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Abstract

Background: With the advancement of powerful image processing and machine learning techniques, Computer

Aided Diagnosis has become ever more prevalent in all fields of medicine including ophthalmology. These

methods continue to provide reliable and standardized large scale screening of various image modalities to assist

clinicians in identifying diseases. Since optic disc is the most important part of retinal fundus image for glaucoma

detection, this paper proposes a two-stage framework that first detects and localizes optic disc and then classifies it

into healthy or glaucomatous.

Methods: The first stage is based on Regions with Convolutional Neural Network (RCNN) and is responsible for localizing

and extracting optic disc from a retinal fundus image while the second stage uses Deep Convolutional Neural Network to

classify the extracted disc into healthy or glaucomatous. Unfortunately, none of the publicly available retinal fundus

image datasets provides any bounding box ground truth required for disc localization. Therefore, in addition to the

proposed solution, we also developed a rule-based semi-automatic ground truth generation method that provides

necessary annotations for training RCNN based model for automated disc localization.

Results: The proposed method is evaluated on seven publicly available datasets for disc localization and on ORIGA

dataset, which is the largest publicly available dataset with healthy and glaucoma labels, for glaucoma classification. The

results of automatic localization mark new state-of-the-art on six datasets with accuracy reaching 100% on four of them.

For glaucoma classification we achieved Area Under the Receiver Operating Characteristic Curve equal to 0.874 which is

2.7% relative improvement over the state-of-the-art results previously obtained for classification on ORIGA dataset.

Conclusion: Once trained on carefully annotated data, Deep Learning based methods for optic disc detection and

localization are not only robust, accurate and fully automated but also eliminates the need for dataset-dependent

heuristic algorithms. Our empirical evaluation of glaucoma classification on ORIGA reveals that reporting only Area Under

the Curve, for datasets with class imbalance and without pre-defined train and test splits, does not portray true picture of

the classifier’s performance and calls for additional performance metrics to substantiate the results.
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Optic disc localization
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Background

Glaucoma is a syndrome of eye disease that leads to subtle,

gradual, and eventually total loss of vision if untreated. The

disordered physiological processes associated with this dis-

ease are multifactorial. However, the causes of glaucoma are

usually associated with the build-up of IntraOcular Pressure

(IOP) in the eye that results from blockage of intraocular

fluid drainage [1]. Although the exact cause of this blockage

is unknown, it tends to be inherited and can be linked to old

age, ethnicity, steroid medication, and other diseases like dia-

betes [2]. The increased IOP damages the optic nerve that

carries visual information of photo receptors from eye to

brain. Generally glaucoma does not show any signs or symp-

toms until it has progressed to advanced stage at which point

the damage becomes irreversible. It has been reported that

the damage to optic nerve fibres becomes noticeable and re-

duction in visual field is detected when about 40% of axons

are already lost [3]. However, it is possible to slow down the

impairment caused by glaucoma if it is diagnosed sufficiently

early. Recently, World Health Organization (WHO) recog-

nized glaucoma as the third biggest cause of blindness after

un-operated cataract and uncorrected refractive errors [4]

and the leading cause of irreversible vision loss.

Glaucoma is normally diagnosed by obtaining medical

history of patients, measuring IOP, performing visual field

loss test, and conducting manual assessment of Optic Disc

(OD) using ophthalmoscopy to examine the shape and

colour of optic nerve [5, 6]. Optic Disc is the cross sec-

tional view of optic nerve connecting to the retina of each

eye. It looks like a bright round spot in retinal fundus

image. In case of glaucoma, the IOP damages the nerve fi-

bres constituting optic nerve. As a result OD begins to

form a cavity and develops a crater-like depression, at the

front of the nerve head, called Optic Cup (OC). The

boundary of the disc also dilates and the colour changes

from healthy pink to pale. The Cup-to-Disc Ratio (CDR)

is one of the major structural image cues considered for

glaucoma detection [7]. Figure 1 shows healthy optic disc

and its condition during various stages of glaucoma.

In retinal images, some of the important structural

indications of glaucoma are disc size, CDR, Ratio of

Neuroretinal Rim in Inferior, Superior, Nasal and

Temporal quadrants (ISNT rule), and Peripapillary

Atrophy (PPA) [9] etc. These indications are usually

concentrated in and around OD. Therefore, segmenta-

tion of this Region Of Interest (ROI), that is detecting

the contour of OD, is not only useful for a more fo-

cused clinical assessment by the ophthalmologists but

also helpful in training a computer based automated

method for classification. However, automated glau-

coma detection techniques based upon segmented

discs are very sensitive to the accuracy of segmenta-

tion and even a small error in delineation of OD may

affect the diagnosis significantly [10]. Localization, on

the other hand, gives the exact location of OD in the

whole image with some surrounding context. Auto-

matic methods for glaucoma detection based upon

this approach of ROI extraction are more resilient to

localization errors.

From automated classification point of view the dis-

ease pattern in retinal fundus images is inconspicuous

and complex. Detecting ROI from natural scene images

is comparatively easy because it has an obvious visual

appearance, for example colour, shape and texture etc.

