate entropy (AE) methods, which retains the

advantages of sample entropy and approximate entropy and

addresses the shortcomings of imprecise analysis in the

presence of small fluctuations and baseline drift. In general,

the larger the value of FE, the lower the serial autocorre-

lation. Therefore, the features can be recombined according

to the values calculated by the FE algorithm to balance the

computational efficiency and prediction accuracy. The

calculation process of FE are as follows:

Step 1: Defining the phase space dimension as m, the

phase space reconstruction is performed on the N-dimen-

sional time series fxð1Þ; xð2Þ; :::; xðNÞg to obtain Xm
i .

Where w0ðiÞ is the mean value.

Xm
i ¼ fxðiÞ; xðiþ 1Þ; ::: ; xðiþ m� 1Þg � w0ðiÞ ð6Þ

w0ðiÞ ¼
1

m

Xm�1

j¼0

xðiþ jÞ ð7Þ
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Step 2: Define the absolute distance dma;b between the vec-

tors Xm
i and Xm

j as the maximum value of the difference of

their corresponding elements. Where

j ¼ 1; 2; :::;N � mþ 1, and j 6¼ i.

dmij ¼ d½xma ; xmb �
¼ max

k¼0;1;2;:::;m
ðjxðaþ k � 1Þ � w0ðiÞj � jxðaþ k � 1Þ

� w0ðjÞjÞ
ð8Þ

Step 3: Next, a fuzzy function Fðdmij ; n; rÞ is introduced
to define the correlation Dm

ij between X
m
i and Xm

j . In Eq. (9),

r denotes the boundary width and n denotes the boundary

gradient.

Dm
ij ¼ Fðdmij ; n; rÞ ¼ exp �

dmij
r

� �n� �
ð9Þ

Step 4: Define the fuzzy degree similarity function as:

dmðn; rÞ ¼ 1

N � m

XN�m

i¼1

ð 1

N � m� 1

XN�m

j¼1;j 6¼i

Dm
ij Þ ð10Þ

Step 5: Change the phase space dimension to mþ 1 and

repeat the above calculation steps to obtain the function.

dmþ1ðn; rÞ ¼ 1

N � m

XN�m

i¼1

1

N � m� 1

XN�m

j¼1;j 6¼i

Dmþ1
ij

 !
ð11Þ

Step 6: Ultimately, the fuzzy entropy of this time series

is defined as:

FuzzyEnðN;m; n; rÞ ¼ ln dmðn; rÞ � ln dmþ1ðn; rÞ ð12Þ

The results of FE algorithm are mainly determined by

the parameters m, n and r. In general, m is often taken as 1

or 2. r is usually set to 0:1rSD to 0:25rSD, and the rSD is the

standard deviation of the original sequence. n is generally

taken as a smaller integer value, such as 1 or 2.

2.3 Max-relevance and min-redundancy (mRMR)

The mRMR method is a typical spatial search-based fil-

tering method proposed by Peng et al. in 2005, which uses

mutual information to measure the relevance and redun-

dancy of features (González-Enrique et al. 2021). LetWn ¼
fz1; z2; :::; zng be the set of influencing factor features, we

need to select m meteorological features with high corre-

lation with PM2.5 from n influencing factors. Firstly, the

mutual information MIðsðtÞ; ziÞ between PM2.5 concen-

tration sðtÞ and all influencing factors is calculated as:

MIðsðtÞ; ziÞ ¼
Z Z

pðsðtÞ; ziÞ log
pðsðtÞ; ziÞ
pðsðtÞÞpðziÞ

dsðtÞdzi

ð13Þ

The mutual information between the influencing factors

is:

Iðzi; zjÞ ¼
Z Z

pðzi; zjÞ log
pðzi; zjÞ
pðziÞpðzjÞ

dzidzj ð14Þ

where p is the probability density function, zi; zj 2 Wn,

i 6¼ j, and sðtÞ is the PM2.5 concentration sequence. Then

find the feature subset Sm containing m features, where

m� n, Sm � Wn. The formulae for the maximum relevance

calculation principle and the minimum redundancy calcu-

lation principle are as follows:

DðSm; sðtÞÞ ¼
1

jSmj
X

zi2Sm
MIðsðtÞ; ziÞ ð15Þ

NðSmÞ ¼
1

jSmj2
X

zi;zj2Sm
MIðsðtÞ; ziÞ ð16Þ

where jSmj is the number of features in the set Sm. The

formula for integrating the maximum relevance and mini-

mum redundancy is as follows.

