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Abstract—A two-stage approach based on Gaussian process re-

gression that achieves significantly reduced requirements for com-

putationally expensive high-fidelity training data is presented for

the modeling of planar antenna input characteristics. Our method

involves variable-fidelity electromagnetic simulations. In the first

stage, a mapping between electromagnetic models (simulations) of

low and high fidelity is learned, which allows us to substantially re-

duce (by 80% ormore) the computational effort necessary to set up

the high-fidelity training data sets for the actual surrogate models

(second stage), with negligible loss in predictive power. We illus-

trate our method by modeling the input characteristics of three

antenna structures with up to seven design variables. The accu-

racy of the two-stage method is confirmed by the successful use of

the surrogates within a space-mapping-based optimization/design

framework.

Index Terms—Gaussian processes, microwave antennas, mod-

eling, optimization.

I. INTRODUCTION

C ONTEMPORARY microwave engineering relies heavily

on full-wave electromagnetic simulations as they permit

highly accurate evaluation of microwave structures, including

antennas. Unfortunately, high-fidelity simulations are compu-

tationally expensive. While this is not a problem for design

verification, the use of accurate electromagnetic simulations to

solve various design tasks involving numerous analyses, such

as statistical analysis, yield-driven design, or parametric de-

sign optimization, might become infeasible under certain con-

ditions. For example, global optimization using metaheuristics

(e.g., genetic algorithms) [1], [2] might require thousands of

full-wave analyses of candidate geometries of the structure to

be optimized. In situations like these, the use of fast and yet

accurate models of the microwave structures under considera-

tion (so-called surrogates) become indispensable. Identified on

a training set consisting of a limited number of input–output

pairs, these models by virtue of their ability to generalize over

the input space make it possible to quickly obtain the desired
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performance characteristics for inputs not previously presented

to the model.

A powerful approach for constructing surrogate models of

antenna structures is Gaussian process regression (GPR) [3].

GPR has been shown to be a particularly effective modeling

technique for performance characteristics such as the input re-

flection coefficient response against frequency [4], [5]. (Other

kernel-based machine learning methods that have been used in

this context have included standard support vector regression,

e.g., [6], and the more expressive, GPR-based Bayesian support

vector regression [7].)

A Gaussian process is a stochastic process that entails

the generalization of the Gaussian probability distribution to

functions. The Gaussian nature of the distribution leads to

tractable—relatively simple—calculations when learning and

inference need to be performed. Under suitable conditions,

Gaussian processes can be considered equivalent to neural

networks, but Gaussian processes are generally easier to im-

plement and interpret—one reason is that training of far fewer

parameters (in the order of the dimension of the input vectors)

is required compared to the number of weights in a neural

network (e.g., multi-layer perceptron).

Probably the most serious limitation of approximation-based

modeling methods, including GPR, is the high initial cost of

gathering the fine-discretization data necessary to train the

model so as to ensure that it has sufficient predictive accuracy.

In the present study, we address this problem by using vari-

able-fidelity electromagnetic simulations. More specifically, we

use a two-stage modeling scheme: in the first stage, we generate

by full-wave simulation a low-fidelity (coarse) training data set

of points, and points of the corresponding (compu-

tationally expensive) high-fidelity (fine) training set. We then

learn a model that maps low-fidelity training targets (

or ) to the high-fidelity ones, and use it to predict the

remaining high-fidelity targets (i.e., that were not

simulated). The simulated high-fidelity targets and the

predicted ones (together with the input vectors) then

yield the -point “approximate” high-fidelity training set. In the

second stage, a final GPR model is constructed using the latter

training set. We show below that considerable reduction of the

model setup cost without compromising its accuracy is possible

by exploiting the knowledge embedded in the low-fidelity

simulations in this manner.