In contrast, the significant features of disease in med-

ical images are hidden and not readily discernible ex-

cept by highly trained and qualified field experts. Deep

Learning, however, has been shown to learn discrimina-

tive representation of data that can identify otherwise

unnoticeable characteristics. Such algorithms achieve

this useful and compact representation of data by ap-

plying multiple linear and non-linear transformations

on training data [11] in a cascaded fashion. Such Com-

puter Aided Diagnosis (CAD) can be very helpful in

providing standardized and cost effective screening at a

larger scale. These automated systems may reduce hu-

man error, offer timely services at remote areas, and are

free from clinician’s bias and fatigue. In this work we

address localization and classification of OD in colour

retinal fundus images. Figure 2 shows our proposed

two-stage system. The framework is able to surpass

current state-of-the-art in both localization as well as

classification tasks. The contributions of this work are

listed below.

� To the best of our knowledge there is no fully

automated disc localization method that can give

robust and accurate results independent of the

datasets. Also many existing heuristic methods, for

example [12–14], set the bar for correct localization

as low as accepting a predicted disc location correct

if Intersection Over Union (IOU) between actual

and predicted locations is greater than 0. To address

these issues we propose a dataset-independent fully

automated disc localization method based on faster

RCNN (Regions with Convolutional Neural Net-

work) as shown in Fig. 2a. Our approach sets new

state-of-the-art on six out of seven datasets for

localization while setting the bar for correct

localization at IOU > 50.

� We used Deep Convolutional Neural Network

(DCNN) as shown in Fig. 2b on ODs extracted in

stage one to classify the images into healthy and

glaucoma affected images. Our classification

results surpass previous best method with 2.7%

relative improvement in terms of Area Under the

Curve (AUC) of Receiver Operating

Characteristic (ROC) curve.
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� Training faster RCNN based methods requires

bounding box annotations for desired objects.

This ground truth was not available with any

publicly available dataset used. Therefore, we also

developed our own semi-automated ground truth

generation method using a rule-based algorithm.

� Our empirical evaluation demonstrates that

reporting only Area Under the Curve (AUC) for

datasets with class imbalance and without

standard formulation of train and test splits, as is

the case with ORIGA, does not portray true

picture of the classifier’s performance and calls

for additional performance metrics to

corroborate the results. Therefore, we provide a

detailed report of our classification results using

precision, recall, and f-scores in addition to AUC

for fair analysis and thorough comparison with

other methods in the future.

The rest of this paper is organized as follows. Rest of

this section gives a brief review of the state-of-the-art ap-

proaches for OD localization and glaucoma detection.

The section on Methods provides comprehensive details

of the whole methodology starting from an introduction

to seven datasets used in this work, establishing the

rationale for and explaining our semi-automated ground

truth generation mechanism and finally presenting the

proposed two-stage solution for fully automated

localization and classification using deep learning. Results

and Discussion section highlights the significance of the

findings and finally the last section concludes the discus-

sion with perspective extension of this work in the future.

Related work

Early diagnosis of glaucoma is vital for timely treatment of

patients. Medical practitioners have proposed a number of

criteria for early diagnosis and these criteria mostly focus

on or around OD region. If the position, centre, and size of

OD is calculated accurately it can greatly help in further au-

tomated analysis of the image modality. Rest of this subsec-

tion discusses various image processing and machine

learning approaches making use of these diagnosis criteria

for disc localization and glaucoma identification.

Localization of optic disc

Although optic disc can be spotted manually as a round

bright spot in a retinal image, yet performing large scale

manual screening can prove to be really tiresome, time

consuming, and prone to human fatigue and predispos-

ition. CAD can provide efficient and reliable alternative

Fig. 2 Complete framework of disc localization and classification. Detailed diagrams of both modules are given in their respective sections

Fig. 1 Stages of glaucoma in retinal fundus images taken from Rim-One dataset [8]. a Healthy Disc b Early Glaucoma c Moderate Glaucoma d

Severe Glaucoma
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solution with near human accuracy (as shown in Table 4).

Usually the disc is the brightest region in the image. How-

ever, if ambient light finds its way into the image while

capturing the photo it can look brighter than optic disc.

Furthermore, occasionally some shiny reflective areas ap-

pear in the fundus image during image capturing. These

shiny reflections can also look very bright and mislead a

heuristic algorithm in considering them as candidate re-

gions of interest. There are many approaches laid out by

researchers for OD localization exploiting different image

characteristics. Some of these approaches are briefly cov-

ered below.

Intensity variations in the image can help locate optic

disc in fundus images. To make use of this variation the

image contrast is first improved using some locally adap-

tive transforms. The appearance of OD is then identified

by noticing rapid variation in intensity as the disc has

dark blood vessels alongside bright nerve fibres. The

image is normalized and average intensity variance is

calculated within a window of size roughly equal to ex-

pected disc size. The disc centre is marked at the point

where the highest intensity is found. Eswaran et al. [12]

used such intensity variation based approach. They ap-

plied a 25 × 35 averaging filter with equal weights of 1

on the image to smooth it and get rid of low intensity

variations and preserve ROI. Chràstek et al. [13] used

31 × 31 averaging filter and the ROI is assumed to be

130 × 130 pixels. They used Canny Edge Detector [14] to

plot the edges in the image. To localize the optic disc re-

gion they used only green channel of RGB image.

Abràmoff et al. [15] proposed that the optic disc can be

selected by taking only top 5% brightest pixels and hue

values in the yellow range. The surrounding pixels are

then clustered to constitute a candidate region. The

clusters which are below a certain threshold are dis-

carded. Liu et al. [16] used a similar approach. They first

divided the image into 8 × 8 pixels grid and selected the

block with maximum number of top 5% brightest pixels

as the centre of the disc. Nyúl [17] employed an adaptive

thresholding with a window whose size is determined to

approximately match the size of the vessel thickness. A

mean filter with the large kernel is then used with

threshold probing for rough localization.