max/ðD;NÞ; / ¼ D� N ð17Þ

Suppose that the factor zk with the largest mutual

information with sðtÞ among the influencing factors is

extracted as the first characteristic factor within Sm, and the

remaining influencing factors are Wn ¼ Wn � zk. The

mutual information of the influencing factors within Wn

with sðtÞ is calculated separately, and / is maximized by

selecting the characteristics. / is calculated as:

maxM/ ¼ MIðsðtÞ; ziÞ �
1

jWnj � 1

X

zi;zj2Wn

MIðzi; ziÞ ð18Þ

In the above equation, M/ is the operator increment,

which is the difference between the mutual information of

influences zi within Wn and sðtÞ and the mutual information

of zi and other influences within Wn. The magnitude of M/
can be used as a basis for evaluating the importance of

features. In addition, jWnj is the number of feature values in

the set Wn.
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2.4 Long short-term memory (LSTM)

RNN as a new type of neural network with memory

function is suitable for time series problems. However, it

also suffers from problems such as gradient disappearance

and gradient explosion. LSTM as a modified RNN consists

of a memory cell, input gate, forgetting gate and output

gate. The input and forgetting gates are used to determine

whether to add new input information and whether to

forget past states. The output gate, on the other hand,

determines whether the long-term state is propagated to the

final state. LSTM effectively avoids the gradient disap-

pearance problem of RNN and has long-time memory

capability at the same time (Barzegar et al. 2020). In this

study, LSTM was used for prediction and nonlinear inte-

gration of PM2.5 concentration.

The actual PM2.5 concentration value at time t is

assumed to be xt, and x̂t is the predicted value corre-

sponding to the PM2.5 concentration. Moreover, ft, it and ot
represent the forgetting gate, the input gate and the output

gate, respectively. The main formulae for each component

of the LSTM are shown below:

ft ¼ r Uf xt þ Vf x̂t þ bf
� �

ð19Þ

it ¼ r Uixt þ Vix̂t þ bið Þ ð20Þ
ot ¼ r Uoxt þ Vox̂t þ boð Þ ð21Þ
~ct ¼ tanh U ~cxt þ V~cx̂t þ b ~cð Þ ð22Þ
ct ¼ ft � ct�1 þ it � ~ct ð23Þ
ht ¼ tanhðctÞ � ot ð24Þ

In the above equation, U and V are the weight matrices,

b is the bias term, and tanhð�Þ and rð�Þ are the activation

functions, ’�’ denotes the scalar product. The LSTM con-

sists of these memory blocks and is learned by a temporal

algorithm using back propagation. More, LSTM is prone to

overfitting or gradient explosion when dealing with long

sequences. Adding Dropout layers and adjusting the

appropriate Dropout layer rate can improve the general-

ization ability of the model and avoid overfitting.

2.5 Grey wolf optimizer (GWO)

Mirjalili et al. (2014) proposed the GWO algorithm, which

is a new swarm intelligence method. GWO is considered to

possess stronger performance than many existing superior

algorithms such as particle swarm optimization algorithms

(PSO) (Sulaiman et al. 2015). GWO simulates the hunting

ability and social hierarchy of gray wolves. In general,

GWO divides the social level of wolves into four levels.

The first level of the pyramid is the leader of the wolf pack,

which is called a. The second level is b, which has

dominance only after a. The third level is d, which obeys

the decisions of a and b. The bottom level is x, which is

responsible for the balance within the pack. The GWO

optimization process involves hierarchical hierarchy,

tracking, encircling and attacking prey and finding prey.

GWO keeps the best three wolves (a, b, d) in each iteration

and updates them according to the three best solutions.

2.6 GWO-LSTM model

The training process of LSTM is mainly based on the

update of weights and bias of hyperparameters, and the

choice of hyperparameters can significantly affect the

prediction performance of LSTM. Related studies show

that the number of neural units directly affects the fitting

ability of the model, and increasing the number of LSTM

neural units can increase the fitting ability of the prediction

model, but too many neural units may also lead to over-

fitting. However, there is no clear method to select the

number of neural units. In addition, batch size is closely

related to the weight update of the model. The size of batch

size affects the convergence speed and prediction perfor-

mance of the prediction model. Traditional prediction

model research often relies on empirical selection when

adjusting hyperparameters, by repeatedly experimenting

and adjusting hyperparameters until the training set pre-

diction error is minimized. This approach is time-con-

suming and difficult to obtain the best hyperparameters for

prediction models.

