
J Supercomput (2015) 71:629–647
DOI 10.1007/s11227-014-1314-7

Two-stage distributed parallel algorithm with message

passing interface for maximum flow problem

Jincheng Jiang · Lixin Wu

Published online: 31 October 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Maximum flow is one of the important and classical combinatorial opti-

mization problems. However, the time complexity of sequential maximum flow algo-

rithms remains high. In this paper, we present a two-stage distributed parallel algorithm

(TSDPA) with message passing interface to improve the computational performance.

The strategy of TSDPA has two stages, which push excess flows separately along

cheap and expensive paths identified by a new distance estimate function. In TSDPA,

stage 1 enhances the parallel efficiency by omitting high-cost paths and decentralizing

calculations, and stage 2 guarantees the achievement of an optimal solution through

divide-and-conquer method. The experimental test demonstrates that TSDPA runs

1.2–15.5 times faster than sequential algorithms and is faster than or almost as fast as

the H_PRF and Q_PRF codes.

Keywords Distributed · Parallel algorithm · Maximum flow ·

Message passing interface · Two-stage strategy

1 Introduction

The ultimate goal of the maximum flow problem is to determine the maximum flow

value from the source to sink in a directed capacitated network while satisfying capac-

J. Jiang

Academy of Disaster Reduction and Emergency Management, Beijing Normal University,

No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, China

e-mail: jiangjincheng0305@126.com

L. Wu (B)

IoT Perception Mine Research Center, China University of Mining and Technology,

No. 1, Daxue Road, Quanshan District, Xuzhou, Jiangsu 221008, China

e-mail: awulixin@263.net

123

630 J. Jiang, L. Wu

ity and flow conservation constraints (except for the source and sink). As a classical

combinatorial problem, maximum flow is of practical interest because of its exten-

sive application in the fields of mining, transportation planning, communications,

and operations research [1]. Many researchers have performed related theoretical and

experimental studies, and numerous maximum flow algorithms have been proposed

during the past half-century to improve complexity bounds and reduce actual comput-

ing time in large-scale networks and real-time applications [2].

In general, sequential maximum flow algorithms include mainly augmenting path

[3,4], push-relabel [5], pseudo-flow [6], BK [7], draining [8], and several other excel-

lent algorithms [9]. Detailed reviews have been provided by Ahuja et al. [1] and Asano

and Asano [10]. These algorithms improve the computational performance, but their

time complexity remains high. Fortunately, parallel computing has become an effective

means of solving the computing bottleneck problem. A few existing parallel algorithms

can be classified into two categories, namely shared-memory and distributed-memory

modes.

• For shared-memory parallel mode, several early parallel algorithms [11,12] were

designed to run on a parallel random access machine (PRAM) [13]. However,

PRAM is not a physically realizable parallel model and thus lacks practical appli-

cation value. To investigate the practical implementation of parallel algorithms,

several researchers [14,15] focused on multi-core platforms [16] in shared-memory

machines. However, the limited number of available cores prevents further speedup.

Several other parallel algorithms [17,18] were proposed based on graphics process-

ing units (GPUs), into which thousands of cores are integrated [19]. However, the

GPU model is unsuitable for the strong correlative operations of maximum flow

algorithms because of its mode of single-instruction multiple-data stream.

• For distributed-memory parallel mode [20], the programming model based on mes-

sage passing interface (MPI) is unrestricted by the number of processors and can

achieve significant improvements in execution time. However, few efficient distrib-

uted parallel maximum flow algorithms based on MPI were proposed because of

the strong correlation of operations in the maximum flow algorithm and the high

cost of passing messages.

Regardless of the parallel mode, most existing parallel algorithms utilize fine-grained

parallelization and require a large amount of communication. As a result, many parallel

algorithms do not perform well in practice. By contrast, coarse-grained parallelization

has the advantage of reducing the amount of communication. Delong and Boykov

[21] proposed a coarse-grained parallel algorithm (referred to as Delong–Boykov’s

algorithm hereafter), in which the network is partitioned into several disjoint regions

and the discharge operations are performed in non-interacting regions in parallel. The

instances the researchers considered were N-D grids in the field of computer vision.

On this basis, Shekhovtsov and Hlavac [22] proposed an improved algorithm (referred

to as Shekhovtsov–Hlavac’s algorithm hereafter) guided by a different distance func-

tion. Unlike Delong–Boykov’s algorithm that utilizes push-relabel updates both inside

and between regions, Shekhovtsov–Hlavac’s algorithm applies the augmenting path

method inside each region and push-relabel updates between regions. Shekhovtsov–

Hlavac’s algorithm improves the time complexity from a tight O(n2) bound on the

123

TSDPA with message passing interface for maximum flow problem 631

number of sweeps to 2|B|2 + 1, where n is the number of nodes in the network and B

is the set of nodes incident to inter-region edges. Even so, very a few improvements

have been made to enhance the speedup of parallel maximum flow algorithms. Eleyat

et al. [23] suggested that the maximum flow algorithm is difficult to be parallelized.

This paper presents a two-stage distributed parallel algorithm (TSDPA) with MPI for

large-scale sparse networks, in which the average number of arcs incident to a node

is small. By limiting the total amount of communication between processors through

several newly proposed strategies, TSDPA produces practical accelerating effects.

The rest of this paper is organized as follows. Section 2 provides a review of

the background of maximum flow problem and presents related studies. TSDPA is

described in detail in Sect. 3. The theoretical analysis of TSDPA is presented in Sect. 4.

Section 5 presents the experiments and performance analysis of TSDPA. Section 6

provides the conclusions.

2 Background

2.1 Maximum flow problem

We consider a directed network G(V, E, s, t, c, f), where V is the set of nodes and

E is the set of arcs. Each arc (vi , v j) ∈ E has a capacity c(vi , v j), and (vi , v j) is an

outgoing arc for vi and an incoming arc for v j . G has two distinctive nodes: source

node s ∈ V and sink node t ∈ V . Flow f in G is a function that satisfies the following

constraints.