Another extensively used approach is threshold based

localization. A quick look at the retinal image tells that the

optic disc is mostly the brightest region in the image. This

observation is made and exploited by many including Sid-

dalingaswamy and Prabhu [18]. It is also noticed that the

green channel of RGB has the greatest contrast compared

to red and blue channels [19–21], however, red channel

has also been used [22] due to the fact that it has fewer

blood vessels that can confuse the rule-based localization

algorithm. Optimal threshold is chosen based upon ap-

proximation of image histogram. The histogram of the

image is gradually scanned from a high intensity value I1,

slowly decreasing the intensity until it reaches a lower

value I2 that produces at least 1000 pixels with the same

intensity. It results in a subset of histogram. The optimal

threshold is taken as the mean of the two intensities I1
and I2. Applying this threshold produces a number of con-

nected candidate regions. The region with the highest

number of pixels is taken as the optic disc. Dashtbozorg et

al. [23] used Sliding Band Filter (SBF) [24] on down-

sampled versions of high resolution images since SBF is

computationally very expensive. They apply this SBF first

to a larger region of interest on downsampled image to

get a rough localization. The position of this roughly esti-

mated ROI is then used to establish a smaller ROI on ori-

ginal sized image for a second application of SBF. The

maximum filter response results in k-candidates pointing

to potential OD regions. They then use a regression algo-

rithm to smooth the disc boundary. Zhang et al. [25] pro-

posed a fast method to detect optic disc. Three vessel

distribution features are used to calculate possible hori-

zontal coordinates of the disc. These features are local ves-

sel density, compactness of the vessels and their

uniformity. The vertical coordinates of the disc are calcu-

lated using Hough Transform according to the global ves-

sel direction characteristics.

HoughTransform (HT) has been widely utilized to detect

OD [25–27] due to disc’s inherent circular shape and bright

intensity. The technique is applied to binary images after

they have undergone morphological operations to remove

noise or reflection of light from ocular fundus that may

interfere with the calculation of Hough Circles. The HT

maps any point (x, y) in the image to a circle in a parameter

space that is characterized by centre (a, b) and radius r, and

passes through the point (x, y) by following the equation of

circle. Consequently, the set of all feature points in the bin-

ary image are associated with circles that may almost be

concentric around a circular shape in the image for some

given value of radius r. This value of r should be known a

priori by experience or experiments. Akyol et al. [28] pre-

sented an automatic method to localize OD from retinal

images. They employ keypoint detectors to extract discrim-

inative information about the image and Structural Similar-

ity (SSIM) index for textual analysis. They then used visual

dictionary and random forest classifier [29] to detect the

disc location.

Glaucoma classification

Automatic detection and classification of glaucoma has

also been widely studied by researcher since long. A

brief overview of some of the current works is presented

below. For a thorough coverage of glaucoma detection

techniques [30–32] may be consulted.

Fuente-Arriaga et al. [33] proposed measuring blood

vessels displacement within the disc for glaucoma
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detection. They first segment vascular bundle in OD to

set a reference point in the temporal side of the cup.

Centroid positions of inferior, superior, and nasal vas-

cular bundles are then determined which are used to

calculate L1 distance between centroid and normal pos-

ition of vascular bundles. They applied their method on

a set of 67 images carefully selected for clarity and

quality of retina from a private dataset and report

91.34% overall accuracy. Ahmad et al. [34] and Khan et

al. [35] have used almost similar techniques to detect

glaucoma. They calculate CDR and ISNT quadrants

and classify an image as glaucomatous if the CDR is

greater than 0.5 and it violates ISNT rule. Ahmad et al.

applied the method on 80 images taken from DMED

dataset, FAU data library, and Messidor dataset and re-

ported 97.5% accuracy whereas Khan et al. used 50 im-

ages taken from the above-mentioned datasets and

reported 94% accuracy. Though the accuracies reported

by the aforementioned researchers are well above 90%,

their test images are handpicked and so fewer in number

that the results are not statistically significant and cannot

be reliably generalized to large scale public datasets.

ORIGA [36] is a publicly available dataset of 650 ret-

inal fundus images for benchmarking computer aided

segmentation and classification. Xu et al. [37] formulated

a reconstruction based method for localizing and classi-

fying optic discs. They generate a codebook by random

sampling from manually labelled images. This codebook

is then used to calculate OD parameters based on their

similarity to the input and their contribution towards re-

construction of input image. They report AUC for glau-

coma diagnosis at 0.823. Noting that classification based

approaches perform better than segmentation based ap-

proaches for glaucoma detection, Li et al. [38] proposed

to integrate local features with holistic feature to im-

prove glaucoma classification. They ran various CNNs

like AlexNet, VGG-16 and VGG-19 [39] and found that

combining holistic and local features with AlexNet as

classifier gives highest AUC at 0.8384 using 10-fold cross

validation, while the manual classification gives AUC

equal to 0.8390 on ORIGA dataset. Chen et al. [6] also

used deep convolutional networks based approach for

glaucoma classification on ORIGA dataset. Their

method inserts micro neural networks within more

complex models so that the receptive field has more ab-

stract representation of data. They also make use of a

contextualization network to get hierarchal and discrim-

inative representation of images. Their achieved AUC is

0.838 with 99 randomly selected train images and rest

for testing. In another of their publications Chen et al.

[5] used a six layer CNN to detect glaucoma from

ORIGA images. They used the same strategy of taking

99 random images for training and rest for testing and

obtained AUC at 0.831.