To balance the complexity of prediction and prediction

accuracy, the hyperparameters of the LSTM network are

optimized using the GWO algorithm. When training the

data, the number of iterations, the number of gray wolves,

and the dimensionality of GWO are determined by first

determining the historical data step lookback of the input

layer in the LSTM. The fitness function is set as:

fitness ¼ 1

N

XN

i¼1
jyi � y

0

ij ð25Þ

where yi is the training set data, y
0

i is the predicted data, N

is the length of the data. The hidden layer neurons, batch

size and Dropout rate are selected as the target hyperpa-

rameters for optimization. The target hyperparameters are

corresponding to the wolf positions of GWO in different

dimensions, thus transforming the learning process of the

neural network into the process of searching for the best

position of wolves in the multidimensional space. The

hyperparameters are substituted into the LSTM to calculate

the corresponding prediction value y and the fitness value

of each individual is calculated according to Eq. (25).

Continuously iterating, the hyperparameter optimal solu-

tion of the LSTM network is finally returned. The pseudo

code of the GWO-LSTM algorithm is shown below.
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3 Structure of the proposed hybrid
framework

3.1 Proposed hybrid framework

This study proposes a deep learning hybrid framework for

air pollutant prediction and early warning based on multi-

factor multi-scale and two-stage intelligent optimization,

which combines CEEMDAN, FE, mRMR, GWO and

LSTM. As shown in Fig. 1, the framework is mainly

divided into four stages.

Stage 1: Feature extraction

CEEMDAN can decompose the PM2.5 concentration

sequence adaptively into several patterns of different

amplitudes and frequencies. The patterns obtained from the

decomposition are arranged by frequency from high to low

frequencies. Compared with the original PM2.5 sequence,

these patterns have simpler structure, more stable fluctua-

tions and more regularity, which can be predicted more

easily. However, there are similar trends and complexity

between these patterns, and fuzzy entropy can effectively

calculate the complexity of different sequences, the higher

the entropy value the higher the complexity of the

sequence, and the lower the entropy value the lower the

complexity of the entropy value. According to the similar

trend and complexity of different patterns, the decomposed

patterns can be reconstructed into several new components.

Each reconstructed component has unique characteristics

and contains different intrinsic features of PM2.5

concentration.

Stage 2: Feature Selection
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The fluctuation of PM2.5 concentration is affected by

complex factors such as environmental factors, human

factors and meteorological factors, which leads to complex

characteristics such as nonlinearity and nonstationarity of

PM2.5. In this study, meteorological factors and pollutant

factors are taken into account in the prediction of PM2.5

concentrations to improve the prediction accuracy and

generalization ability of the model. There is redundancy

between different influencing factors. Directly using all

influencing factors for prediction research may lead to

problems such as the cumulative error of prediction model.

At the same time, different reconstructed components

contain different intrinsic characteristics, and the same

influencing factors have different degrees of influence on

different reconstructed components. Therefore, in this

paper, the mRMR algorithm is used to select the features of

different components obtained after the decomposition and

reconstruction of PM2.5. Several exogenous variables that

have a strong influence on different reconstructed compo-

nents are selected as input variables to improve the pre-

diction accuracy and generalization performance of the

model.

Stage 3: Two-stage intelligent optimization model

PM2.5 concentrations are influenced by its own historical

concentration data and related factors and change gradually

over time. LSTM can effectively capture the nonlinear

relationship in the sequence and has the ability of long-

term memory, which can combine the historical and cur-

rent information in the long-term memory to make effec-

tive prediction for the future. Therefore, LSTM is used to

predict PM2.5 future concentrations.

To balance the computational efficiency and prediction

accuracy of the prediction model, this paper uses the GWO

algorithm to optimize the hyperparameters of the LSTM.

Based on the GWO-LSTM, a two-stage intelligent opti-

mization model is developed to model the prediction for

each subset of sequences, and all predictions are nonlin-

early integrated to obtain the final PM2.5 concentration

prediction results.

Stage 4: Air Pollution Prediction and Warning

China’s Ambient Air Quality Standards, released in

2012 and implemented in 2016, regulate air environmental

quality standards to further prevent and control air pollu-

tion and protect people’s physical and mental health. The

standard divides the ambient air functional areas into two

categories, such as areas requiring special protection, such

as nature reserves, and areas such as residential and

industrial zones, and sets standards for pollutant concen-

tration limits, which provide scientific support for the

monitoring and management of environmental quality

nationwide. To make it easier for people to pay attention to

air pollution, Chinese private individuals have organized

themselves to set up various environmental monitoring

websites for the release of air pollution information in

major cities. These air pollution monitoring websites set

more refined criteria for assessing air pollution levels,

making it easier for people to understand air pollution

levels more intuitively.