Previously, optimal data selection for microwave modeling

problems has been attempted through various adaptive sampling

techniques that aim, within optimization contexts, to reduce the

number of samples necessary to ensure the desired modeling ac-

curacy by iterative identification of the model and adding new
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training samples based on the actual model error at selected lo-

cations (e.g., [8]) or expected error values (statistical infill cri-

teria, e.g., [9]). [8], [9] are local/trust region models; in con-

trast, our focus is on global or library type models that give

accurate predictions over the entire input space, and that can

be used for a variety of applications (e.g., optimization, statis-

tical analysis). Another approach to reducing the computational

cost of surrogate model setup was presented in [10], where only

the support vectors of an initial (global) BSVR model trained

on low-fidelity data were selected for fine-discretization simu-

lation. A 31-to-48 percent reduction in model setup costs could

be achieved without compromising predictive capability.

Themethodology described in this paper is novel in that it for-

mally maps the correlations between physically-related coarse

and fine simulation models of the same antenna via an auxiliary

model, ultimately blending full-wave simulation data at two fi-

delity levels into one final surrogate model (via training on the

above “approximate” high-fidelity data set). The essentially pa-

rameter-less nature of the model enhancement also constitutes

novelty compared to earlier methods. Our method constitutes a

fundamental advance over the antenna modeling of [4], [5]: here

conventional GPR models were trained on data sets obtained in

full from expensive high-fidelity data; no attempt was made to

reduce the costs associated with acquiring this data, even though

this contributed overwhelmingly to the model setup costs.

Our approach is demonstrated using three examples of

antennas with highly nonlinear responses as a function

of tunable geometry parameters and frequency: a narrowband

coplanar waveguide (CPW)-fed slot dipole antenna with two

design variables, an ultrawideband (UWB) CPW-fed T-shaped

slot antenna with four design variables, and a dielectric res-

onator antenna with seven design variables. We furthermore

evaluate the accuracy of our GPR surrogates by using them

within a surrogate-based optimization framework involving

output space mapping [11]–[13].

The paper is organized as follows. Section II provides a brief

theoretical overview of GPR along the lines of [3], and de-

scribes the two-stage modeling approach. Section III provides

comprehensive numerical verification of the proposed method-

ology. In particular, it describes how GPR models involving in-

creasingly fewer high-fidelity simulations were set up for each

of the above antennas, and gives their predictive accuracies.

These results clearly indicate the computational advantages of

the two-stage modeling approach, demonstrating that dramatic

reduction of the CPU overhead related to model setup can be

obtained without compromising predictive power—unlike the

conventional GPR modeling of [4], [5] which required training

data obtained in full through high-fidelity simulations in order to

ensure accurate predictions. In Section IV, the models obtained

in Section III are used as basis for antenna optimization using

a space mapping algorithm [11]. Conclusions are presented in

Section V.

II. GAUSSIAN PROCESS REGRESSION MODELING

A. Fundamentals of Gaussian Process Regression

A Gaussian process describes a distribution over functions. It

is a mathematical set consisting of an infinite number of random

variables, of which any subset is jointly Gaussian. As such it

is a natural extension of a jointly Gaussian distribution to the

case where the mean vector is infinitely long and the covari-

ance matrix is of infinite by infinite dimension. A GP can be no-

tated as , with and positions

in space, and and its mean and covariance

functions, respectively, (defined as [3, (2.13)]). The GP encap-

sulates all possible functions in the vast space of functions that

subscribe to and . The model is semi-parametric

in the sense that any sample function is not specified in terms of

a finite number of parameters (such as weights in the case of a

linear model), but directly in the space of functions.

Consider for example a finite (practical) training data set of

observations, . The inputs are

column vectors of dimension , while the output targets are

scalars. The corresponding Gaussian process in this case

would be implemented as the collection of random variables

, with any -dimensional point under their jointly

Gaussian distribution representing values of a sample function

with index set the set of inputs .

The only parameterization that takes place is the specification

of hyperparameters which determine the properties of the mean

and covariance functions. The present study uses the squared-

exponential covariance function

(1)

which gives the covariance between the output random vari-

ables and . The matrix , with

the vector of positive characteristic length-scale parameters cor-

responding to the elements of the input vectors, and is the

signal variance (length-scale parameters are indicative of how

quickly change occurs along the corresponding dimensions of

the input space). Together, and constitute the hyperpa-

rameters of the covariance function. The hyperparameters may

be found through a structured methodology which involves a

process similar to Bayesian model selection. It entails finding

the hyperparameters for which the negative log marginal like-

lihood is a minimum. The log marginal likelihood in the noise-

free case is given by [3]

(2)

In the above, is the matrix of covariances

evaluated between all possible pairs of training outputs using

the covariance function, is the matrix of training input

(column) vectors is the determinant of , and is the

training target (column) vector.