Capacity constraint: 0 ≤ f (vi , v j) ≤ c(vi , v j), ∀(vi , v j) ∈ E (1)

Flow conservation constraint:
∑

(vi ,v j)∈E

f (vi , v j) −
∑

(v j ,vk)∈E

f (v j , vk) = 0,

∀v j ∈ V \{s, t} (2)

The value of flow f is defined as | f | =
∑

(s,vi)∈E f (s, vi). The goal of the maxi-

mum flow problem is to find a flow with maximum value | f | from s to t .

2.2 Residual network

For existing flow f and arc (vi , v j) ∈ E in G, the flows in (vi , v j) can either increase

or decrease. The residual capacity is defined as follows: (1) if f (vi , v j) = 0, then

the residual capacity r(vi , v j) = c(vi , v j); (2) if 0 < f (vi , v j) < c(vi , v j), then

r(vi , v j) = c(vi , v j) − f (vi , v j) and a reversed arc (v j , vi) is added, r(v j , vi) =

f (vi , v j); (3) if f (vi , v j) = c(vi , v j), then r(vi , v j) = 0, r(v j , vi) = f (vi , v j).

The residual network G f (V, E f , s, t, c, f) [5] contains the same node set V as that

of G but a different arc set E f , which is constructed by the original and reversed

arcs with positive residual capacity, as depicted in Fig. 1. In the following paragraphs,

pushing flows in the opposite direction of directed arc (vi , v j) means decreasing the

flows of (vi , v j).

123

632 J. Jiang, L. Wu

Fig. 1 An example of residual network: a the original network, b the residual network

2.3 Push-relabel method

Push-relabel method works on the residual network G f (V, E f , s, t, c, f) and

relaxes the flow conservation constraint before the method terminates. For each

node vi ∈ V \{s, t}, excess flow is defined as e(vi) =
∑

(v j ,vi)∈E f (v j , vi) −
∑

(vi ,vk)∈E f (vi , vk). Node vi ∈ V \{s, t} is an active node if e(vi) > 0. Height

h(vi) is a valid function that refers to the shortest topological distance from vi to t in

G f satisfying h(vi) ≤ h(v j) + 1 if (vi , v j) ∈ E f . Arc (vi , v j) is identified as an

admissible arc if (vi , v j) ∈ E f and h(vi) = h(v j) + 1. Push-relabel method [5]

maintains preflow and height labeling, where preflow is similar to a flow except that

the total amount flowing into a node is allowed to exceed the total amount flowing out.

Preflow and height labeling are iteratively modified by push and relabel operations

(as shown below). Push-relabel method terminates when no more active nodes exist

in G f . Cherkassky and Goldberg [24] described push-relabel method in detail.

123

TSDPA with message passing interface for maximum flow problem 633

In the above procedures, the aim of steps 3–9 in the Push (vi) operation is to push

flows from vi to v j .

2.4 Related work

Several excellent distributed parallel algorithms have been proposed for N–D grids

in the domain of computer vision. Delong–Boykov’s algorithm [21] partitions the

network into several regions and then discharges the flows for different non-interacting

regions in parallel. After partitioning a network into regions, this algorithm repeats

the following steps until no more active nodes exist.

1. Several non-interacting regions with active nodes are dynamically selected

2. Flows in the selected regions are discharged in parallel

3. The region-gap, region-relabel and global relabeling heuristics are applied [21,22,24]

Rather than using push-relabel updates inside regions as in Delong–Boykov’s algo-

rithm, Shekhovtsov and Hlavac [22] adopt the augmenting path method to push flows

inside regions to the boundary nodes in the order of their increasing labels, which are

determined by a distance function. Given the same fixed partition as Delong–Boykov’s

algorithm, the label of boundary nodes in Shekhovtsov–Hlavac’s algorithm indicates

the sum of region boundaries crossed by a path to t . With a new distance function,

Shekhovtsov and Hlavac present a new algorithm with the following steps.

The labels of boundary nodes in the above-mentioned competing algorithms are

globally valid. In the following section, we present TSDPA. The labels of boundary

nodes in stage 1 of TSDPA are locally valid.

3 TSDPA

TSDPA, which is designed based on push-relabel method, consists of two main stages

(Fig. 2). After preprocessing, which aims to partition the network into several regions

and distribute them to different processors, the flows are pushed along cheap and

expensive paths to t with different strategies in stages 1 and 2, respectively.

3.1 Preprocessing

The network should be partitioned into several regions to enable multiple independent

processors to work in parallel in a distributed environment. Two principles must be

123

634 J. Jiang, L. Wu

Read data

Partition network

Distribute regions

Classify

boundary nodes

Push flow

inside region

Discharge flow

out of region

Classify

boundary nodes

Push flow

inside region

Discharge flow

out of region

Classify

boundary nodes

Push flow

inside region

Discharge flow

out of region

START

seYseY Yes

Maximum

flow?

oNoNoN

No

Master

Processor

Slave

Processors

Master

Processor

Group-I
or group-II

active boundary
nodes exist?

Output

Solution

Network

data

Max-flow

solution

END

Preprocessing

Stage 1

Stage 2

Merge regions

together

Perform

push-relabel method

Yes

Group-I
or group-II

active boundary
nodes exist?

Group-I
or group-II

active boundary
nodes exist?

Fig. 2 Overall workflow of TSDPA

followed for partitioning the network. The first principle is load balance, i.e., all

regions should have similar sizes because the total running time depends on the longest

computing time among all processors. The second principle is that the number of

nodes incident to the inter-region arcs should be as few as possible to reduce the cost

of communication between regions.

Many methods [25] can be utilized to partition the network. In this paper, levelized

nested dissection (LND) method (t is the initial seed) is selected because of its fast

partition speed and the tendency of connected nodes to fit together. These qualities

make the method well suited for coarse-grained parallelization.