Based on the proposed hybrid prediction framework,

this paper makes effective predictions of PM2.5 future

concentrations. As shown in Table 1, this paper also makes

reference to the air pollution level criteria from the PM2.5

real-time monitoring network (http://www.pm25china.net/)

to provide early warnings of future air pollution levels,

helping people to prepare coping strategies in advance and

the government to take pollution prevention and control

measures in advance in a targeted manner.

3.2 Evaluation criteria

To assess the predictive performance of various models, we

must choose appropriate evaluation metrics. In this paper,

four popular evaluation metrics are chosen to measure the

performance of models, including mean absolute error

(MAE), root mean square error (RMSE), coefficient of

determination (R2), and mean absolute percentage error

(MAPE). These metrics have been widely used in pollution

prediction studies (Sun and Li 2020; Wu et al. 2020), and

the details of each metric are described as follows:

MAE ¼ 1

k

Xk

i¼1
jyi � ŷij ð26Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1 ðŷi � yiÞ2

k

s

ð27Þ

R2 ¼ 1�
Pk

i¼1 ðyi � ŷiÞ
2

Pk
i¼1 ðyi � yiÞ2

ð28Þ

MAPE ¼ 1

k

Xk

i¼1
j ŷi � yi

yi
j � 100% ð29Þ

where k represents the number of test sets, y represents the

true value, y represents the mean value, and ŷ represents the

predicted outcome.

4 Case analysis

4.1 Data collection

4.1.1 PM2.5 concentration data

With the rapid development of the economy, air pollution

has become an urgent problem in China. Researchers have

focused their PM2.5 prediction studies on various eco-

nomically developed cities in China. Examples include

cities such as Beijing (Luo et al. 2018), Shanghai (Xu et al.
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2017), and Wuhan (Wang et al. 2017). However, other

industrial cities in China, where air pollution is more

severe, are often neglected. In this paper, we fill this gap in

the literature by selecting Xingtai and Anyang, two of the

most polluted Chinese cities in terms of air pollution, as the

study samples by referring to the 2019 China Ecological

Environment Status Bulletin published by the Chinese

Ministry of Ecology and Environment in 2020. In addition,

Beijing, the capital city of China, is added as a research

sample to verify the validity of the hybrid framework

proposed in this paper.

In 2020 and 2021, some meteorological observations

were stopped by COVID-19, and the relevant data were

missing. Therefore, the data set for this study is the PM2.5

daily average concentration data from three cities from

January 1, 2018 to December 31, 2019. The data were

obtained from the Ministry of Ecology and Environment of

China (http://www.mee.gov.cn). As shown in Figs. 1 and

2, the sample data are divided into training and test sets by

8:2.

4.1.2 Influencing factors of PM2.5

The causes of PM2.5 pollution are complex. For example,

pollutants such as nitrogen oxides and sulfur dioxide in the

atmosphere are easy to produce secondary fine-grained

pollutants through chemical reactions. In addition, human

industrial production and living activities also bring a large

number of fine particle pollutants. In addition, relevant

studies show that meteorological factors have stronger

influence on PM2.5 than other factors (Chen et al. 2017).

For example, wind speed and direction can affect the dif-

fusion range and speed of pollutants. PM2.5 is easily

adsorbed to water vapor, so when the humidity is high, the

concentration of PM2.5 is high. In addition, when the

temperature increases, the concentration of PM2.5 decrea-

ses continuously, and when the temperature decreases, the

concentration of PM2.5 increases significantly. As shown in

Fig. 2, draw the daily concentration change curve of PM2.5.

PM2.5 concentration changes obviously in different sea-

sons, showing a ‘‘double peak’’ distribution mode. The

concentration of fine particles in winter and spring is sig-

nificantly higher than that in summer and autumn, which is

related to the temperature difference in different seasons.

Based on referring to relevant literature and considering the

availability of data, this paper introduces 11 influencing

factors of PM2.5, including average wind speed, maximum

sustainable wind speed, average air temperature, average

dew point, maximum temperature, minimum temperature,

PM10, SO2, CO, NO2 and O3.

