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Two-stage Framework for Visualization

of Clustered High Dimensional Data

Jaegul Choo∗, Shawn Bohn†, and Haesun Park∗

Abstract

In this paper, we discuss dimension reduction methods for 2D visualization of high dimensional

clustered data. We propose a two-stage framework for visualizing such data based on dimension reduction

methods. In the first stage, we obtain the reduced dimensional data by applying a supervised dimension

reduction method such as linear discriminant analysis which preserves the original cluster structure in

terms of its criteria. The resulting optimal reduced dimension depends on the optimization criteria and is

often larger than 2. In the second stage, the dimension is further reduced to 2 for visualization purposes

by another dimension reduction method such as principal component analysis. The role of the second-

stage is to minimize the loss of information due to reducing the dimension all the way to 2. Using this

framework, we propose several two-stage methods, and present their theoretical characteristics as well

as experimental comparisons on both artificial and real-world text data sets.

Index Terms

dimension reduction, linear discriminant analysis, principal component analysis, orthogonal centroid

method, 2D projection, clustered data, regularization, generalized singular value decomposition

I. INTRODUCTION

Within the visual analytics community, various types of information content are represented

using high dimensional signatures. To make these signatures useful they often need to be
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transformed into a lower dimension (i.e., 2D or 3D) for a variety of visual representations such

as scatter plots. Many researchers in this community have used a wide assortment of dimension

reduction techniques, e.g., self-organizing map (SOM) [1], principal component analysis (PCA)

[2], multidimensional scaling (MDS) [3], etc. However, it is not always clear why a certain

technique has been chosen over another, especially to the end user. Typically, its goal can be

viewed in terms of two aspects: efficiency and accuracy. Efficiency as defined here is the time

to compute the reduction, but accuracy may not be as simple to quantify. Many would amiably

agree to quantify accuracy as a measure of the relationship preservation in the high dimensional

space to the reduced dimensional space. Note that most techniques either directly or indirectly

work on this principle.

There are other properties that are important to those interpreting the semantics of the reduced

space. Specifically, we note that while local neighbor preservation is important it depends upon

the analysis task. No single reduction technique will provide the complete view as various

properties of the space are obscured or lost. We have mentioned that typically the primary

objective is relationship preservation. However, there are at least two others: outlier and macro

structure visualization. Outliers are conceptually easy (i.e., a variance beyond some threshold),

but more difficult to quantify, as we do not necessarily know which set of outliers are important

to accentuate to the user. Certain techniques (e.g., PCA) tend to show outliers more readily,

however tend to compress the reduced space at the expense of showcasing the outliers. Other

techniques (e.g., SOM) maximize space usage well, but do so at the expense of masking or even

hiding those outliers. Likewise, macro structures of the high dimensional space may be masked

or massively distorted during the reduction. Macro structures are those larger order groupings

(e.g., clusters) that exist in the original dimensional space. We recognize they are important in

dimension reduction research and to those in the visual analytics community. However, few of

them focus on data representation especially for visualization of the clustered data [4], [5], [6].

We propose theoretical measures for these properties and efficient algorithms which will aid

not only the researchers but ultimately the users/analysts to better understand which balance of

properties are important and for which analytic tasks.
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II. MOTIVATION

The focus of this paper is the fundamental characteristics of dimension reduction techniques

for visualizing high dimensional data in the form of a 2D scatter plot when the data has cluster

structure. The role of dimension reduction here is to give a 2-dimensional representation of

data while preserving cluster structure as much as possible. To this end, supervised dimension

reduction methods that incorporate cluster information such as linear discriminant analysis (LDA)

[7] or orthogonal centroid method (OCM) [8] can be naturally considered.

However, one of the issues is that with many dimension reduction methods designed to preserve

the cluster structure in the data, the theoretically optimal reduced dimension, which is the smallest

dimension that is acceptable with respect to the optimization criteria of the dimension reduction

method, is usually larger than 2. For example, in LDA, the minimum reduced dimension that

preserves the cluster structure quality measure defined as a trace maximization problem is one

less than the number of clusters in the data in general [9], [10].

In this case, one may simply choose the two dimensions that contribute most to such a

measure. However, with only two dimensions, such a measure may become significantly smaller

than the original quantity after dimension reduction. This results in loss of information that

hinders visualization in properly reflecting the true cluster relationship of the data. A similar

situation may occur when using PCA for visualizing the data not having a cluster structure. Even

though PCA finds the principal axes that maximally capture the variance of the data, when the

resulting 2-dimensional representation of the data maintains only a small fraction of the total

variance, the relationships of the data in 2 dimension are likely to be highly inconsistent with

those in the original dimension.