In order to carry out predictions, a jointly Gaussian (normal)

distribution of zero mean is assumed over the random vari-

ables that represent the training outputs and are contained in

column vector , and the random variables representing the

test outputs contained in —this is the prior distribution:

(3)

In the above, is the matrix of covariances

evaluated between all possible pairs of training and test

outputs, with amatrix containing the test input vectors (other

sub-matrices are similarly defined).
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The distribution of the test outputs conditioned on the

known training outputs , or the posterior distribution

(again multivariate Gaussian), can then be expressed as

[3], with mean vector and covari-

ance matrix given by

(4)

(5)

In the above, the predictive mean contains the most likely

values of the test outputs associated with the test input vectors

in , while the diagonal of the covariance matrix gives the

corresponding predictive variances. Conditioning on the known

training data can be interpreted as retaining in the posterior

distribution only functions that pass through the training data

points. The computational requirement for GP regression is

due to the required inversion of which is of

dimension .

B. Two-Stage Modeling Approach

Suppose we would like to set up highly accurate GP surrogate

models that map geometry (design) variables and frequency

to or , from which can then be calcu-

lated. (We choose to model smooth and re-

sponses—rather than —as they are better handled by the

squared-exponential covariance function (1). For the sake of

conciseness we will only refer to in what follows.) For

greatest accuracy we need to use an -element set of high-fi-

delity training data (i.e., simulated using a finely discretized

mesh),

(6)

with -dimensional input vectors

(7)

and scalar targets . The design vector

consists of adjustable antenna ge-

ometry variables and is a frequency value within the range

of interest; hence, .

The cost of generating however may be prohibitive. In

order to address this problem, we adopt a two-stage modeling

approach. It aims at setting up a final GPR model that is based

on a fraction of the high-fidelity simulations required to set up

but is almost as accurate as a GPR model trained on the

actual .

1) First Stage: The purpose of this stage is to “approximate”

the expensive fine training data set by a relatively inexpen-

sive data set of the same size; this is accomplished

by means of a separate auxiliary model trained on a spe-

cially constructed training data set .

More specifically, instead of attempting to directly

simulate the high-fidelity training data, we rather simu-

late—cheaply—the above data points using a coarse dis-

cretization, yielding the data set

(8)

with as before and . In addition,

we simulate only a (small) randomly selected subset of

consisting of points. Using this subset of , we

construct a training set for as follows:

(9)

where the -dimensional training input vector

(10)

is of the form (7) augmented by the associated coarse

target value from , and the target is the corre-

sponding value from the above subset of (re-

call that and share the same set of input vec-

tors; the only difference lies in the meshing density with which

the targets have been obtained). Hence we essentially learn a

mapping between coarse and fine simulations using

training data that correspond to specific instances of sets

of design variables and frequency (the first elements of

the input vector serves to uniquely identify the

values). The aforementioned mapping represents the correla-

tions between the coarse and fine model responses. Due to the

fact that both models are physically related (as evaluated using

the same EM solver), the mapping learned for a limited number

of fine training points is likely to be preserved across the entire

design space.

After training, we use to predict, from their coarsely

simulated counterparts, the fine values

that were not simulated; we refer to these predicted targets

as . Taken

together, the full-wave simulated fine target

values and the predicted ones yield—along with input

vectors consisting of geometry parameters and frequency of

the form (7)—an -point “approximate” fine training data set

for ,

(11)

Obtaining the targets via model predictions (as opposed

to direct full-wave simulations) can result in very significant

savings in computational costs, as will be outlined next.

2) Second Stage: Here we use (instead of the

full , which is not available) as training set for , the de-

sired final surrogate that maps design variables and frequency

to , using the “conventional” GPR of Section II-A. In

Section IV, we show that these surrogates are sufficiently ac-

curate to be used to good effect for optimization using space

mapping.