In artificial intelligence algorithms, dimensionless

quantization of data can accelerate convergence and avoid

the influence of singular sample data on calculation results.

The typical normalization method is adopted in this study,

and the formula is as follows:

x0 ¼ x�minðxÞ
maxðxÞ �minðxÞ ð39Þ

where the original value is x and the normalized result is

x0.

4.2 Decomposition of original PM2.5 series
by CEEMDAN

In the proposed framework, the original PM2.5 concentra-

tion sequence is decomposed by CEEMDAN. Before that,

two parameters,k and e, need to be set for CEEMDAN.

Referring to relevant literature and several attempts, the

values of k and e are set to 100 and 0.005, respectively. The
Xingtai PM2.5 concentration sequence is split into seven

subsequences, as illustrated in Fig. 3A. Each decomposi-

tion pattern is named IMFi i ¼ 1; 2; :::; 6ð Þ and Residual,

respectively. Meanwhile, the original PM2.5 sequence in

Anyang and Beijing is decomposed into 8 and 7 subse-

quences, respectively. In addition, the Pearson correlation

coefficients of the original data and each IMF are calcu-

lated in this paper to facilitate the exploration of the rela-

tionship between the decomposed subsequences and the

original sequences, and are presented as bar charts in

Figs. 3, 4 and 5B.

4.3 Subsequence reconstruction by FE

Fuzzy entropy can measure the complexity of different

sequences, and Figs. 3C, 4C and 5C show the results of

fuzzy entropy calculation for each subsequence. In this

paper, according to the similar trends and fuzzy entropy

values between different subsequences after decomposi-

tion, they can be reconstructed into three new components.

(1) IMF1 is the high frequency component S-IMF1, which

can respond to the random fluctuation of PM2.5 concen-

tration caused by various complex factors. Although the

high-frequency component may lead to short-term drastic

changes in PM2.5 concentration, it does not cause long-term

effects on PM2.5 concentration fluctuations (Tai et al.

2010). (2) IMF2 and IMF3 are reconstructed as the

Table 1 PM2.5 air pollution

standards ðlg/m3Þ
Ranges 0–50 51–100 101–150 151–200 201–300 [ 300

Level Excellent Good Light pollution Medium pollution Highly pollution Severe pollution
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Fig. 1 Flow chart of the framework
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intermediate frequency component S-IMF2, which

responds to the periodic variation of PM2.5 concentration

caused by atmospheric quasi-biennial oscillations, weather-

scale system cycles, or human periodic activities (Kim

et al. 2010; You et al. 2009; Zhang et al. 2015). (3) IMF4,

IMF5, IMF6 and residuals are reconstructed as low fre-

quency component S-IMF3, and such components are more

stable and can effectively characterize the trend of PM2.5

concentrations during seasonal change (Wang et al. 2006).

Taking Xingtai as an example, the three components

obtained from the reconstruction are shown in Figs. 3D, 4D

and 5D. Each component has unique characteristics, and

the accuracy and stability of its prediction will be improved

by selecting appropriate influencing factors and construct-

ing prediction models according to the data characteristics

of different components.

4.4 Influencing factors selection by mRMR

After obtaining the three reconstructed components, this

paper uses the mRMR method for each component to

explore the main influencing factors of different compo-

nents. Using Xingtai as an example, Table 2 demonstrates

the mRMR results for the three components.

According to the results in Table 2, for the irregular

fluctuation components of PM2.5, O3, PM10, mean dew

point, maximum temperature and CO lead the ranking

order, indicating a greater influence on them. O3, CO, mean

dew point, mean temperature and mean wind speed have a

greater influence on the short-term fluctuation of PM2.5.

The short-term fluctuation component of PM2.5 is strongly

influenced by O3, CO, average dew point, average tem-

perature and average wind speed. While the low frequency

component is strongly affected by O3, CO, average tem-

perature, average dew point and maximum sustainable

wind speed. Due to the correlation between influencing

factors, all as input features may reduce the prediction

performance and accuracy. Therefore, this paper selects the

top 5 exogenous variables for each component as the input

variables for prediction.