123

TSDPA with message passing interface for maximum flow problem 635

Fig. 3 Example of classifying boundary nodes: T (v7) will be I because of (v7, v12), T (v8) will be II

because of (v8, v5), and T (v1) will be III

We assume that network G(V, E, s, t, c, f) with n = |V | nodes and m = |E | arcs

is partitioned into p disjoint regions Gk (0 ≤ k ≤ p−1) through LND method, where

p is the number of processors. Gk(Vk, Ek, c, f) is defined as follows.

Region node set Vk (Vk ⊂ V) contains a subset of connected nodes in G, and the

collection of regions Vk forms a partition of V (Fig. 3). Vk includes two parts: boundary

node set V B
k and internal node set V R

k . The nodes in V B
k are incident to inter-region

edges, i.e., V B
k = {vi |∃v j ∈ G, (vi , v j) ∈ Eor(v j , vi) ∈ E, v j /∈ Vk, vi ∈ Vk}.

Internal node set V R
k is defined as V R

k = Vk − V B
k .

Region arc set Ek includes internal arc set E R
k = {(vi , v j)|(vi , v j) ∈ E, vi ∈ Vk,

v j ∈ Vk} and boundary arc set E B
k , which are divided into boundary outgoing arc

set Eout
k and boundary incoming arc set E in

k . For region Gk , boundary outgoing arc

set Eout
kw from regions Gk to Gw (k �= w) is defined as Eout

kw = {(V B
k , V B

w)}, and the

corresponding boundary incoming arcs are defined as E in
kw = {(V B

w , V B
k)}. Eout

k =

U(Eout
kw)

p−1
w=0 and E in

k = U(E in
kw)

p−1
w=0.

An important region distance function Dk is presented for region Gk in TSDPA. Dk

equals the generated order of partitioned regions, e.g., D0 = 0, D1 = 1, and D2 = 2

(Fig. 3). In other words, Dk is the number of regions between Gk and t .

As illustrated in Fig. 2, after partitioning the network into p regions, the master

processor distributes the regions to several slave processors. Without loss of generality,

region Gk is assigned to processor k. For any region Gk , stages 1 and 2 of TSDPA are

described as follows.

3.2 Stage 1

In this section, we present a region-level heuristic function to evaluate the distance

of boundary nodes (or to classify the boundary nodes) by which cheap and expensive

feasible paths can be distinguished. Efficient methods are then proposed to push flows

both inside and between regions for each processor k that is responsible for processing

region Gk (0 ≤ k ≤ p − 1).

3.2.1 Region-level heuristic

Traditionally, the distance function of push-relabel method counts the length of a

feasible path to t . In Shekhovtsov–Hlavac’s algorithm, the distance of boundary nodes

123

636 J. Jiang, L. Wu

corresponds to the number of regions required to transfer the excess flow to t . This

distance is an accurate global function with a maximum value of |B| − 1, where

B = U(V B
k)

p−1
k=0 is the set of boundary nodes. Therefore, the number of passing

messages along a single feasible path remains large, and these messages cannot be

passed in batches. This drawback is unfavorable for MPI because its communication

efficiency largely depends on the number of passing messages.

TSDPA uses a region-level heuristic to evaluate the distance of boundary nodes.

This heuristic provides each boundary node a local classification, not a global distance.

Boundary nodes in region Gk are classified into three groups (group I, group II, and

group III), which are determined by the residual capacity of boundary outgoing arcs

and the region distance of neighboring regions. We employ Ti = I , Ti = II , and

Ti = III to denote the classification of boundary node vi when it belongs to groups I ,

II, and III, respectively. Ti = I implies that feasible paths from vi to t exist and that

the next regions in these paths are closer to t than Gk . Ti = II implies that there are

feasible paths, but the region distances of the next regions in these paths are larger than

those of Gk . Finally, Ti = III implies that no guaranteed feasible paths from node vi

to t exist. This region-level heuristic is described as follows.

s and t are regarded as special boundary nodes, and Ts = III and Tt = I remain

unchanged. Initially, all boundary nodes (except for s) belong to group I because

every boundary node has feasible paths to t crossing regions with decreasing region

distances after the network is partitioned through LND method. At each iteration,

the classification of any boundary node vi (vi �= s, vi �= t) changes dynamically

according to the following criteria.

1. If the first-kind boundary outgoing arc (vi , v j) ∈ Eout
kw exists, where T (v j) = I ,

c(vi , v j) > f (vi , v j) and Dk ≥ Dw, then T (vi) = I ;

2. Else, if the second-kind boundary outgoing arc (vi , v j) ∈ Eout
kw exists, where

T (v j) = I , c(vi , v j) > f (vi , v j) and Dk < Dw, then T (vi) = II;

3. Else, T (vi) = III , which indicates that no direct feasible boundary outgoing arcs

to the neighboring regions exist.

After classifying with these criteria, we let S0, S1, and S2 be the sets of groups I ,

II, and III boundary nodes, respectively.

The above-mentioned criteria are based on the residual capacity of boundary arcs

and the classification of boundary nodes in neighboring regions without considering

the feasible paths inside the region. To make the classification more accurate, we

update the classification of boundary nodes with region relabeling heuristics:

1. Breadth-first search (BFS) method starting from S0 is performed to search for

feasible paths. If boundary node vi with T (vi) �= I has feasible paths to S0, then

set T (vi) = I .

2. BFS method is performed starting from S1 − S1 ∩ S0. If boundary node v j with

T (v j) = III has feasible paths to S1 − S1 ∩ S0, then set T (v j) = II .

We let S3, S4, and S5 be the sets of the groups I, II, and III boundary nodes after these

updates, respectively.