It should be emphasized that the reduction in the number of

simulated high-fidelity training points without compromising

model accuracy is possible because the knowledge embedded

in the low-fidelity model is exploited. In our approach the use

of this knowledge is implemented through the mapping learned

in the first stage that identifies correlations between the low- and

high-fidelity simulation data.
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Fig. 1. Geometry of CPW-fed slot dipole antenna (Antenna 1). The ground
plane (GND) is of infinite lateral extent.

III. VERIFICATION EXAMPLES

A. Slot Dipole Antenna (Antenna 1)

The geometry of a CPW-fed slot dipole antenna on a single-

layer dielectric substrate is shown in Fig. 1. The design vector

was , and the design variable space was defined

by the center vector mm and size vector

mm such that the variable ranges were mm.

Other dimensions/parameters were mm, mm,

mm, and . We were interested in over the

frequency band 2.0–2.7 GHz (visual inspection revealed that

responses involving and against frequency

over this band varied substantially throughout the design space).

In order to obtain training data input vectors for , 91

geometries were randomly selected from the input space using

Latin hypercube sampling (LHS), with three frequencies per

geometry uniformly randomly sampled from the above fre-

quency range such that each geometry generally had a different

set of frequencies. The total number of training input vectors

for was ; training input vectors had the

form , with a frequency

value within the range of interest. Test input vectors were

compiled from 100 new geometries, also obtained via LHS,

with 71 equally-spaced frequencies per geometry .

Using CST Microwave Studio [14] on a dual-core 2.33 GHz

Intel CPU with 2 GB RAM, we simulated the above training

input vectors at a fine mesh density ( mesh cells, sim-

ulation time 12 min) resulting in the (full) high-fidelity training

data set , and at a coarse mesh density ( mesh cells,

simulation time 30 s) yielding . (We refer to the CST

simulations at the fine mesh density as the high-fidelity model

, and the simulations at the coarse density as the low-fidelity

model ). The test inputs were only simulated at the fine mesh

density, yielding the test data set used to evaluate the pre-

dictive capabilities of .

In carrying out the first stage of our approach we constructed

training sets by randomly selecting data points from

the above full , and then trained a model as described

in Section II.B that subsequently was used to estimate the rest

of the high-fidelity target values in . This was repeated for

% % % % % % % % ,

and the predictive errors of on the remaining

training points in are listed in Table I for each case. The

results reveal that, even for the case % %,

Fig. 2. Typical fine — and coarse - - - responses for

and against frequency for (a) Antenna
1: mm, (b) Antenna 2:

mm, and (c) Antenna (3):

mm.

TABLE I
PREDICTIVE ERRORS OF AUXILIARY ANTENNA MODELS ON

REMAINING FINE TRAINING DATA POINTS

the remaining training targets could be predicted with reason-

able accuracy by , likely due to the fact that values of

in the training input vectors (10) were well

correlated with the targets . Fig. 2(a) gives

fine and coarse responses of and against fre-

quency for a sample geometry; these responses are indicative of

the typical discrepancy between these responses for Antenna 1.

It is worth noticing that the overall “shapes” of the coarse and

fine model responses (as functions of frequency) are similar.

The major misalignment relates to the level of the responses.

This indicates relatively good correlation between both models,

and gives foundation for exploiting this correlation for coarse

model enhancement even if a limited number of fine model

training data points is utilized.
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TABLE II
PREDICTIVE ERRORS OF SURROGATE ANTENNA

MODELS ON FINE TEST DATA

Fig. 3. Geometry of UWB CPW-fed T-shaped slot antenna (Antenna 2; top
view). The ground plane (GND) is of infinite lateral extent.

In the next step, we constructed “approximate” fine training

sets as described in Section II.B for cases where

the savings in finely discretized training points were very sig-

nificant, i.e., % % % % , and trained

GPR models in each case. The predictive errors of these

models on the test data set are listed in Table II. Also

given for comparison is the predictive error for the case where

the full was used as training data, i.e., %

%—we refer to this model as . Again, predictive accu-

racies appeared to be good given the relatively small proportions

of high-fidelity data present in the “approximate” fine training

data sets.