Recently, Al-Bander et al. [40] used deep learning ap-

proach to segment optic cup and OD from fundus im-

ages. Their segmentation model has a U-Shape

architecture inspired from U-Net [41] with Densely con-

nected convolutional blocks, inspired from DenseNet

[42]. They outperformed state-of-the-art segmentation

results on various fundus datasets including ORIGA. For

glaucoma diagnosis, however, in spite of combining

commonly used vertical CDR with horizontal CDR, they

were able to achieve AUC at 0.778 only. Similarly Fu et

al. [43] also proposed a U-Net like architecture for joint

segmentation of optic cup and OD and named it M-Net.

They added a multi-scale input layer that gets the input

image at various scales and gives receptive fields of re-

spective sizes. The main U-shaped convolutional net-

work learns hierarchical representation. The so-called

side-output layers generate prediction maps for early

layers. These side-output layers not only relieve vanish-

ing gradient problem by back propagating side-output

loss directly to the early layers but also help achieve bet-

ter output by supervising the output maps of each scale.

For glaucoma screening on ORIGA data set, they trained

their model on 325 images and tested on rest of 325 im-

ages. Using vertical CDR of their segmented discs and

cups they achieved AUC at 0.851.

Methods

This section presents the whole methodology of optic

disc localization and classification starting from a brief

introduction of some of the publicly available retinal

fundus image datasets that have been used in this work.

It can be noticed from this introduction that none of

these datasets provided any bounding box ground truth

for disc localization and, therefore, prompting for devel-

opment of ground truth generation mechanism.

Datasets used in this work

ORIGA (−light)

ORIGA [36] (an Online Retinal fundus Image database

for Glaucoma Analysis and research) aims to provide

clinical ground truth to benchmark segmentation and

classification algorithms. It uses a custom developed tool

to generate manual segmentation for OD and OC. It also

provides CDR and labels for each image as glaucomat-

ous or healthy. This dataset has been used as a standard

dataset in some of the recent state-of-the-art researches

for glaucoma classification. The dataset was collected by

Singapore Eye Research Institute and has 482 healthy

images and 168 glaucomatous images.

HRF image database

High Resolution Fundus [44] (HRF) Image database is

provided by Department of Ophthalmology, Friedrich-
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Alexander University Erlangen-Nuremberg, Germany. It

consists of 15 healthy images, 15 glaucomatous image

sand 15 images with diabetic retinopathy. For each image,

binary gold standard vessel segmentation is provided by a

group of experts and clinicians.

OCT & CFI

This dataset [45] contains Optical Coherence Tomog-

raphy (OCT) and Colour Fundus Images of both eyes of

50 healthy persons collected at Ophthalmology Depart-

ment of Feiz Hospital, Isfahan, Iran. As the images were

taken as part of a study on comparison of macular OCTs

in right and left eyes of normal people, it doesn’t provide

any ground truth with respect to segmentation of OD or

blood vessels, or OD localization.

DIARETDB1

Standard DIAbetic RETinopathy DataBase calibration

level 1 (DIARETDB1) [46] is publicly available dataset

consisting of 89 colour retinal fundus images taken at

Kuopio University Hospital, Finland. The prime object-

ive of this dataset is to benchmark the performance of

automated methods for diabetic retinopathy detection.

Four independent medical expert are employed to an-

notate the dataset and provide the markings for micro-

aneurysms, haemorrhages, and hard and soft exudates.

Based upon the markings provided, 84 of the images

were found to have at least mild non-proliferative dia-

betic retinopathy while rest of five images were found

to be healthy. The dataset does not provide retinopathy

grades in accordance with International Clinical Dia-

betic Retinopathy (ICDR) severity grade or ground

truth for OD localization.

DRIVE

Digital Retinal Images for Vessel Extraction (DRIVE)

[47] consists of 40 images taken in The Netherlands as

part of a diabetic retinopathy screening programme. The

dataset is divided into train and test splits. Train set

contains 20 images with single manual segmentation

mask for blood vessels. Test set also contains 20 images

with two manual segmentation masks. This dataset also

does not provide any annotation for optic disc

localization.

DRIONS-DB

Digital Retinal Images for Optic Nerve Segmentation

DataBase [48] commonly known as DRIONS-DB is data-

set for benchmarking Optic Nerve Head (ONH) seg-

mentation from retinal images. The data were collected

at Ophthalmology Service at Miguel Servet Hospital,

Saragossa, Spain and contains 110 images. It provides

ONH contours traced by two independent experts using

a software tool for image annotation.

Messidor

Methods to evaluate segmentation and indexing tech-

niques in the field of retinal ophthalmology (Messidor)

[49] is a large publicly available dataset of 1200 high

resolution colour fundus images. The dataset contains

400 images collected from three ophthalmologic depart-

ments each, under a project funded by French Ministry

of Research and Defense. It provides diabetic retinopathy

grade for each image from 0 (healthy) to 3 (severe) as

well as risk of macular edema at a scale of 0 (no risk) to

2 (high risk).

This research was started with the aim to classify ret-

inal fundus images into healthy and glaucomatous.