4.5 Two-stage intelligent optimization model

LSTM is well-suited to processing and forecasting time

series data, and the selection of hyperparameters is critical

in LSTM training. Increasing the number of layers and

neurons of the neural network can effectively improve the

fitting ability of the model, but also increases the risk of

Fig. 2 Sample data of Xingtai, Anyang and Beijing
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Fig. 3 Decomposition and reconstruction results of Xingtai dataset
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overfitting. And by introducing the Dropout mechanism,

given the Dropout ratio, so that the model randomly dis-

cards the corresponding number of neurons in the training

process, it can effectively prevent overfitting. After a large

number of experiments and parameter adjustment, it is

found that LSTM with two hidden layers has excellent

prediction performance and robustness on different data

sets, and the look back is set to 4, and the upper limit of

epoch for each experiment is set to 1000. Based on the

consideration of balancing prediction efficiency and pre-

diction accuracy, the GWO algorithm is used to optimize

the three hyperparameters of the number of hidden layer

neurons, batch size and Dropout ratio. The gray wolf

population size is set to 25, and the number of iterations is

100. Finally, a suitable prediction model is established for

each reconstructed component. Table 3 shows the predic-

tion accuracy of the hybrid framework on three data sets.

The LSTM can effectively capture the information in

nonlinear data, and the nonlinear integration can obtain

higher prediction accuracy and prediction stability.

Therefore, after obtaining the prediction results for each

reconstructed component, the GWO-LSTM is used to

nonlinearly integrate all the predictions to obtain the final

prediction results. The performance of the hybrid frame-

work proposed in this paper on three datasets is illustrated

in Fig. 6.

4.6 Air pollutant forecasting and warning

The hybrid framework proposed in this paper obtains

accurate PM2.5 concentration prediction results on all three

data sets, and effective forecasting of air pollutant con-

centrations can be achieved based on the prediction results.

More, based on the air quality criteria in Table 1, the future

air quality levels are warned based on the prediction

results, and the accuracy of the warning results is shown in

Table 5. As two of the most polluted cities in China,

Xingtai and Anyang have large fluctuations in pollutant

concentrations. In the test set of 141 days, Xingtai has

14 days of light pollution, 6 days of medium pollution and

2 days of highly pollution, and the warning accuracy of the

hybrid framework proposed in this paper reaches 87%. In

Table 2 Order of exogenous variables in Xingtai dataset

Ranking order S-IMF1 S-IMF2 S-IMF3

1 O3 O3 O3

2 PM10 CO CO

3 Average dew point Average dew point Average air temperature

4 Maximum temperature Average air temperature Average dew point

5 CO Average wind speed Maximum sustainable wind speed

6 NO2 SO2 SO2

7 SO2 NO2 Minimum temperature

8 Minimum temperature Minimum temperature NO2

9 Average wind speed Maximum continuous wind speed Maximum temperature

10 Average air temperature Maximum temperature Maximum continuous wind speed

11 Maximum continuous wind speed PM10 PM10

Table 3 Model prediction

accuracy of each reconstructed

sub-sequences

Subsequence set 1 Subsequence set 2 Subsequence set 3

Xingtai MAE 0.0237 0.0167 0.0098

RMSE 0.0281 0.0211 0.0111

MAPE 5.2616 5.4754 4.5586

Anyang MAE 0.0216 0.0161 0.0079

RMSE 0.0244 0.0234 0.0091

MAPE 4.2446 4.1260 7.6934

Beijing MAE 0.0235 0.0145 0.0048

RMSE 0.0279 0.0194 0.0056

MAPE 5.0212 3.3774 12.6619
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Fig. 4 Decomposition and reconstruction results of Anyang dataset
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Anyang, there were 9 days of light pollution, 7 days of

medium pollution and 7 days of highly pollution, and the

accuracy of early warning reached 90%. In Beijing, which

has a developed economy and vigorously combats air

pollution, there are only 3 days of light pollution, and the

rest of the time are good or excellent, and the warning

accuracy of the hybrid framework out of this paper reaches

93%. Therefore, the hybrid framework proposed in this

paper can be used as an effective tool for air pollution

forecasting and early warning.