B. UWB T-Shaped Slot Antenna (Antenna 2)

Fig. 3 shows the antenna layout [15]. The design vector was

, and the design space was delimited by

the center vector mm and size vector

mm such that the variable ranges were

mm (other dimensions were mm,

mm, and mm; the single-layer substrate had height

mm and dielectric constant ). The fre-

quency band of interest was 2–8 GHz (as before, visual inspec-

tion confirmed that -against-frequency responses varied sub-

stantially throughout the design space).

Training data were comprised of 270 geometries obtained by

LHS, with 12 frequencies per geometry, randomly selected as

before . Test data were comprised of 50 new LHS

geometries, with 121 equally-spaced frequencies per geometry.

Using CSTMicrowave Studio [14], we simulated the training

input vectors at a fine mesh density ( mesh cells,

Fig. 4. Geometry of dielectric resonator antenna (Antenna 3): (a) top and (b)
side views.

simulation time 21 min) resulting in , and at a coarse mesh

density ( mesh cells, simulation time 20 s) yielding

.

The models and were set up in a manner similar

to those for Antenna 1, and Tables I and II give the relevant

predictive errors, again showing that both types of models had

good predictive capabilities.

As in the case of Antenna 1, predictive accuracies for the

models appeared to be good given the comparatively small

fractions of high-fidelity data present in the “approximate” fine

training data sets. Fig. 2(b) gives fine and coarse responses of

and against frequency for a sample geom-

etry; these responses are representative of the fine/coarse dis-

crepancies observed for this antenna.

C. Dielectric Resonator Antenna (Antenna 3)

The antenna geometry is shown in Fig. 4 [16]. The design

vector was , where , and

are dimensions of the dielectric resonator (DR) brick, stands

for the shift of the DR center in the -direction relative to the

slot center, is the slot width, is the slot length, and is

the length of the microstrip stub. The relative dielectric constant

and loss tangent of the DR were 10 and , respectively. The

substrate was 0.5 mm thick RO4003C material [16], and the

metallization of the trace and ground was 50 m copper. The

design variable space was defined by the center vector

mm and size vector mm.

Other dimensions were mm and mm. The

frequency band of interest was 4.5–6.5 GHz.

Training data were 400 geometries obtained by LHS, with

four randomly selected frequencies per geometry .

Test data were comprised of 50 new LHS geometries with 121

equally-spaced frequencies per geometry.

Using CST Microwave Studio, we simulated the training

input vectors at a fine mesh density ( mesh cells, sim-

ulation time 12.5 min) resulting in , and at a coarse mesh

density mesh cells, simulation time 30 s) yielding

.

The models and were set up in a manner similar to

those for Antennas 1 and 2, and Tables I and II provide the rel-

evant predictive errors that on the whole were good given that

this antenna had seven design variables. Fig. 2(c) gives fine and

coarse responses of and against frequency

for a sample geometry that are typical of the fine/coarse dis-

crepancy for this antenna.
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IV. APPLICATION EXAMPLES: ANTENNA OPTIMIZATIONS

As a practical way to validate the proposed modeling

methodology where our GPR surrogates are trained using

the “approximate” high-fidelity training set rather

than the “original” training set obtained in full through di-

rect simulation, we apply within a space mapping algorithm

aimed at optimizing the input characteristics of the antenna

structures considered in the previous section. Optimization

results are compared to results obtained by instead using

(i.e., trained on ).

It should be emphasized that the GPR surrogates consid-

ered in this paper are supposed to be multiple-purpose library

models. Antenna optimization with respect to various sets of

design specifications is one example of a typical application

task. Another could be robust (yield-driven) optimization or

statistical analysis.

Here, we consider antenna optimization with the initial de-

sign being the center of the region of interest . The design

process starts from directly optimizing the GPRmodel. Because

of nonzero modeling error, an iterative design refinement pro-

cedure is utilized that employs space mapping technology [11]

(12)

where is a surrogate model obtained by output space map-

ping [11]. The surrogatemodel setup is performed using an eval-

uation of at . implements design specifications. For

the sake of simplicity, we simply use the symbol to denote

either of or , which can be considered the “coarse”

models in the space mapping context. The surrogate model is

defined as

(13)

with

(14)

The additive correction term is calculated to ensure zero-

order consistency (i.e., ) between the sur-

rogate and the high-fidelity model [17] at the current design

. In practice, because of good initial accuracy of the GPR

surrogates, one or two iterations of the algorithm (12) are usu-

ally sufficient to yield an optimized design. It should be noted

that the cost of each iteration (12) effectively corresponds to a

single evaluation of the high-fidelity model: the cost of opti-

mizing the surrogate itself can be neglected as compared to the

evaluation of the high-fidelity model.