Such loss of information is inevitable in that the dimension has to be reduced to 2. Our main

motivation is to deal with such loss more carefully by separating the loss-introducing stage

from the original dimension reduction methods. Based on this idea, we propose the two-stage

framework of dimension reduction for visualization. In this framework, a supervised dimension

reduction method is applied in the first stage so that the original dimension is reduced to

the minimum dimension achievable while preserving the quality of cluster measure as defined

in a dimension reduction method. The reduced dimension achieved in the first stage is often

larger than 2. Thus in the second stage, we find another dimension reducing transformation that
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minimizes the loss introduced in further reducing the dimension all the way to 2. This two-stage

framework provides us with a means to flexibly apply different types of dimension reduction

techniques in each stage and to systematically analyze their effects, which provides understanding

the effects of the overall dimension reduction methods for visualization of clustered data. The

issues then are the design of the most appropriate dimension reduction methods, the modeling

of optimization criteria, and the corresponding solution methods.

In this paper, we present both theoretical and empirical answers to these issues. Specifically,

we propose several two-stage methods utilizing linear dimension reduction methods such as

LDA, orthogonal centroid method (OCM), and principal component analysis (PCA), and we

present their theoretical justifications by modeling the optimization criteria for which each method

provides the optimal solution. Also, we illustrate and compare the effectiveness of the proposed

methods by showing empirical visualization on synthetic and real-world data sets.Although

nonlinear dimension reduction methods such as MDS or other manifold learning methods such

as isometric feature mapping [11] and locally linear embedding [12] may also be utilized for

the effective 2D visualization of high dimensional data, our focus in this paper is on linear

methods. The linear methods are computationally more efficient in general, and unlike most of

the manifold learning methods, they also provide dimension reducing transformations that can

be applied to map and visualize unseen data points in the same space where the existing data

are visualized.

Our approach to successively apply two dimension reduction methods should be discerned

from the previous works [13], [14], [15] in that they usually aim for improving computational

efficiency, scalability, or applicability of a certain dimension reduction method, e.g., LDA.

The rest of this paper is organized as follows. In Section 3, LDA, OCM, and PCA are described

based on a unified framework of the scatter matrices and their trace optimization problems. In

Section 4, we formulate two-stage dimension reduction methods, and in Section 5, several two-

stage methods for visualization are proposed and compared along with their criteria. Experimental

comparisons are given using artificial and real-world data sets in Section 6, and conclusion and

future work are addressed in Section 7.
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III. DIMENSION REDUCTION AS TRACE OPTIMIZATION PROBLEM

In this section, we introduce the notions of scatter matrices used in defining cluster quality

and optimization criteria for dimension reduction.

Suppose a dimension reducing linear transformation GT ∈ R
l×m maps an m-dimensional data

vector x to a vector z in an l-dimensional space (m > l):

GT : x ∈ R
m×1 → z = GT x ∈ R

l×1. (1)

Suppose also that a data matrix A = [a1 a2 · · · an] ∈ R
m×n is given where the columns a j, j =

1, . . . , n, of A represent n data items in an m-dimensional space, and they are partitioned into

k clusters. Without loss of generality, for simplicity of notations, we further assume that A is

partitioned as

A = [A1 A2 · · · Ak], where Ai ∈ R
m×ni and

k

∑
i=1

ni = n.

Let Ni denote the set of column indices that belong to cluster i, and ni the size of Ni. The i-th

cluster centroid c(i) and the global centroid c are defined, respectively, as

c(i) =
1

ni
∑

j∈Ni

a j and c =
1

n

n

∑
j=1

a j.

The scatter matrix within the i-th cluster S
(i)
w , the within-cluster scatter matrix Sw, the between-

cluster scatter matrix Sb, and the total (or mixture) scatter matrix St are defined [16], [17],

respectively, as

S
(i)
w = ∑

j∈Ni

(a j − c(i))(a j − c(i))T ,

Sw =
k

∑
i=1

S
(i)
w =

k

∑
i=1

∑
j∈Ni

(a j − c(i))(a j − c(i))T , (2)

Sb =
k

∑
i=1

∑
j∈Ni

(c(i)− c)(c(i)− c)T =
k

∑
i=1

ni(c
(i)− c)(c(i)− c)T

=
1

n

k−1

∑
i=1

k

∑
j=i+1

nin j(c
(i)− c( j))(c(i)− c( j))T , and (3)

St =
n

∑
j=1

(a j − c)(a j − c)T . (4)

Note that the total scatter matrix St is related to Sw and Sb as [16]

St = Sw +Sb. (5)
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When GT in Eq. (1) is applied to the matrix A, the scatter matrices Sw, Sb, and St in the original

dimensional space are reduced to the l × l matrices

GT SwG, GT SbG, and GT StG,

respectively. By computing the trace of the scatter matrices as

trace(Sw) =
k

∑
i=1

∑
j∈Ni

(a j − c(i))T (a j − c(i))