Fig. 3 Workflow of Semi-Automatic Ground Truth Generation Mechanism

Table 1 Overview of datasets used for evaluating heuristic

method

Dataset Total Size Healthy Glaucoma Split

Train Validate Test

ORIGA 650 482 168 441 36 173

HRF 30 15 15 12 04 14

OCT & CFI 100 100 Nil 72 20 08

Total 780 597 183 525 48 207
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However, since the very beginning we learned from both

experiments and literature that feeding the whole retinal

fundus image to CNN does not help the network focus

on the most important part of the image, i.e. the OD, for

the given classification task. Therefore, it was imperative

to extract the ROI and feed it to the network. A quick

survey on disc localization methods revealed that the

existing methods were heuristic and developed specific-

ally for one or a few datasets. These methods could not

generalize well on other datasets. There was a serious

need for a fully automated, robust and dataset independ-

ent method for disc localization that can be applied to a

vast number of retinal fundus image datasets with reli-

ability and high accuracy. This was possible using super-

vised neural network approach. However, this approach

required availability of ground truth for training, which

was not found with any of the seven datasets used in this

work. Therefore, it was deemed fit to first devise a

method for ground truth generation with minimal hu-

man involvement. The generated ground truth would

then be used to train and benchmark the performance

of fully automated disc localization method. In the fol-

lowing sub-sections, step by step progress from GT

generation to disc extraction and finally classification is

discussed in detail.

Semi-automated GT generation for OD localization

We developed a heuristic method to approximate the lo-

cation of OD in retinal images. Results generated by this

heuristic method are manually checked and necessary

corrections are made where needed. Figure 3 depicts the

workflow of this mechanism. It consists of a heuristic al-

gorithm that gives a proposal for OD location which is

then manually verified by an expert. This way we gener-

ated localization ground truth for all seven datasets dis-

cussed in the previous section.

Three publicly available datasets of high resolution

colour retinal fundus images were chosen to evaluate the

performance of heuristic localization algorithm. Table 1

gives an overview of the datasets used. Out of 780 images,

525 were randomly selected for training, 48 images were

taken for validation and the rest of 207 images were kept

aside for testing. The validation set was used to find vari-

ous empirical parameters like retinal rim crop margin and

maximum size of valid disc radius etc. These empirical pa-

rameters were selected manually such that they gave high-

est validation accuracy. Once these values are calculated,

they were fixed during testing. To ensure that these values

work on images from different datasets having different

resolutions, we rescaled all images to a fixed size (1500 ×

1500), processed the images, and then rescaled them back

Fig. 4 Binary images showing misleading bright spots. RGB image in a is rescaled to fit in square window. a Binarization of image with bright

fringe at retinal rim b Binarization of image with reflection spots

Fig. 5 Results of Heuristic Localization of OD. Subfigure 5d shows the only example where heuristic failed. a Correct Localization of HRF image b

Correct Localization of OCT & CFI image c Correct Localization of ORIGA image d The only incorrect localization of ORIGA image
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to their original size. The mixture of three different data-

sets introduces enough inter-dataset variations in the im-

ages to thoroughly and rigorously validate the accuracy

and robustness of the heuristic method.

Heuristic algorithm for OD localization

This section details our algorithm to find approximate

OD location from retinal images. The basic flow of the

method is shown in Fig. 3a. It can be observed from the

data that OD is usually the brightest region in retinal

fundus image. However, there could be other bright

spots in the image, due to some disease or imperfect

image capturing conditions that can affect the perform-

ance of any empirical or heuristic method. Figure 4

shows two examples of such misleading bright spots.

The first column of each sub figure shows colour ret-

inal fundus image and the second column shows the

binary image corresponding to the respective colour

image. The bright fringe at the retinal rim, as shown in

Fig. 4a, occurs when a patient does not place his/her eye

correctly on the image capturing equipment and the am-

bient lights gets through the corners of the eye. Figure 4b

shows example of shiny cloud like spots around macular

Table 2 IOU of heuristic predictions and ground truth

IOU (%) 20 50 60 70 80

Test Accuracy 99.52 96.14 75.96 51.97 09.18

Fig. 6 Internal components of faster RCNN shown in Fig. 2a
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region caused by reflection of light from ocular fundus

which is a common phenomenon in younger patients.

In our heuristic method the fringe is removed by

first finding the diameter of the retinal rim inside the

image. This is done by applying Otsu thresholding

[50] on the image. Otsu binarization method assumes

that the image consists of only two classes of pixels

(foreground and background) following a bi-model

histogram. It adaptively calculates the most appropri-

ate threshold value that can categorize all the pixels

into two classes. As a result it largely turns the retina

into a white disc and keeps the background black.

This output is used to calculate the centre and radius

of the retina. A circular mask with radius less than

retinal radius is created and applied to the original

image to crop and possibly get rid of the fringe. Al-

though Otsu lacks the precision to accurately segment

the fundus area but it gives a quick and automated

way to calculate approximate fundus dimensions for

cropping unwanted artefacts on the rim.

A custom adaptive binarization is then applied on the

resultant image with threshold for each image calcu-

lated as the mean of top 1% brightest pixels. This tech-

nique locates approximate core of OD. Before finding

the centre of this approximate OD, we apply morpho-

logical erosion operation to remove small reflective

areas and random impulse noise. This is followed by

dilation operation to connect disjoint white spots into

fewer and bigger connected blobs. The result of these

operations is a better approximation of OD. Radius and

centre of this approximate disc location is then

calculated and a circle with radius greater than calcu-

lated radius is drawn on the image to identify and

localize OD. Lastly, these proposed locations are manu-

ally verified by expert and necessary corrections are

made where necessary.

Results of heuristic localization

Visual inspection of output of train and test datasets

showed that the method failed on only 3 out of 573 (test

+ validate) images and on only 1 of 207 test images from

three different datasets as shown in Fig. 5. To quantify

the accuracy of this approach we calculated IOU be-

tween bounding boxes given by proposed method and

manual ground truth. Table 2 shows the accuracy of the

this method in terms of overlap between predicted disc

and actual disc.