The cheap and expensive feasible paths are identified with this region-level heuris-

tic. For an active node vi in region Gk , the feasible paths, whose boundary arcs only

123

TSDPA with message passing interface for maximum flow problem 637

contain the first-kind boundary outgoing arc or the second-kind boundary outgoing

arc, cross boundary k − 1 and k + 1 times, respectively. These paths are identified

as cheap paths, otherwise expensive paths. As illustrated in Fig. 3, although some

calculation lags exist, reachable feasible paths from group I nodes to t are shorter

than those from group II nodes in the same region. Meanwhile, the group III nodes

have no guaranteed reachable feasible paths to t .

3.2.2 Region discharge

Shekhovtsov–Hlavac’s algorithm pushes excess flows to t and boundary nodes in the

order of their increasing distances. In TSDPA, the distance of boundary nodes has only

three values, which represent the three classifications. For convenience of expression,

we let S6, S7 and S8 be the set of group I nodes with the first-kind boundary outgoing

arcs, the set of group II nodes with the second-kind boundary outgoing arcs, and the set

of group III nodes with the non-null boundary incoming arcs from Gk+1, respectively.

A boundary arc (vi , v j) is defined as the non-null boundary incoming arc for v j if

f (vi , v j) > 0. Clearly, S6 = S0, S7 = S1 − (S1 ∩ S3), and S8 ⊆ S5 ⊆ S2.

We push excess flows inside the region to S6, S7, and S8 successively. Then, we

discharge the excess flows of these destinations along specific boundary arcs out of

the region.

1. Pushing flows inside the region

In Sect. 3.2.1, the region relabeling heuristics starting from S6 and S7 (in order)

are performed inside the region to update the classification of boundary nodes. With

these heuristics, corresponding sub-regions in which nodes have feasible paths to

destinations S6, S7, and S8 are separated and represented as R1 ⊆ Gk , R2 ⊆ Gk , and

R3 ⊆ Gk . In other words, excess flows in R1, R2, and R3 should be pushed to S6, S7,

and S8, respectively.

Several good sequential methods can be utilized to push flows inside each region.

Delong and Boykov apply push-relabel method, whereas the augmenting path method

is adopted in Shekhovtsov–Hlavac’s algorithm. Push-relabel method is selected for

TSDPA because it outperforms other methods in many instances [26].

Both communication complexity and load balance should be considered to achieve

the desired practical accelerating effects. Therefore, highly efficient and parallelizable

sequential methods must be selected or designed. However, existing sequential algo-

rithms have difficulty in guaranteeing both qualities. For example, the H_PRF code

[24] is one of the most efficient algorithms in practice, but it loses parallelizability

because of its highly concentrated operations. The F_PRF code [24] is suitable for

parallel implementation but does not perform as well as the H_PRF code. We present

two practical and highly efficient implementations of push-relabel method with high

parallelizability. These two implementations have similar steps as follows.

1. Initially, we set height h(i) = ∞,∀i ∈ V/{t}, and h(t) = 0.

2. BFS method is performed starting from t to label all nodes, as the global relabeling

heuristics do. The searched active nodes (or s at the first iteration) are placed into

123

638 J. Jiang, L. Wu

S. If S is not empty, then all searched nodes are set as valid nodes; otherwise, the

algorithm terminates.

3. An active node vi with the largest height is selected from S. If there are valid

neighbors with smaller heights, we push the excess flow of vi along all admissible

arcs to these valid neighbors until vi has no admissible arcs or the excess flow of

vi is zero. vi is identified as an invalid node if e(vi) > 0 after pushing flows along

all admissible arcs.

4. If e(vi) > 0, we push the excess flow of vi to valid neighbors with the same or

larger height along feasible arcs until e(vi) = 0.

5. Steps 3 and 4 are repeated until no more valid active nodes exist.

6. All nodes are set as invalid nodes except for t , and steps 2–5 are performed itera-

tively until no more active nodes exist.

In steps 3 and 4, the newly generated active nodes are placed in S. We call this

approach multi-directional push (MDP) method if all steps are performed; otherwise,

the single-directional push (SDP) method if step 4 is not performed.

In contrast to the traditional push-relabel method, no actual relabel operation is

performed in MDP and SDP methods. The nodes’ heights are updated only by global

relabeling heuristics. In addition, node vi is marked as valid or invalid to suggest

whether there are good feasible paths from vi to t or not. MDP and SDP methods

provide several advantages for our parallel implementation. On one hand, MDP and

SDP methods use global relabeling heuristics and inherit the advantages of highest-

level selection strategy [24] because they always select the highest valid nodes. Thus,

computational efficiency is enhanced. On the other hand, calculations in MDP and

SDP methods are decentralized because generated invalid nodes reduce the contact

among active nodes. Thus, multiple active nodes can perform operations in parallel

with high efficiency. More detailed performance tests are described in Sect. 5.

2. Discharging flows out of the region

This step aims to discharge excess flows for the three kinds of boundary nodes out

of the region along specific boundary arcs. S6 pushes excess flows along the first-

kind boundary outgoing arcs, S7 pushes excess flows along the second-kind boundary

outgoing arcs, and all excess flows in S8 can be pushed back to s or Gk+1 along

non-null boundary incoming arcs.

As an example, group I nodes include two kinds of boundary nodes. The first one

(i.e., S6) owns the first-kind boundary outgoing arcs, whereas the second one (i.e.,

S3 − S6) does not. Excess flows of S6 are discharged out of the region only along

the first-kind boundary outgoing arcs. According to the classification criteria, feasible

paths from S3 − S6 to S6 may exist inside the region; thus, the excess flows of S3 − S6

are pushed along these feasible paths rather than along the second-kind boundary

outgoing arcs or non-null boundary incoming arcs.

The above discussions are also applicable to the group II nodes. All excess flows

of groups I and II boundary nodes are discharged out of the region along boundary

outgoing arcs. By contrast, the group III boundary nodes discharge excess flows along

non-null boundary incoming arcs.