=
k

∑
i=1

∑
j∈Ni

‖a j − c(i)‖2
2, (6)

trace(Sb) =
k

∑
i=1

∑
j∈Ni

(c(i)− c)T (c(i)− c)

=
k

∑
i=1

ni‖c(i)− c‖2
2 (7)

=
1

n

k−1

∑
i=1

k

∑
j=i+1

nin j‖c(i)− c( j)‖2
2, and (8)

trace(St) =
n

∑
j=1

(a j − c)T (a j − c) =
n

∑
j=1

‖a j − c‖2
2, (9)

we obtain values that can be used to measure the cluster quality. Note that from Eqs. (7) and (8),

trace(Sb) can be viewed as the squared sum of the pairwise distances between cluster centroids

as well as that of the distances between each centroid and the global centroid.

The cluster structure quality can be defined by analyzing how well each cluster can be

discriminated from each other. High quality clusters usually have small trace(Sw) and large

trace(Sb), relating to the small variance within each cluster and the large distances between

clusters. Subsequently, dimension reduction methods may be intended to maximize trace(GT SbG)

and minimize trace(GT SwG) in the reduced dimensional space. This simultaneous optimization

can be approximated to a single criterion as

Jb/w(G) = maxtrace((GT SwG)−1(GT SbG)), (10)

which is the criterion of LDA. In addition, one may focus on maximizing the distances between

clusters, which can be represented as the criterion of OCM, i.e.,

Jb(G) = max
GT G=I

trace(GT SbG). (11)
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On the other hand, regardless of cluster dependent terms, Sw and Sb, the trace of the total scatter

matrix St can be maximized as

Jt(G) = max
GT G=I

trace(GT StG), (12)

which turns out to be the criterion of PCA. In Eqs. (11) and (12), without the constraint, GT G = I,

Jb(G) and Jt(G) can become arbitrarily large.

In what follows, LDA, OCM, and PCA are discussed based on such maximization criteria,

and their properties relevant to visualization are identified.

A. Linear Discriminant Analysis (LDA)

Conceptually, in LDA, we are looking for a dimension reducing transformation that keeps the

between-cluster relationship as remote as possible by maximizing trace(GT SbG) while keeping

the within cluster relationship as compact as possible by minimizing trace(GT SwG). As shown

in Eq. (10), the criterion of LDA can be written as

Jb/w(G) = maxtrace((GT SwG)−1(GT SbG)). (13)

It can be shown that for any G ∈ R
m×l where m > l ,

trace((GT SwG)−1(GT SbG)) ≤ trace(S−1
w Sb), (14)

meaning that the cluster structure quality measured by trace(S−1
w Sb) cannot be increased after

dimension reduction [7]. By setting the derivative of Eq. (13) with respect to G to zero, which

gives the first order optimality condition, it can be shown that the solution of LDA, where we

denote it as GLDA, has the columns which are the leading generalized eigenvectors u of the

generalized eigenvalue problem,

Sbu = λSwu. (15)

Since the rank of Sb is at most k−1, LDA achieves the upper bound of trace((GT SwG)−1(GT SbG))

in Eq. (14) for any l such that l ≥ k−1, i.e.,

trace((GT
LDASwGLDA)−1(GT

LDASbGLDA))

= trace(S−1
w Sb) for l ≥ k−1, (16)

which indicates trace(S−1
w Sb) is preserved between the original space and the reduced dimensional

space obtained by GLDA.
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TABLE I

COMPARISON OF DIMENSION REDUCTION METHODS. IT IS ASSUMED Sb AND St ARE FULL RANK.

LDA OCM PCA

Optimization Criterion

(x ∈ R
m×1 GT

→ y ∈ R
l×1)

Jb/w(G) =

maxtrace((GT SwG)−1(GT SbG))
Jb(G) = max

GT G=I
trace(GT SbG) Jt(G) = max

GT G=I
trace(GT StG)

Algorithm generalized eigendecomposition QR decomposition symmetric eigendecomposition

Smallest dimension achieving

the criterion upper bound
k−1 k min(m, n)

B. Orthogonal Centroid Method (OCM)

Orthogonal centroid method (OCM) [8] focuses only on maximizing trace(GT SbG) under the

constraint of GT G = I. The criterion of OCM is shown as

Jb(G) = max
GT G=I

trace(GT SbG). (17)

It is known that for any G ∈ R
m×l where m > l such that GT G = I,

trace(GT SbG) ≤ trace(Sb), (18)

which means the cluster structure quality measured by trace(Sb) cannot be increased after

dimension reduction. The solution of Eq. (17) can be obtained by setting the columns of G

as the leading eigenvectors of Sb. Since Sb has at most k− 1 nonzero eigenvalues, the upper

bound of trace(GT SbG) in Eq. (18) can be achieved for any l such that l ≥ k−1, i.e.,

trace(GT SbG) = trace(Sb) for l ≥ k−1. (19)

Eq. (19) indicates trace(Sb) is preserved between the original and the reduced dimensional spaces.