Fig. 5 shows, for all three antenna structures, the responses

of models and (i.e., direct high-fidelity CST simula-

tions) at the initial designs, as well as the response of at the

final designs. Likewise, Fig. 6 shows the responses of the GPR

models trained on the “approximate” high-fidelity data set

(here with / % %) and the

model responses at , and the response of at the final

designs. The numerical results are summarized in Table III. It

can be observed that the design quality and cost (expressed in

terms of number of evaluations) are very similar for the GPR

Fig. 5. Optimization results: responses of , full and - - - at
the initial design, and at the optimized design — for (a) Antenna 1,
(b) Antenna 2, and (c) Antenna 3. Design specifications marked with horizontal
solid line. Note that the GPR model responses are hardly distinguishable from
the corresponding high-fidelity simulation ( response. (Note that the GPR
responses were in fact computed from separate models for and

).

models obtained using the original and approximate high-fi-

delity training data sets. For Antennas 1 and 2, the optimiza-

tion cost corresponds to three evaluations. For Antenna 3,

exhibits better performance with only one refinement it-

eration necessary to yield an optimized design (three iterations

for . Table III also contains the optimization results with

the models trained on where only 10% of the

data were high-fidelity-simulated points. Despite the fact that

these models are generally less accurate than the 20% versions

(cf. Table II), they are still sufficiently reliable—in combina-

tion with the particular surrogate-based optimization technique

(12)–(14)—to optimize our antenna structures: the quality of the

final designs as well as the corresponding design costs are es-

sentially the same for both 10%- and 20% high-fidelity-simu-

lated-points GPR models.

For the sake of comparison, we also optimized the three

antennas using a conventional (not surrogate-based) method,

namely a state-of-the-art pattern-search algorithm [18], [19]
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Fig. 6. Optimization results: responses of and - - - at the initial
design, and at the optimized design — for (a) Antenna 1, (b) Antenna
2, and (c) Antenna 3. Design specifications marked with horizontal solid line.
Note that the GPR model responses are very close to the high-fidelity model

response. The models represented here were trained on

utilizing 20% data points simulated at high fidelity.

TABLE III
ANTENNA OPTIMIZATION RESULTS

that directly relied on fine-discretization full-wave simulations

(i.e., ) for its objective function evaluations. While max-

imum values at the final designs obtained for Antennas

1, 2, and 3 ( dB, dB, and dB, respectively)

were similar to those obtained using our GPR models and the

above space-mapping procedure, the computational expense

for the conventional optimization was at least an order of

magnitude larger (i.e., 40, 148, and 117 evaluations for

Antennas 1, 2, and 3 respectively). This indicates that fast and

accurate surrogates are indispensable in the antenna design

process, particularly, if they can be set up at relatively low com-

putational cost. Here, the GPR models trained on

are constructed at the cost of only 10 to 20 percent of that for

GPR models based on the conventional approach.

V. CONCLUSION

A two-stage technique for Gaussian Process modeling of an-

tenna input characteristics is presented. Our approach involves

variable-fidelity electromagnetic simulations. By exploiting the

knowledge embedded in the low-fidelity antenna model (sim-

ulations) utilized in the first modeling stage, where the map-

ping between the electromagnetic models of different fidelity is

learned, it is possible to substantially reduce the number of ac-

tual high-fidelity simulations that need to be performed, without

compromising the predictive power of the final surrogate. As

demonstrated using three antenna examples, satisfactory results

can be obtained even if the “approximate” high-fidelity training

set contains only 10 to 20 percent targets obtained using fine-

discretization simulations (the rest being predicted by the auxil-

iary model in the first stage of the procedure). As an additional

verification, the above models were shown to be perfectly us-

able in a design/optimization context.
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