123

TSDPA with message passing interface for maximum flow problem 639

3.2.3 Feature of stage 1

Stage 1 of TSDPA performs the above region-level heuristic and region discharge

operations iteratively until no more active groups I and II boundary nodes exist.

Two differences are observed between stage 1 of TSDPA and Shekhovtsov–Hlavac’s

algorithm. The first difference is the label of boundary nodes. In place of three classifi-

cation values, the label of boundary nodes in Shekhovtsov–Hlavac’s algorithm counts

the region boundaries crossed by the shortest feasible path to t . These labels can be

obtained by a global relabeling heuristic. The second difference is the sequential algo-

rithm. Inside each region, stage 1 of TSDPA uses push-relabel method to push excess

flows to groups I , II, and III boundary nodes in order. However, Shekhovtsov–Hlavac’s

algorithm uses the augmenting path method to push excess flows to the boundary nodes

in the increasing order of their labels.

3.3 Stage 2

After the termination of stage 1, the obtained flow may not be the maximum one

because high-cost feasible paths are implicitly omitted. As described in Fig. 4, the

omitted feasible path s − v1 − v5 − v3 − v6 − t is considered an expensive path

according to classification criteria because it crosses boundaries many times. This

stage aims to make the solution optimal.

In Shekhovtsov–Hlavac’s algorithm, the maximum label of a boundary node is

|B| + 1, which means that a feasible path crosses boundaries |B| + 1 times at most.

The value of |B| is difficult to decrease; thus, too many messages need to be passed.

To avoid unfavorable cases, we adopt the divide-and-conquer strategy [27]. First, the

master processor collects the information of all regions and merges them into an entire

network. Second, sequential push-relabel method is performed by the master processor

on this network until the optimal solution is obtained. Although this stage makes no

contributions to the acceleration effect of TSDPA, undesirable cases with excessive

communication are avoided and the optimal solution is guaranteed.

The acceleration of TSDPA depends on the workload of stages 1 and 2. If stage 1

performs most of the calculations, then the effect of acceleration will be significant

and vice versa.

Fig. 4 Example of omitted path: path s − v1 − v5 − v3 − v6 − t is considered an expensive path, where

arc (v5, v3) is the reversed arc of (v5, v3) and the residual capacity r(v5, v3) = f (v3, v5)

123

640 J. Jiang, L. Wu

4 Communication complexity

The parallel performance of TSDPA relies mainly on the parallelization of stage 1;

most messages are passed in this stage. In this section, we analyze the communication

complexity of stage 1.

For group I boundary node i in region Gk , the shortest feasible path P from i to

t crosses regions with monotonically decreasing region distances. In other words, the

number of boundaries for P to cross is k. As for the excess flows of group II boundary

nodes in Gk , k +2 boundaries need to be crossed because the excess flows are first sent

to the group I boundary nodes in Gk+1 and then to t . The communication complexity

can be analyzed in three steps.

First, we suppose that no discharge operation is performed for excess flows of S7

and S8. No flow will be pushed to region G p−1 after the first iteration, where p is

the number of processors (or regions). The excess flows in G p−1 will be discharged

out of the region only by S6. The maximum size of S6 in G p−1 is |V B
p−1|. |S6| is

reduced by at least one for each iteration. The reason is that if active node vi ∈

S6 remains active after the discharge operation, then vi no longer belongs to S6;

otherwise, S6 is empty. Therefore, the maximum number of iterations in region G p−1

is |V B
p−1|. Similarly, the communication complexities are

∣

∣

∣

V B
p−1

∣

∣

∣

+

∣

∣

∣

V B
p−2

∣

∣

∣

,

∣

∣

∣

V B
p−1

∣

∣

∣

+
∣

∣

∣

V B
p−2

∣

∣

∣

+

∣

∣

∣

V B
p−3

∣

∣

∣

, . . . ,

∣

∣

∣

V B
p−1

∣

∣

∣

+

∣

∣

∣

V B
p−2

∣

∣

∣

+· · ·+
∣

∣V B
0

∣

∣ for regions G p−2, G p−3, . . . , G0,

respectively. The maximum number of passing messages in this case is |U(V B
u)

p−1
u=k |

for any processor k.

Second, we suppose that the discharge operations are performed only for S6 and S7.

According to the region-level heuristic, region G0 never receives flows from group

II boundary nodes in other regions. Region G1 can obtain flows from S7 in region

G0, and the maximum number of receiving flows from S7 in G0 is |V B
0 | accord-

ing to the region-level heuristic. For any region Gk (1 ≤ k ≤ p − 1), the max-

imum number of passing messages from group II boundary nodes is |U(V B
u)k−1

u=0|.

Considering the messages from group I boundary nodes in other regions, the total

number of messages for passing is |U(V B
u)k−1

u=0 + U(V B
u)

p−1
u=k | = |U(V B

u)
p−1
u=0 |. The

worst case is the one in which flows of groups I and II nodes are sequentially

processed.

Lastly, S6, S7, and S8 perform the discharge operations as TSDPA does. The terminal

condition of TSDPA is that no more group I or II boundary active nodes exist, rather

than all excess flows being pushed to t or back to s. According to the region-level

heuristic, a flow will never be pushed along a cycle crossing boundaries in the above

steps. Implicitly, p region heuristics relabel operations correspond to a global heuristic

relabel; thus, the region-level heuristic is globally valid from this perspective. For the

excess flow originating from group III boundary nodes in Gk−1, three destinations

are available: S6, S7, and S8. If a flow is pushed to S8, then it must be discharged to

Gk+1 or remain at S8 until stage 1 terminates; otherwise, it is in a feasible path to

t . After at most p + 1 iterations, any flow in the network has four destinations: s,

t , S5 − S8, and vi (vi ∈ S8 and vi is in a feasible path). The flows in the first three

destinations no longer need to be processed. As for the last destination (i.e., vi), at

123

TSDPA with message passing interface for maximum flow problem 641

least one group I or II boundary node in any region becomes the group III boundary

node after 2p iterations; otherwise, all excess flows are pushed to t or s. Thus, at most

(2p)|U(V B
u)

p−1
u=0 | messages are added for passing if we discharge the excess flows for

S8.