The results show that more than 96% of ODs are local-

ized with more than 50% of actual disc present in the pre-

diction. Also, about 52% of the predicted discs contain

more than 70% of the actual disc. The average overlap be-

tween predicted disc area and ground truth for the test

images is around 70%. It is also worth mentioning here

that the minimum IOU of a correctly localized disc in this

method is more than 20% whereas some researchers [51–

53] have opted to consider their localization correct if the

distance between predicted disc centre and actual disc

centre is less than expected disc diameter — in other

words if IOU > 0.

Although the results of heuristic based approach are very

promising, yet they are dataset specific and might not work

well in real world scenarios on a diverse spectrum of fun-

dus images. Therefore, in next section we explore a fully

automated approach of precise disc localization without

using any empirical knowledge about the dataset. Necessary

corrections are made in the annotations given by heuristic

approach and these semi-automated annotations were pro-

vided to automated localization method as ground truth.

Table 3 Comparison of IOU of heuristic and automated methods

IOU (%) 20 50 60 70 80

Heuristic Method 99.52 96.14 75.96 51.97 09.18

Automated Method 100.0 100.0 100.0 99.52 94.69

Fig. 7 Convolutional Neural Network used for Glaucoma Classification as depicted in Fig. 2b
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Two-stage method for automated disc localization and

classification: the proposed approach

Having generated necessary GT for the training of auto-

mated method, this section now details the complete so-

lution for reliable and robust OD localization and its

classification into healthy or glaucomatous.

Automated disc localization

Existing approaches for disc localization are dataset

dependent and make use of empirical knowledge of the

datasets. For our two-stage solution to work, we adopted

fully automated localization using faster RCNN [54],

which is a unified network for object detection. As

shown in Fig. 6, the model consists of three major mod-

ules: Region Proposal Network (RPN), CNN classifier,

and Bounding Box Regression. Given an image for object

detection RPN generates a number of random rectangu-

lar object proposals with associated objectness scores.

These proposals are fed to CNN that classifies whether a

given object is present in the proposal. Then bounding

box regression is performed to fit the rectangle closely to

the object and provide precise location of the object in the

image. The disc localization outcome of faster RCNN on

three datasets, shown in Table 1, is given in Table 3. As

can be seen in the table, faster RCNN gives 100% correct

localization for 60% IOU and average overlap of 97.11%

on these three datasets combined. Results of automated

localization on other datasets and detailed analysis thereof

can be found in the results section.

Classification of glaucoma

In the first stage, we extracted OD because most of the

glaucoma related information is contained in this region

[5, 6]. Extracting this ROI not only produces a smaller ini-

tial image that is computationally efficient but also allows

deep neural network to focus on the most important part

of the image. Figure 7 depicts the architecture of the CNN

used in this work.

The network consists of four convolutional layers

followed by three fully connected layers. Max pooling with

overlapping strides and local response normalization are

used after first two convolutional layers. Max Pooling also

follows fourth convolutional layer. First two fully con-

nected layers are followed by dropout layers with dropout

probability of 0.5. The output of last dense layer is fed to

softmax function that gives prediction probabilities for

each class. A brief overview of the network architecture is

given below.

Convolutional layers

From a high level point of view, convolutional layers are

used to learn important features from an image. The layers

in the beginning of the network tend to learn simple fea-

tures like curves, lines and edges whereas subsequent layers

learn more complex and abstract features such as hands

and ears. Mathematically, this is done by first taking a fea-

ture detector or kernel of size k × k, sliding it on the input

space and performing convolution between kernel and in-

put patch at each point. The size of the kernel is usually

smaller than input space. The depth of the kernel, however,

has to be the same as the input depth. Multiple kernels are

used on each convolutional layer to better preserve the

spatial dimensions. Each kernel looks for a specific feature

in the input space and produces a feature map. In the net-

work shown in Fig. 7, the first convolutional layer uses 96

kernels each of size 11 × 11 × 3. As the convolution is a lin-

ear operation (element wise multiplication of kernel and in-

put patch values followed by their sum), performing

multiple convolutions in multiple layers ends up in one big

linear operation and, therefore, limit the learning ability

of the network. To address this problem the output

of each convolutional layer is passed through a non-

linear function. Rectified Linear Unit (ReLU), defined

as f(x) =max (0, x), is the most popular nonlinear

function used to increase the nonlinear properties of

the network.

Pooling layers

Pooling layers are used to downsample the feature maps

without losing significant information. This is done by

Table 4 Performance of automated disc localization algorithm on unseen datasets

Algorithms Criterion (IOU >) DIARETDB1 N = 89 DRIVE N = 40 DRIONS-DB N = 110 Messidor N = 1200

Our Method (RCNN-based) 50 100.0 97.50 99.09 99.17

Giachetti et al. [12] 0 N/A N/A N/A 99.83

Yu et al. [13] 0 N/A N/A N/A 99.08

Aquino et al. [14] 0 N/A N/A N/A 98.83

Akyol et al. [31] 50 94.38 95.00 N/A N/A

Qureshi et al. [56] 50 94.02 100.0 N/A N/A

Godse et al. [57] 50 96.62 100.0 N/A N/A

Lu et al. [58] 50 96.91 N/A N/A N/A
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taking a small window of size p × p from each slice of

feature map and giving, for example, average value of

that window. The window is then slid over the whole

feature map with stride of s pixels. When s < p we get

overlapping pooling. It not only reduces the size of the

feature map but also helps in controlling the overfitting

which is a major concern in deep networks with small

datasets. In our network we have used MaxPooling

(picking the maximum value from the window) with

window size 3 × 3 and stride of 2 pixels.