An advantage of OCM is that it achieves an upper bound of trace(GT SbG) more efficiently by

using QR decomposition, avoiding the eigendecomposition. The algorithm of OCM is as follows.

First the centroid matrix C is formed so that each column of C is composed of each cluster’s

centroid vector, i.e., C =
[

c1 c2 · · · ck

]

. Then the reduced QR decomposition [18] of C is

computed for C = QkR where Qk ∈ R
m×k with QT

k Qk = I and R ∈ R
k×k is upper triangular. The

solution of OCM, GOCM, is found as

GOCM = Qk.
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Note that the columns of GOCM are composed of the orthogonal bases for the subspace spanned

by the centroids, and l = k in this case. Finally, OCM achieves

trace(GT
OCMSbGOCM) = trace(Sb), where l = k.

By using the equivalence between Eqs. (3) and (3), one can prove that each pairwise distance

between cluster centroids is also preserved in the reduced dimensional space obtained by OCM.

Another important property of OCM is that by projecting data into the subspace spanned by

the centroids, the order of similarities between any particular point and centroids are preserved

in terms of Euclidean norm and cosine similarity measure [8], [10]. In other words, for any

vector q ∈ R
m×1 and cluster centroids c(i) and c( j), we have

‖q− c(i)‖2 < ‖q− c( j)‖2 ⇒

‖GT
OCMq−GT

OCMc(i)‖2 < ‖GT
OCMq−GT

OCMc( j)‖2, and

qT c(i)

‖q‖2‖c(i)‖2

<
qT c( j)

‖q‖2‖c( j)‖2

⇒

(

GT
OCMq

)T
GT

OCMc(i)

‖GT
OCMq‖2‖GT

OCMc(i)‖2

<

(

GT
OCMq

)T
GT

OCMc( j)

‖GT
OCMq‖2‖GT

OCMc( j)‖2

.

C. Principal Component Analysis (PCA)

PCA is a well-known dimension reduction method that captures the maximal variance in the

data. The criterion of PCA can be written as

Jt(G) = max
GT G=I

trace(GT StG). (20)

For any G ∈ R
m×l where m > l such that GT G = I, we have

trace(GT StG) ≤ trace(St), (21)

which means trace(St) cannot be increased after dimension reduction. The solution of Eq. (20),

where we denote it as GPCA, can be obtained by setting the columns of G as the leading

eigenvectors of St . Since the rank of St is at most min(m, n), PCA achieves the upper bound of

trace(GT StG) in Eq. (21) for any l such that l ≥ min(m, n), i.e.,

trace(GT
PCAStGPCA) = trace(St) for l ≥ min(m, n).
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In many applications of PCA, however, l is usually chosen as a fixed value less than the ranke of

St for the purpose of dimension reduction or noise reduction. This noisy subspace corresponds

to the smallest eigenvectors of St , and they are removed by PCA for better representation of the

data.

Although St is related to Sb and Sw as in Eq. (5), St as it is does not contain any information on

cluster labels. That is, unlike LDA and OCM, PCA ignores the cluster structure represented by

Sb and/or Sw, which is why PCA is considered as an unsupervised dimension reduction method.

Usually, PCA assumes that the global centroid is zero by subtracting the empirical mean of

the data from each data vector. The centered data can be represented as A− ceT , where e is

n-dimensional vector whose components are all 1’s.

PCA has a unique property that, given a fixed l, it produces the best reduced dimensional rep-

resentation that minimizes the difference between the centered matrix A−ceT and its projection

to the reduced dimensional space GGT (A− ceT ) where G has orthonormal columns, i.e.,

GPCA = arg min
G,GT G=Il

‖GGT (A− ceT )− (A− ceT )‖,

where the matrix norm ‖ · ‖ is either a Frobenius norm or a Euclidean norm.

The three discussed methods are summarized in Table I.

IV. FORMULATION OF TWO-STAGE FRAMEWORK FOR VISUALIZATION

Suppose we want to find a dimension reducing linear transformation V T ∈ R
2×m that maps

an m-dimensional data vector x to a vector z in a 2-dimensional space (m ≫ 2):

V T : x ∈ R
m×1 → z = V T x ∈ R

2×1. (22)

Further assume that it is composed of two stages of dimension reductions as follows. In the

first stage, a dimension reducing linear transformation GT ∈ R
l×m maps an m-dimensional data

vector x to a vector y in the l-dimensional space (l ≪ m):