In conclusion, the communication complexity of TSDPA is (2p + 1)|U(V B
u)

p−1
u=0

|= (2p + 1)| B| because the worst case occurs when discharge operations are per-

formed sequentially for S6, S7, and S8.

5 Experimental test

5.1 Experiment design

Our experimental test includes two parts. The first part involves measuring the time

performance of four sequential algorithms, namely MDP, SDP, and the well-known

H_PRF and Q_PRF codes [24]. All tested algorithms use both global and gap rela-

beling heuristics. Global relabeling is performed after every n relabel operations. All

sequential algorithms are implemented with the same programming style. The second

part involves evaluating the parallel efficiency of TSDPA compared with correspond-

ing sequential algorithms.

In this experiment, we do not compare TSDPA with Shekhovtsov–Hlavac’s algo-

rithm because of the different network. The network utilized in Shekhovtsov–Hlavac’s

algorithms is N-D grids, and nearly all nodes are connected to s and t . This kind of

network is unsuitable for TSDPA because the LND method starting from t partitions

N-D grids with excessive boundary arcs and thus compromises the advantages of

TSDPA. Theoretically, TSDPA performs well for a network with a large topologi-

cal distance between s and t . In other words, the parallel performance will be good

if s is located at region G p−1 and t is located at region G0. Moreover, the parallel

versions of competing algorithms have difficulty in running faster than sequential algo-

rithms in many practical instances. To evaluate thoroughly the parallel efficiency of

TSDPA considering the partition time, five artificial networks are utilized for testing.

These networks include a Washington-Line-Moderate (Line-Moderate) network with

65,538 nodes and 4,186,142 arcs, a Washington-RLG-Long (RLG-Long) network with

1,048,578 nodes and 3,145,664 arcs, a Washington-RLG-Wide (RLG-Wide) network

with 524,290 nodes and 1,564,672 arcs, a Genrmf-Long network with 651,600 nodes

and 3,170,220 arcs, and a Genrmf-Wide network with 3920 nodes and 18,256 arcs.

All these networks were published in the first DIMACS workshop held in 1991 at

Rutgers University. The details can be found in Badics, Boros, and Cepek [28]. They

have been widely utilized to test maximum flow algorithms [26].

All tested algorithms are executed on a blade server cluster that provides adequate

virtual machines. Each virtual machine has two cores, 2.53 GHz Intel Xeon CPU,

and 4 GB available memory. The switch is QLogic 20-port 8 Gb SAN Switch, whose

largest communication capability is 8Gb/s. The operating system is 64-bit Windows

7 Professional. All codes are written in C++ and compiled by gcc compiler with

O2 optimization. The parallel library utilized is the MPICH2 library. Each result is

averaged over three runs.

123

642 J. Jiang, L. Wu

5.2 Results and discussion

With regard to correctness, TSDPA can obtain the optimal solution. The reason is

that in stage 1, the capacity constraint is always satisfied when performing the push

operation regardless of inside a region or between regions; however, active nodes may

exist and the solution may be not the optimal one after stage 1 terminates. In stage

2, the sequential push-relabel algorithm is performed in the network; thus, all excess

flows of active nodes are pushed to t or s until the solution is optimal when stage 2

terminates.

With regard to time performance, the following experimental results are presented

to evaluate the performance of sequential and parallel algorithms. The acceleration of

a parallel algorithm over the sequential algorithm is calculated as follows.

speedup =
ts

tp

,

where ts and tp are the running time of sequential and corresponding parallel algo-

rithms, respectively.

1. Performance evaluation for sequential algorithms

The sequential algorithm selected to be performed in each region by the corresponding

processor affects not only the speedup of TSDPA, but also its overall performance.

Thus, selecting a proper sequential algorithm with high time efficiency and paralleliz-

ability is crucial.

Figure 5 shows the time performance comparison of the sequential algorithms.

The MDP algorithm shows good performance in the Line-Moderate network, and

the SDP algorithm performs at high efficiencies in the Line-Moderate, RLG-Wide,

and Genrmf-Wide networks. Compared with the Q_PRF code, the better performance

between the MDP and SDP algorithms is not far worse in all networks. Compared

Fig. 5 Time performance comparison of sequential algorithms

123

TSDPA with message passing interface for maximum flow problem 643

Fig. 6 Time efficiency of TSDPA for different networks: a Genrmf-Long network, b Genrmf-Wide network,

c Line-Moderate network, d RLG-Long network, and e RLG-Wide network

with the H_PRF code, the worst cases for the MDP and SDP algorithms occur in the

RLG-Long and Genrmf-Long networks; in these two networks, the MDP algorithm

outperforms the SDP algorithm and runs 8 and 6 times slower than the H_PRF code,

respectively. Furthermore, the MDP and SDP algorithms are only slightly worse than

the Q_PRF and H_PRF codes. Both MDP and SDP algorithms outperform the Q_PRF

and H_PRF codes in the Line-Moderate network. Thus, these two newly proposed

sequential algorithms have certain superiority in time performance.

With regard to H_PRF and Q_PRF codes, the H_PRF code runs faster than the

Q_PRF code in most of the networks, except for the Genrmf-Wide network. However,

the parallelizability of the Q_PRF code is higher than that of the H_PRF code [24].

Each of the sequential algorithms has its unique advantages in time performance or

parallel efficiency. The H_PRF code performs with high efficiency for most of the

tested networks. Thus, the H_PRF code is a good choice for use as the sequential

algorithm in stage 2 of TSDPA.