Normalization layers

A Local Response Normalization (LRN) layer is the math-

ematical equivalent of neurobiological lateral inhibition

which is the ability of an excited neuron to dominate its

neighbours. As the activation of ReLU might get un-

bounded for some neurons, the LRN is used to normalize

it around the local neighbourhood of such excited neu-

rons. This creates a competition for big activities among

neuron outputs computed by various kernels and also

helps in better generalization.

Dropout layers

Dropout layers are also helpful in preventing overfitting

and aiding generalization during training. This layer is

implemented by setting the outputs of hidden neurons

equal to zero with a given probability. These dropped

out neuron thus don’t contribute in the current training

pass. This way the network is mandated to learn more

robust features. The network of Fig. 7 uses dropout

probability equal to 0.5.

Results and discussion

This section reports and analyses the results of localization

and classification steps detailed in previous section.

Results of automated disc localization

For automated localization of OD the model was trained

for 100,000 iterations using VGG16 as classifier pre-trained

on Pascal VOC2007 [55]. The GT generated by our semi-

automated method is used along with 573 images, previ-

ously employed for training and validation of heuristic

method, to train the network. The disc localization out-

come of the automated method is given in Table 3.

Once trained and evaluated on ORIGA, HRF and

OCT& CFI datasets, the model was also tested on other

publicly available databases and the results are compared

with some state-of-the-art methods developed specifically

for those datasets. The results highlight the comparative

performance of fully automated method with state-of-the-

art heuristic algorithms. The accuracies of our method are

Fig. 8 Results of Automated Localization on different datasets. Notice the illumination and contrast variations amongst the datasets. a Sample

image from DRIVE b Sample image from DIARETDB1 c Sample image from DRIONS-DB d Sample image from Messidor

Table 5 Detailed performance measures of CNN classifier using

random training

Class Precision (%) Recall (%) F1-Score No. of Images

Healthy 81.12 94.9 0.8747 412

Glaucoma 69.57 34.53 0.4615 139

Total 78.21 79.67 0.7705 551

Fig. 9 Confusion Matrix showing distribution of True Positives, False

Positives, and False Negatives
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taken for 50% IOU. The results reported by [51–53] are

for IOU > 0 whereas rest also have considered a

localization correct if 50% overlap is achieved.

As can be seen from Table 4, our automated method

performed significantly better than existing heuristics

methods, which means that it was able to learn dis-

criminative representation of OD. It should be noted

here that heuristics methods are normally designed

with a particular dataset in focus. Figure 5 and Fig. 8

show that there exists substantial variations in colour,

brightness, contrast and resolution etc. among images

of different datasets. Our proposed fully automated

method was not trained on any of the four datasets

listed in Table 4 and yet it performed superior than

those methods tailored specifically for those individual

datasets. The average overlap of predicted and actual

OD bounding boxes is 84.65% for DIARETDB1, 84.13%

for DRIVE, 80.46% for DRIONS-DB and 84.82%for

MESSIDOR.

Results of classification

Due to class imbalance in ORIGA dataset, as shown

in Table 1, a stratified sampling technique is imple-

mented where it is made sure that each batch for

training contains some of the glaucoma images. This

technique is used to prevent any bias towards healthy

class. Furthermore, a constant learning rate of 0.0001

along with Adam optimizer and Cross Entropy loss

was used during training.

Results with random training

As no standard split of train and test set is available for

this dataset, to compare our model with other recently

reported works we first used the same training setup

used by most of them [5, 6, 37]. We trained our model

repeatedly every time randomly taking 99 images for

training and rest for testing. From more than 1500 train-

ing runs the best combination of train and test split re-

sulted in overall classification accuracy of 79.67%. For

classification of unbalanced datasets, like ORIGA, where

number of images in both classes are greatly dispropor-

tionate, as evident from Table 1, accuracy alone does not

portray true performance of classifier. Therefore, other

performance metrics like precision, recall and F1-score

are also calculated. Precision indicates the ratio of cor-

rect predictions among all the predictions made by any

classifier for a certain class. Recall or sensitivity, on the

other hand, refers to the fraction of correct predictions

for a class out of actual total number of samples in that

class. F-score is the harmonic mean of both precision

and recall and gives a unified metric to assess classifier’s

performance. Mathematical definitions of all these per-

formance measures are given below.

Precision ¼
TruePositives

TruePositivesþ FalsePositives
ð1Þ

Recall ¼
TruePositives

TruePositivesþ FalseNegatives
ð2Þ

F1−Score ¼ 2
Precision� Recall

Precisionþ Recall
ð3Þ

Class based average precision, recall and F1 scores are

tabulated in the Table 5 below.

Figure 9 shows the confusion matrix. It can be ob-

served from the figure that out of 412 healthy images 391

are correctly classified and 21 healthy images are mis-

classified as having glaucoma. On the other hand, only

48 of total 139 glaucomatous images are correctly classi-

fied and 91 images with glaucoma are incorrectly classi-

fied as healthy.