GT : x ∈ R
m×1 → y = GT x ∈ R

l×1, (23)

where l is fixed as its minimum optimal dimension by the first-stage criterion. When l ≤ 2, we

have no further dimension reduction to do after the first step. However, an optimal l in many

methods and for many data sets is larger than 2, and so we assume that l > 2.
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In the second stage, another dimension reducing linear transformation HT ∈ R
2×l maps an

l-dimensional data vector y to a vector z in the 2-dimensional space(l > 2):

HT : y ∈ R
l×1 → z = HT y ∈ R

2×1. (24)

Such consecutive dimension reductions performed by GT followed by HT can be combined,

resulting in a single dimension reducing transformation V T as

V T = HT GT . (25)

In the next section, discussion will be focused on various ways for choosing the first stage

dimension reducing transformation G and the second stage dimension transformation H with a

purpose to construct combined dimension reducing transformation V T = HT GT for 2-dimensional

visualization according to various optimization criteria.

V. TWO-STAGE METHODS FOR 2D VISUALIZATION

All the proposed two-stage methods start from one of the supervised dimension reduction

methods such as LDA or OCM that are designed for clustered data. In the first stage (by

GT ∈ R
l×m in Eq. (23)), the dimension is reduced by LDA or OCM to the smallest dimension

that satisfies Eq. (16) or (19), respectively. Therefore in the first stage, the cluster structure quality

measured either by trace(S−1
w Sb) or trace(Sb) is preserved. Then we perform the second-stage

dimension reduction (by HT ∈ R
2×l in Eq. (24)) that minimizes the loss of information either

by applying the same criterion used in the first stage or by using Jt in Eq. (20), i.e., that of

PCA. As seen in Section 3.3, Eq. (20) gives the best approximation of the first-stage results that

minimize the difference in terms of Frobenius/Euclidean norm.

In what follows, we describe each of the two-stage methods in detail, and derive their

equivalent single-stage methods (by V T ∈ R
2×m in Eq. (22)) in case they exist.

A. Rank-2 LDA

In this method, LDA is applied in the first stage, and trace(S−1
w Sb) is preserved in the l-

dimensional space where l = k− 1. In the second stage, the same criterion Jb/w(H) is used to

reduce the l-dimensional first-stage results to 2-dimensional data.
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TABLE II

SUMMARY OF THE OPTIMIZATION CRITERIA OF THE TWO-STAGE DIMENSION REDUCTION METHODS.

Rank-2 LDA LDA + PCA OCM+PCA Rank-2 PCA on Sb

Stage 1: Preservation

(x ∈ R
m×1 GT

→ y ∈ R
l×1)

trace((GT SwG)−1(GT SbG)) = trace(S−1
w Sb) trace(GT SbG) = trace(Sb)

Stage 2: Maximization

(y ∈ R
l×1 HT

→ z ∈ R
2×1)

trace((HT (GT SwG)H)−1

(HT (GT SbG)H))
trace

HT H=I
(HT (GT StG)H) trace

HT H=I
(HT (GT StG)H) trace

HT H=I
(HT (GT SbG)H)

The criterion of the second-stage dimension reducing matrix H can be formulated as

Hb/w = max
H∈Rl×2

trace((HT (GT
LDASwGLDA)H)−1

(HT (GT
LDASbGLDA)H)). (26)

Assuming the columns of GLDA, which are generalized eigenvectors of Eq. (15), are in decreasing

order of their corresponding generalized eigenvalues, i.e., GLDA =
[

u1 u2 · · · uk−1

]

where

λ1 ≥ λ2 ≥ ·· · ≥ λk−1, the solution of Eq. (26) is

Hb/w =
[

e1 e2

]

,

where e1 and e2 are the first and the second standard unit vectors, i.e., e1 =
[

1 0 · · · 0

]T

∈

R
l×1 and e2 =

[

0 1 0 · · · 0

]T

∈ R
l×1. This solution is equivalent to choosing two dimen-

sions with the most leading generalized eigenvalues from the first stage result, and the resulting

two-stage method can be represented as a single-stage dimension reduction method by V ∈R
m×2

which directly maximize Jb/w, i.e.,

Vb/w = arg max
V∈Rm×2

Jb/w(V )

= arg max
V∈Rm×2

trace((V T SwV )−1(V T SbV )). (27)

The solution of Eq. (27) becomes

Vb/w = GLDAHb/w =
[

u1 u2

]

,

where u1and u2 are the leading generalized eigenvectors of Eq. (15). This solution is also known

as reduced-rank linear discriminant analysis [19].
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B. LDA followed by PCA

In this method, LDA is applied in the first stage, and trace(S−1
w Sb) is preserved in the l-

dimensional space where l = k−1. In the second stage, PCA is applied in order to obtain the

best approximation of the l-dimensional first-stage results in terms of Frobenius/Euclidean norm.