123

644 J. Jiang, L. Wu

Fig. 7 Maximum speedup of TSDPA

Fig. 8 Percentage of the number of boundary arcs for different numbers of processors

2. Performance evaluation for TSDPAs

Figure 6 shows the parallel efficiencies of TSDPAs for different networks. The method

used in stage 1 of TSDPA-M and TSDPA-MH is the MDP algorithm. TSDPA-S and

TSDPA-SH use the SDP algorithm in stage 1. The algorithms used in stage 2 of

TSDPA-M, TSDPA-S, TSDPA-MH, and TSDPA-SH are MDP, SDP, H_PRF, and

H_PRF, respectively. The following observations on the comparison of the computa-

tional time of parallel algorithms are obtained from Fig. 6.

• TSDPAs achieve desired parallel efficiencies in the Line-Moderate, RLG-Long, and

Genrmf-Long networks. For example, the maximum speedups of the TSDPA-SH in

Fig. 6a, c and d reach up to 8.22, 4.62, and 9.64 (Fig. 7), respectively. The parallel

efficiencies are high because the TSDPAs exploit fully the cluster architecture, in

which several processors work in parallel to reduce running time. The TSDPAs run

efficiently in parallel for three reasons. First, the LND method, which produces

few boundary arcs connected to different regions for the tested networks (Fig. 8),

is utilized to partition the network and thus only slightly increases communication

123

TSDPA with message passing interface for maximum flow problem 645

time. Second, stage 1 limits the number of passing messages by omitting high-cost

paths; thus, excessive communication is avoided. Third, operations are decentralized

to make several processors work in parallel with load balance by designing efficient

sequential algorithms with high parallelizability, such as the MDP and SDP methods

in stage 1.

• For the comparison of TSDPAs and the H_PRF code, the experimental results can

be divided into three groups. The first group includes RLG-Long and Genrmf-

Long networks. Although both MDP and SDP algorithms perform worse than the

H_PRF code in these networks, the time performances of TSDPAs are close to

that of the H_PRF code when the processors reach a certain number. The Line-

Moderate network belongs to the second group. The MDP and SDP algorithms

perform better than the H_PRF code in this network, and the TSDPAs run much

faster than the H_PRF code with the increase in the number of processors. The

last group includes Genrmf-Wide and RLG-Wide networks, in which the TSDPAs

exhibit inferior performances because of excessive boundary arcs, but not much

worse than that of the sequential algorithms.

• The other findings from Fig. 6 are that TSDPA-M exhibits always better parallel

efficiency than TSDPA-S and that TSDPA-MH runs faster than TSDPA-M in all

tested networks. In fact, TSDPAs with Q_PRF and H_PRF codes used in stage 1

are also tested, but their parallel performances are unbearable. The reasons for such

performances are elaborated in Sect. 3.2.2. Several unusual cases in Fig. 6 need to

be explained. First, the parallel efficiencies of TSDPAs in Genrmf-Wide and RLG-

Wide networks are too low because of the large number of boundary arcs after

partitioning the network (as shown in Fig. 8) and result in excessive workload for

stage 2 without any parallel efficiency. Second, TSDPA-MH exhibits a super-linear

speedup in the RLG-Wide network because the H_PRF code runs much faster than

the MDP method in stage 2. Third, the fluctuations in Fig. 6a, b are caused by

the different workloads in stage 2. These differences are caused by the different

numbers of expensive feasible paths omitted in stage 1.

Although the maximum flow algorithm is difficult to be parallelized [23], our dis-

tributed parallel algorithm using different sequential algorithms produced maximum

speedups of 4.62, 9.64, 15.46, 8.22, and 2.45 for different networks. Compared with

the speedups in other studies [14,18,23], we consider our speedups excellent.

6 Conclusion and future work

This paper presents TSDPA, which is a distributed parallel algorithm with MPI for the

maximum flow problem. TSDPA is a coarse-grained parallelization that can expedite

the computing speed for sparse networks in high-performance computing environment.

To improve the parallel performance, a two-stage strategy is applied to push flows sepa-

rately along cheap and expensive feasible paths identified by a novel distance function.

Two strategies are implemented in stage 1 of TSDPA to accelerate solving the maxi-

mum flow problem. The first strategy involves omitting high-cost paths, which aims to

limit the amount of communication. The second strategy entails the decentralization

of calculations. It aims to improve parallelizability and thus allows multiple proces-

123

646 J. Jiang, L. Wu

sors to work in parallel with load balance. These two strategies enhance the parallel

efficiency of TSDPA in a distributed environment. The experimental test demonstrated

that TSDPA generates considerable accelerating effects on the RLG-Long, Genrmf-

Long, and Line-Moderate networks and runs faster than or almost as fast as the H_PRF

and Q_PRF codes. The maximum speedups are 4.62, 9.64, 15.46, 8.22, and 2.45 in the

Line-Moderate, RLG-Long, RLG-Wide, Genrmf-Long, and Genrmf-Wide networks,

respectively.

The network partitioning method and sequential algorithm utilized inside each

region are the main factors that influence the performance of TSDPA. Strandmark and

Kahl [29] suggested that the parallelization of the maximum flow algorithm is not

theoretically guaranteed to be fast for every network. Therefore, suitable partitioning

methods, sequential maximum flow algorithms, and distance functions for boundary

nodes should be designed and tested for particular topological networks. Also, hybrid

parallel technologies, such as the use of distributed- and shared-memory modes in

tandem, require further investigation.

Acknowledgments This study was funded by the National High-Tech Research and Development Pro-

gram of China (2011AA120302).

Open Access This article is distributed under the terms of the Creative Commons Attribution License

which permits any use, distribution, and reproduction in any medium, provided the original author(s) and

the source are credited.