Receiver Operating Characteristic (ROC) curve is a

popular performance metric used to evaluate the discrim-

inative ability of binary classifier. It uses a varying thresh-

old, on the confidence of an instance being positive, to

measure the performance of the classifier by plotting re-

call (sensitivity) against specificity. Specificity or True

Negative Rate (TNR) is defined as,

Specificity ¼
TrueNegatives

TrueNegativesþ FalsePositives
ð4Þ

The AUC of this ROC gives a quantitative measure to

compare the performance of different classifiers. Table 6

shows the superiority of our model over other compara-

tive studies in terms of AUC.

As most of the works cited in Table 6 reported only

AUC as performance metric for their classifiers, we

found that for some combinations of 99 train and 551

test images our model was able to achieve higher AUC,

84.87%, than four results in [5, 6, 37, 38] while

Table 6 Comparison of obtained AUC with existing state-of-

the-art methods using random training

Performance Metric [5] [6] [38] [37] [43] Our Method

AUC 0.831 0.838 0.838 0.823 0.851 0.868

Table 7 Detailed performance measure of CNN classifier using

cross validation

Class Precision (%) Recall (%) F1-Score

Healthy 82.31 ± 2.88 91.86 ± 2.29 0.8681 ± 0.246

Glaucoma 65.52 ± 6.65 43.66 ± 4.95 0.5231 ± 0.534

Total 77.97 ± 3.78 79.38 ± 3.42 0.7788 ± 0.366
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predicting only healthy class for every test image produ-

cing healthy class recall of 1 and glaucoma class recall of

0. It means that the trade-off between sensitivity and

specificity of the models can result in higher AUC with-

out learning anything. Therefore, in the absence of

clearly defined train and test split and without knowing

proportion of healthy and glaucomatous images in both

sets, AUC only may not depict the complete and true

picture of a classifier. Other performance measures like

precision, recall, and f-scores should also be reported for

a fair analysis and comprehensive comparison with other

models. In case of well-defined train and test split, how-

ever, AUC alone might be enough to quantify the classi-

fication ability of a model.

Results with cross validation

Realizing this pitfall in performance evaluation of classi-

fiers, and to facilitate future researchers in thorough

comparison of their models we performed 10-fold cross

validation on the dataset. The whole dataset was ran-

domly divided into 10 equal portions. In one training

session, for example, first part is reserved for testing and

other nine are used for training. In next session, second

part, for example, is kept aside for testing and rest of

nine are used for training. Average is taken over 10

training sessions and the accumulative test accuracy is

found to be 79.39% ± 3.42%. Class based precision recall

and f1 score are tabulated in Table 7.

The comparison of AUC obtained using cross valid-

ation with other works is summarized in Table 8 which

clearly shows that the proposed network outperforms

stat-of-the-art results for glaucoma classification on

ORIGA dataset. Figure 10 shows sample images of cor-

rectly and incorrectly classified glaucoma and healthy

images.

Data augmentation was also performed to study its

effects on the accuracy of classification. We performed

horizontal and vertical flips and cropping 227 × 227 × 3

patches from four corners and centre of 256 × 256 × 3

extracted images of OD. However, the experiments per-

formed with and without data augmentation showed no

significant difference between the performances of both

approaches. We also explored the effect of network

complexity on the classification accuracy. For this pur-

pose, we used Alexnet [59] as the reference model and

assessed the impact of the number of layers on the net-

work’s performance given all the other conditions are

the same. It was observed that increasing network com-

plexity actually deteriorated the accuracy of the classi-

fier. The reason for this performance degradation can

be small size of the dataset. Deeper network shave a

habit of overfitting during training when not enough

training samples are provided. The networks working

better than others had four convolutional layers. The

best working model among all the different versions

tried is used for classification and is the one shown in

Fig. 7.

Fig. 10 Some examples of correct and incorrect glaucoma classification using DCNN. a Glaucoma correctly classified b Glaucoma incorrectly

classified c Healthy image correctly classified d Healthy image incorrectly classified

Table 8 Comparison of obtained AUC with existing state-of-the-art methods using cross validation

Performance
Metric

Chen et al. Cheng
et al.
[38]

Xu et
al.
[37]

Fu et
al.
[43]

Proposed Model

[5] [6] Random Training Cross Validation

AUC 0.831 0..838 0.838 0.823 0.851 0.868 0.874

Sensitivitya (%) N/A N/A N/A 58 N/A 71 71.17

aThe sensitivity is calculated at observed specificity of 85% as done by Xu et al.
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Conclusion

We proposed a two-stage solution for OD localization

and classification for glaucoma screening. Realizing that

OD is instrumental in examining the eye for various

diseases including glaucoma, we first employed a fully

automated disc localization method based on faster

RCNN. This method completely eliminates the need for

development of dataset-specific empirical or heuristic

localization methods by providing robust and accurate

localization across a broad spectrum of datasets. The

performance of this fully automated systems sets new

state-of-the-art results in six out of seven publicly avail-

able datasets with IOU greater than 50%.

The classification of images into diseased and healthy

using CNN has also been investigated. Although some re-

searchers have reported around 95% accuracy on private

datasets or carefully selected small set of images from

public datasets, the classification accuracy and ROC AUC

for publicly available ORIGA dataset has been challenging

to improve. In spite of the fact that we were able to

achieve significantly higher AUC on ORIGA with both

random training and k-fold cross validation, the detailed

performance measures of the classifier reveal that the net-

work has difficulty in learning discriminative features to

classify glaucomatous images in this public dataset. It ap-

pears that the fine grained discriminative details in the im-

ages of this dataset are lost with the increase in the

hierarchy of the network. Therefore, more effort is re-

quired to tailor some classifiers capable of identifying

glaucomatous images with reliability.
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