The second-stage dimension reducing matrix H is obtained by solving

Ht = arg max
H∈Rl×2,HT H=I

trace(HT (GT
LDAStGLDA)H), (28)

where the solution is the two leading eigenvectors of the total scatter matrix of the first-stage

result, GT
LDAStGLDA.

From Eq. (5), we have

GT
LDAStGLDA = GT

LDA(Sb +Sw)GLDA. (29)

Since LDA conceptually maximizes trace(GT SbG) and minimizes trace(GT SwG), the result is

expected to satisfy

trace(GT
LDASbGLDA) ≫ trace(GT

LDASwGLDA)),

which means that GT
LDAStGLDA is dominated by GT

LDASbGLDA, i.e.,

GT
LDA(Sb +Sw)GLDA ≃ GT

LDASbGLDA.

In this case, the principal axes that PCA gives in the second stage better reflect those of the

between-cluster matrix of the first-stage result, GT
LDASbGLDA, and they may in turn discriminate

the clusters clearly in the 2-dimensional space. In this sense, LDA followed by PCA achieves a

clear cluster structure as well as a good approximation of the first-stage result.

C. OCM followed by PCA

In this method, OCM is applied in the first stage, and trace(Sb) is preserved in the l-dimensional

space where l = k. In the second stage, PCA is applied in order to obtain the best approximation

of the l-dimensional first-stage results in terms of Frobenius/Euclidean norm.

As in Section 5.2, the second-stage dimension reducing matrix H is obtained by solving

Ht = arg max
H∈Rl×2,HT H=I

trace(HT (GT
OCMStGOCM)H), (30)

where the solution is the two leading eigenvectors of the total scatter matrix of the first-stage

result, GT
OCMStGOCM.
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TABLE III

DESCRIPTION OF DATA SETS.

GAUSSIAN MEDLINE NEWSGROUPS REUTERS

Original dimension, m 1100 22095 16702 3907

Number of data items, n 1000 500 770 800

Number of clusters, k 10 5 11 10

From Eq. (5), we have

GT
OCMStGOCM = GT

OCM(Sb +Sw)GOCM. (31)

Unlike LDA, OCM does not minimize trace(GT SwG) as shown in Eq. (17). Therefore the

following may not be the case:

trace(GT
OCMSbGOCM) ≫ trace(GT

OCMSwGOCM),

which means that GT
OCMSbGOCM does not necessarily dominate GT

OCMStGOCM. Then the two

principal axes of GT
OCMStGOCM obtained by PCA in the second stage tend to fail to reflect

those of GT
OCMSbGOCM, which may rather scatter the data points within each cluster, eventually

preventing the visualization results from showing a clear cluster structure.

D. Rank-2 PCA on Sb

In this method, OCM is applied in the first stage, and trace(Sb) is preserved in the l-dimensional

space where l = k. In the second stage, the same criterion Jb(H) is used to reduce the l-

dimensional first-stage results to 2-dimensional data.

The second-stage dimension reducing matrix H is obtained by solving

Hb = arg max
H∈Rl×2,HT H=I

trace(HT (GT
OCMSbGOCM)H), (32)

where the solution is the two leading eigenvectors of the between-scatter matrix of the first-stage

result, GT
OCMSbGOCM. The columns of GOCM form the subspace spanned by centroids, and this

subspace includes the range space of Sb. Accordingly, one can easily show that the eigenvector

uY
i ∈ R

l×1 of GT
OCMSbGOCM is related to eigenvectors ui ∈ R

m×1 of Sb as

uY
i = GT

OCMui
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with their corresponding eigenvalues matched as well, i.e., λY
i = λi. Hence, the solution of Eq.

(32) can be written as

Hb =
[

uY
1 uY

2

]

= GT
OCM

[

u1 u2

]

. (33)

Using Eq. (33) and the relationship shown in Eq. (25), the single-stage dimension reducing

transformation Vb can be built as

V T
b = HT

b GT
OCM =





uT
1

uT
2



GOCMGT
OCM

=





uT
1

uT
2



 (34)

= arg max
V∈Rm×2

Jb(V )

= arg max
V∈Rm×2

trace(V T SbV ). (35)

Eq. (34) holds since the eigenvectors of Sb, u1 and u2, are in the range space of GOCM. The

criterion of Eq. (35) has been used in one of the successful visual analytic systems, IN-SPIRE,

for 2D representation of document data [20].

The discussed two-stage methods are summarized in Table II.

VI. EXPERIMENTS

In this section, we present visualization results using the proposed methods for several data

sets, especially focusing on undersampled text data visualization where the data item is repre-

sented in m-dimensional space and the number of the data items n is less than m (m > n).