References

1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms and applications. Prentice-

Hall, Englewood Cliffs

2. Nagy N, Akl SG (2003) The maximum flow problem: a real-time approach. Parallel Comput 6(29):767–

794

3. Dinic EA (1970) Algorithm for the solution of a problem of maximal flow in networks with power

estimation. Soviet Math Doklady 11:1277–1280

4. Ahuja RK, Orlin JB (1991) Distance-directed augmenting path algorithms for maximum flow and

parametric maximum flow problems. Nav Res Log 3(38):413–430

5. Goldberg AV, Tarjan RE (1988) A new approach to the maximum flow problem. J ACM 4(35):921–940

6. Hochbaum DS (2008) The pseudoflow algorithm: a new algorithm for the maximum-flow problem.

Oper Res 4(56):992–1009

7. Boykov Y, Kolmogorov V (2004) An experimental comparison of min-cut/max-flow algorithms for

energy minimization in vision. IEEE Trans Pattern Anal 9(26):1124–1137

8. Dong JY, Li W, Cai CB, Chen Z (2009) Draining algorithm for the maximum flow problem, 2009 WRI

International Conference on Communications And Mobile Computing: CMC 2009, Washington DC,

IEEE Computer Society, vol 3, pp 197–200

9. Goldberg AV (2008) The partial augment-relabel algorithm for the maximum flow problem. In: Pro-

ceedings 16th annual European symposium. Algorithms-Esa 2008, pp 466–477

10. Asano T, Asano Y (2000) Recent developments in maximum flow algorithms. J Oper Res Soc Jpn

1(43):2–31

11. Shiloach Y, Vishkin U (1982) An O(Logn) parallel connectivity algorithm. J Algorithm 1(3):57–67

12. Johnson DB (1987) Parallel algorithms for minimum cuts and maximum flows in planar networks. J

ACM 4(34):950–967

13. Barbosa VC (1996) An introduction to distributed algorithms. MIT Press, Cambridge

14. David AB, Vipin S (2005) A cache-aware parallel implementation of the push-relabel network flow

algorithm and experimental evaluation of the gap relabeling heuristic. In: Proceeding of 18th ISCA

international conference on parallel and distributed computing systems. Las Vegas, NV, pp 41–48

123

TSDPA with message passing interface for maximum flow problem 647

15. Hong B, He ZY (2011) An asynchronous multithreaded algorithm for the maximum network flow

problem with nonblocking global relabeling heuristic. IEEE Trans Parallel Distr 6(22):1025–1033

16. Alonso P, Cortina R, Martinez-Zaldivar FJ, Ranilla J (2011) Neville elimination on multi- and many-

core systems: OpenMP. MPI CUDA J Supercomput 2(58):215–225

17. Vineet V, Narayanan PJ (2008) CUDA cuts: fast graph cuts on the GPU. In: 2008 IEEE computer

society conference on computer vision and pattern recognition workshops, Anchorage, vols 1–3, pp

1070–1077

18. He Z, Hong B (2010) Dynamically tuned push-relabel algorithm for the maximum flow problem on

cpu-gpu-hybrid platforms. In: IEEE international symposium on parallel and distributed processing,

Atlanta, pp 19–23

19. Jian LH, Wang C, Liu Y, Liang SS, Yi WD, Shi Y (2013) Parallel data mining techniques on Graphics

Processing Unit with Compute Unified Device Architecture (CUDA). J Supercomput 3(64):942–967

20. Park SY, Hariri S (1997) A high performance message-passing system for network of workstations. J

Supercomput 2(11):159–179

21. Delong A, Boykov Y (2008) A scalable graph-cut algorithm for N–D grids. In: IEEE conference on

computer vision and pattern recognition, Anchorage, pp 946–953

22. Shekhovtsov A, Hlavac V (2013) A distributed mincut/maxflow algorithm combining path augmenta-

tion and push-relabel. Int J Comput Vis 3(104):315–342

23. Eleyat M, Haugland D, Hetland ML, Natvig L (2012) Parallel algorithms for the maximum flow

problem with minimum lot sizes. In: Klatte D, Lüthi hj, Karl S (eds) Operations research proceedings

2011. Selected papers of the international conference on operations research (OR 2011), August 30-

September 2, 2011, Zurich, Switzerland, Springer, Berlin, Heidelberg, pp 83–88

24. Cherkassky BV, Goldberg AV (1997) On implementing the push-relabel method for the maximum

flow problem. Algorithmica 4(19):390–410

25. Schloegel K, Karypis G, Kumar V (2002) Parallel static and dynamic multi-constraint graph partition-

ing. Concurr Comput Pract E 3(14):219–240

26. Ahuja RK, Kodialam M, Mishra AK, Orlin JB (1997) Computational investigations of maximum flow

algorithms. Eur J Oper Res 3(97):509–542

27. Cormen TH (2009) Introduction to Algorithms. MIT Press, Cambridge

28. Badics T, Boros E, Cepek O (1993) Implementing a new maximum flow algorithm. In: Johnson DS,

McGeoch CC (eds) Network flows and matching: first DIMACS implementation challenge, DIMACS

series in discrete mathematics and theoretical computer science, vol 12. American Mathematical Soci-

ety, Providence

29. Strandmark P, Kahl F (2010) Parallel and distributed graph cuts by dual decomposition. In: 2010 IEEE

conference on computer vision and pattern recognition (CVPR), San Francisco, pp 2085–2092

123

	Two-stage distributed parallel algorithm with message passing interface for maximum flow problem
	Abstract
	1 Introduction
	2 Background
	2.1 Maximum flow problem
	2.2 Residual network
	2.3 Push-relabel method
	2.4 Related work

	3 TSDPA
	3.1 Preprocessing
	3.2 Stage 1
	3.2.1 Region-level heuristic
	3.2.2 Region discharge
	3.2.3 Feature of stage 1

	3.3 Stage 2

	4 Communication complexity
	5 Experimental test
	5.1 Experiment design
	5.2 Results and discussion

	6 Conclusion and future work
	Acknowledgments
	References