4.7 Comparative experiments

In order to verify the effectiveness and superiority of the

hybrid model proposed in this paper, we designed two sets

of comparison experiments. The first set of experiments

uses three commonly used optimization algorithms,

Genetic Algorithm (GA), Particle Swarm Algorithm (PSO)

and Simulated Annealing Algorithm (SA), to perform

hyperparametric optimization of the LSTM to verify the

Table 4 Comparison results of optimization algorithms

Model Iteration

time

(minutes)

MAE RMSE R2 MAPE

GA-LSTM 86 19.8431 23.3231 0.5511 41.3411

PSO-LSTM 85 17.9315 21.1001 0.6022 37.9812

SA-LSTM 92 19.1767 22.8110 0.5721 38.1251

GWO-

LSTM

79 17.0412 20.8713 0.6231 35.2032

Table 5 Results of eight comparative models based on relevant literature

Model Cases MAE RMSE R2 MAPE Accuracy (%)

RF-SVR Ishak (2016) Xingtai 20.8076 28.0947 0.5717 60.0995 49

Anyang 25.0864 36.1994 0.5351 55.1897 53

Beijing 17.1767 22.1765 0.1979 103.2237 42

ANN Goudarzi et al. (2021) Xingtai 21.3315 30.7800 0.4858 50.1228 33

Anyang 24.0341 36.3902 0.5302 46.9429 56

Beijing 15.8040 21.2815 0.2612 87.1735 40

LSTM Yang et al. (2021) Xingtai 20.9384 29.9231 0.5142 45.6219 67

Anyang 23.4964 35.7736 0.5460 48.3475 55

Beijing 15.8368 21.2492 0.2635 83.9802 41

EEMD-LSTM Bai et al. (2019a, b) Xingtai 9.8000 13.8968 0.8952 24.3531 75

Anyang 11.5542 17.2382 0.8950 22.7417 77

Beijing 7.1375 10.1139 0.8337 36.0034 82

CEEMD-RF Liu and Sun (2019) Xingtai 13.0316 17.7063 0.8299 31.9986 52

Anyang 14.6151 21.1709 0.8410 30.8094 64

Beijing 12.7847 16.9727 0.5301 72.8125 80

EMD-GRU Huang et al. (2021) Xingtai 12.6310 16.4351 0.8534 29.6622 50

Anyang 16.5346 22.1601 0.8258 33.6153 62

Beijing 13.4090 17.5617 0.4969 69.5675 67

CEEMD-GWO-SVR Niu et al. (2016) Xingtai 13.0920 17.1708 0.8400 35.1119 50

Anyang 14.1738 19.9151 0.8717 31.1315 67

Beijing 12.6228 15.8322 0.59116 78.4423 88

VMD-SE-LSTM Wu and Lin (2019) Xingtai 8.9445 13.2124 0.9042 23.4516 75

Anyang 10.3212 12.2382 0.9134 20.1415 82

Beijing 7.5357 9.2145 0.8628 33.1348 84

CEEMDAN-FE-mRMR-GWO-ANN Xingtai 15.1254 17.3254 0.8012 29.4110 62

Anyang 15.8183 17.8753 0.8311 25.1539 68

Beijing 12.1156 14.7865 0.8458 27.6423 80

CEEMDAN-FE-mRMR-GWO-LSTM Xingtai 7.6823 9.6855 0.9492 19.3643 87

Anyang 6.9228 8.8539 0.9722 14.0953 90

Beijing 5.1911 6.2419 0.9364 25.8494 93
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Fig. 5 Decomposition and reconstruction results of Beijing dataset
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superiority and effectiveness of the GWO optimized

LSTM. The second set of experiments introduces nine

comparison models, eight of which are the results from

eight excellent papers in the same research area in recent

years. As shown in Tables 4 and 5, the prediction accuracy

of the hybrid model proposed in this paper outperforms all

the comparative models.

In the first set of comparison experiments, the number of

hidden layers of LSTM is set to 1, and the number of

hidden layer neurons, batch size and Dropout rate of hidden

layers are determined by using the optimization algorithm.

The number of hidden layer neurons is [2,128], the batch

size is [2,256], and the Dropout rate is [0,0.6]. Taking the

data of Xingtai as an example, the number of iterations of

the optimization algorithm is 50, and the iteration time and

prediction performance are shown in the Table 4. GWO

can find the optimal hyperparameters of LSTM faster and

more effectively than other optimization algorithms, which

can effectively improve the prediction of the model.

In the second set of comparison experiments, the SVR

model based on random forest (RF) for feature selection

has the worst prediction performance. Although the intro-

duction of exogenous variables can improve the robustness

and prediction accuracy of the model, this can be achieved

only on the basis of a reasonable treatment of PM2.5 con-

centration series. In addition, the introduction of exogenous

variables can easily lead to problems such as error accu-

mulation, which in turn affects the prediction accuracy.