A. Regularization on LDA for undersampled data

In undersampled cases, the LDA criterion shown in Eq. (13) cannot be applied directly because

Sw is singular. In order to overcome this singularity problem, Howland et al. proposed a universal

algorithmic framework of LDA using the generalized singular value decomposition (LDA/GSVD)

[9], [10]. Specifically, for the case when m ≫ n ≫ k, which is usual for most undersampled

problems, LDA/GSVD gives the solution for G such that GT SwG = 0 while maintaining the

maximum value of trace(GT SbG). This solution makes sense since LDA criterion is formulated

to minimize trace(GT SwG). However, it means that all of the data points belonging to a specific
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cluster are represented as a single point in the reduced dimensional space, which lessens the

generalization ability for classification as well as for visualizing the individual data relationship

within each cluster.

On the contrary, the fact that LDA makes GT SwG = 0 can be viewed as an advantage for

visualization purposes since LDA has the capability to fully minimize trace(GT SwG). By means

of regularization on Sw one can control trace(GT SwG), which determines the scatter of the

data points within each cluster. In regularized LDA which was originally proposed to avoid the

singularity of Sw in classification context, Sw is replaced by a nonsingular matrix Sw +γI where I

is an identity matrix, and γ is a control parameter. In general, as γ is increased, the within-cluster

distance, trace(GT SwG), also becomes larger with data points being more scattered around their

corresponding centroids. As γ is decreased, the within-cluster distance becomes smaller, and the

data points gather closer around their centroids. Such manipulation of γ can be exploited in a

visualization context because one can choose an appropriate value of γ so that the second-stage

method such as PCA, which maximizes trace(GT StG) = trace(GT SbG+GT SwG), does not focus

too much on trace(GT SwG). The results that follow are based on such choices of γ .

B. Data Sets

The data sets tested are composed of one artificially-generated Gaussian-mixture dataset

(GAUSSIAN) and three real-world text data sets (MEDLINE, NEWSGROUPS, and REUTERS)

that are clustered based on their topics. All the text documents are encoded as term-document

matrices where each dimension corresponds to a particular word, and the value of a certain

dimension represents the frequency of the corresponding word shown in the document. Each

data set is set to have an equal number of data per cluster, and have a mean of zero which is

attained by subtracting the global mean. (See Section 6.3.)

The descriptions of data sets, which are also summarized in Table III, are as follows.

The GAUSSIAN data set is a randomly generated Gaussian mixture with 10 clusters. Each

cluster is made up of 100 data vectors, which add up to 1000 in total, and the dimension is set

to 1100, which is slightly more than the number of the data items. In its visualization shown in

Fig. (1), the clusters are labeled using letters as

• ’a’, ’b’, . . . , and ’j’.

The MEDLINE data set is a document corpus related to medical science from the National
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Institutes of Health1. The original dimension is 22095, and the number of clusters is 5, where

each cluster has 100 documents. The cluster labels that correspond to the document topics are

shown as

• heart attack (’h’), colon cancer (’c’), diabetes (’d’), oral cancer (’o’), and tooth decay (’t’),

where the letters in parentheses are used in the visualization shown in Fig. (2).

The NEWSGROUPS data set [21] is a collection of newsgroup documents, and originally

composed of 20 topics. However, we have chosen 11 topics for visualization, and each cluster

is set to have 70 documents. The original dimension is 16702, and the cluster labels are shown

as

• comp.sys.ibm.pc.hardware (’p’), comp.sys.mac.hardware (’a’), misc.forsale (’f’), rec.sport.baseball (’b), sci crypt (’y’),

sci.electronics (’e’), sci.med (’d’), soc.religion.christian (’c’), talk.politics.guns (’g’), talk.politics.misc (’p’), and talk.religion.misc

(’r’),

where the letters in parentheses are used in the visualization shown in Fig. (3).

The REUTERS data set [21] is the document collection that appeared in the Reuters newswire

in 1987, and originally composed of hundreds of topics. Among them, 10 topics related to

economic subjects are chosen for visualization, and each cluster has 80 documents. The original

dimension is 3907, and the cluster labels are shown as

• earn (’e’), acquisitions (’a’), money-fx (’m’), grain (’g’), crude (’r’), trade (’t’), interest (’i’), ship (’s’), wheat (’w’), and

corn (’c’),

where the letters in parentheses are used in the visualization shown in Fig. (4).

C. Effects of Data Centering

Fig. 5 is the example of applying OCM+PCA to the MEDLINE data set with and without data

centering. Once the MEDLINE data set is encoded as a term-document matrix, every component

has a non-negative value, which results in the global centroid that is significantly far from the

origin. Then performing PCA without data centering might give the first principal axis as the one

reflecting the global centroid rather than that discriminating clusters. If we consider projecting

the data onto each of the horizontal and the vertical axes in Fig. 5, the former, which corresponds

to the first principal axis, does not help in showing the cluster structure clearly, and only the

vertical axis, which corresponds to the second principal axis from PCA, discriminates clusters.