The advantages of ANN and LSTM in handling nonlinear

sequences make their prediction accuracy better than RF-

SVR. However, the advantage of LSTM in temporal pat-

terns does not make its prediction performance signifi-

cantly better than ANN. This is because the original PM2.5

concentration sequence is more complex and more volatile,

which makes it more difficult for the LSTM to learn valid

information from it. Therefore, we additionally constructed

CEEMDAN-FE-mRMR-GWO-ANN for comparison. The

results show that the hybrid model proposed in this paper

has higher prediction performance. The effective

Fig. 6 Prediction accuracy of the hybrid model on three data sets
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processing of PM2.5 sequences and the inclusion of PM2.5

influencing factors make it easier for the LSTM to capture

the long-term dependence in the data, which further

improves the prediction performance.

As shown in Table 5, models 4 through 8 are decom-

posed integrated frameworks, and these models show a

significant improvement in predictive performance com-

pared to models 1 through 3. Taking Anyang as an

example, the MAE, RMSE and MAPE of EEMD-LSTM

are improved by 50.82%, 51.81% and 52.96%, respec-

tively, compared with LSTM. The warning accuracy of

EEMD-LSTM model reached 77%, while the warning

accuracy of LSTM model was only 55%. Among these five

decomposition integration frameworks, CEEMD-GWO-

SVR has the worst prediction performance, which is

because SVR is less capable of handling nonlinear time

series than RF and LSTM. Although the prediction per-

formance of CEEMD-RF and EMD-GRU is good in two

cities, Xingtai and Anyang, the warning accuracy is low. In

addition, the prediction performance of both models in the

Beijing dataset shows a substantial decrease, which indi-

cates that the model cannot be effectively applied to

datasets in different cities and the stability of prediction is

poor. Among these five decomposition integration frame-

works, the VMD-SE-LSTM and EEMD-LSTM showed

good prediction performance, early warning accuracy and

prediction stability in different datasets. And the hybrid

prediction framework proposed in this paper, with the

Anyang dataset, improves the MAE, RMSE and MAPE by

32.92%, 27.65% and 30.02%, respectively, compared to

the EEMD-LSTM. And compared with MAE, RMSE and

MAPE of VMD-SE-LSTM, the improvement is 40.08%,

48.64% and 38.02%, respectively. In addition, the hybrid

prediction model proposed in this paper outperforms

VMD-SE-LSTM and EEMD-LSTM in terms of warning

accuracy and prediction stability on different data sets.

In summary, the hybrid prediction framework proposed

in this paper outperforms all comparative models in terms

of prediction accuracy, warning accuracy and prediction

stability. This proves that the hybrid prediction framework

is suitable for air pollution forecasting and warning.

5 Conclusion

In order to prevent air pollution and protect human health,

this paper proposes a multi-factor, multi-scale, and intel-

ligent optimization based two-stage deep learning hybrid

framework for air pollution forecasting and warning. First,

feature extraction is performed using CEEMDAN and FE

to decompose and reconstruct the original sequence into

three components. Then, the mRMR algorithm is used for

feature selection of the influencing factors to filter out the

influencing factors that have a greater impact on each

reconstructed component. Then, a two-stage deep learning

hybrid framework is proposed in this paper to predict and

nonlinearly integrate each reconstructed component.

Finally, based on the proposed hybrid model, air pollution

prediction and early warning are achieved. The results

show that: (1) the feature extraction methods based on

CEEMDAN and FE can effectively discover the multiscale

relationships in PM2.5 sequences, reduce the complexity of

prediction; (2) the mRMR-based influence factor selection

method can not only reduce the complexity of data, but

also improve the performance of the model; (3) A two-

stage GWO-LSTM can effectively improve the prediction

accuracy; (4) the model has good practical significance and

application value, and can realize effective forecasting and

early warning of air pollution.

Using PM2.5 concentration data from Xingtai, Anyang

and Beijing as the study samples, the empirical results

statistically support the effectiveness of the proposed

hybrid model in terms of prediction accuracy and robust-

ness, and the model outperforms all comparative models.

In conclusion, the hybrid framework has advantages in

prediction stability, prediction accuracy and accuracy of air

pollution warning. Not limited to air pollution prediction

studies, the framework can be extended to other complex

systems to verify its generality and versatility. However, no

technique is perfect and flawless. As the theory matures

and research progresses, more advanced and effective

algorithms will be proposed. In the future, on top of the

hybrid framework proposed in this paper, more novel and

effective algorithms can be added to further improve the

prediction performance of the model. In addition, only

daily PM2.5 concentration data were considered in this

study, so prediction of air pollutant concentrations on other

time scales is also an option for future research.
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