We have found that such undesirable behavior is common in many cases without data centering,

1http://www.cc.gatech.edu/˜hpark/data.html
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which is why we assume that data is centered throughout this paper. Accordingly, all the results

shown in Figs 1-4 are obtained after data centering.

D. Comparison of Visualization Results

The results of four two-stage methods for the tested data sets are shown in Figs.1-42.

In all cases, LDA-based methods show cluster structures more clearly than OCM-based

methods. This proves the effectiveness of LDA that considers both within- and between-cluster

measures while OCM only takes into account the latter. Due to this difference, OCM gen-

erally produces a widely-scattered data representation within each cluster. As a result, in the

NEWSGROUPS dataset, such a wide within-cluster variance significantly deteriorates the cluster

structure visualization even if OCM still attempts to maximize the between-cluster distance.

In the MEDLINE and the REUTERS data sets, all of the four methods produce relatively

similar results. However, we have controlled the within-cluster variance in LDA-based methods

using the regularization term γI. In addition, the fact that rank-2 LDA and LDA+PCA produce

almost identical results indicates that GT
LDAStGLDA is dominated by GT

LDASbGLDA after LDA is

applied in the first stage as we expected.

Rank-2 LDA represents each cluster most compactly by minimizing the within-cluster radii

both in the first and the second stage. However, it may reduce the between-cluster distances as

well because Jb/w maximizes the conceptual ratio of two scatter measures. As can be seen in the

two LDA-based methods applied to the NEWGROUPS data set, while rank-2 LDA minimizes

the within-cluster radii, it also places the centroids closer to each other as compared to those

in LDA+PCA. Due to this effect, which one is preferable between rank-2 LDA and LDA+PCA

depends on the data set to be visualized.

Overall, OCM+PCA and Rank-2 PCA on Sb show similar results. It means GT SbG ≃ GT StG

in that the difference between two methods lies in whether PCA is applied to GT SbG or GT StG

in the second stage. Since performing PCA on GT SbG is computationally more efficient than

PCA on GT StG, Rank-2 PCA on Sb can be a good alternative to OCM+PCA in case efficient

computation is important.

2Those figures can be arbitrarily magnified without losing the resolution in the electronic version of this paper.
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Finally, these visualization results reveal the interesting cluster relationships underlying in

the data. In Fig. (2), the clusters for colon cancer (’c’) and oral cancer (’o’) are shown close

to each other. In Fig. (3), the clusters of soc.religion.christian (’c’) and talk.religion.misc (’r’),

those of comp.sys.ibm.pc.hardware (’p’) and comp.sys.mac.hardware (’a’), and those of sci.crypt

(’y’) and sci.med (’d’) are closely located respectively in LDA-based methods. In addition, the

two clusters, misc.forsale (’f’) and rec.sport.baseball (’b’), are shown to be the most distinctive,

which makes sense because those topics are quite irrelevant to the others. In Fig. (4), the clusters

of grain (’g’), wheat (’w’), and corn (’c’) as well as those of money-fx (’m’) and interest (’i’)

are visualized very close.

VII. CONCLUSION AND FUTURE WORK

According to our results, LDA-based methods are shown to be superior to OCM-based methods

since both within- and between-cluster relationships are taken into account in LDA. Especially,

combined with PCA in the second stage, LDA+PCA achieves a clear discrimination between

clusters as well as the best approximation of the results of LDA when the distance between data

is measured in terms of Frobenius/Euclidean norm.

However, many classes except for few of them that are clearly unrelated tend to be overlapped

especially when dealing with large numbers of data points and clusters. This is inherently due to

the nature of the second-stage dimension reduction in which only the two axes are chosen so that

the classes which contribute most to the second stage criteria can be well-discriminated. Such

behavior can exaggerate the distances between particular clusters, and more elaboration towards

new criteria that fits in visualization is required. In the MEDLINE and the REUTERS datasets,

visualization results seem to have a tail-shape along specific directions. We often found this

phenomenon to occur in many other data sets. It is still unclear as to what causes this and how

it affects the visualization, e.g. characteristics of information loss in the second stage. Finally, in

order to determine how much loss of information is introduced by each method, more rigorous

analysis based on various quantitative measures such as pairwise between-cluster distance and

within-cluster radii should be conducted.
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Fig. 1. Comparison of the two-stage methods in the GAUSS data set.

(a) Rank-2 LDA (b) LDA+PCA (c) OCM+PCA (d) Rank-2 PCA on Sb
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Fig. 2. Comparison of the two-stage methods in the MEDLINE data set.

(a) Rank-2 LDA (b) LDA+PCA (c) OCM+PCA (d) Rank-2 PCA on Sb
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Fig. 3. Comparison of the two-stage methods in the NEWSGROUPS data set.

(a) Rank-2 LDA (b) LDA+PCA (c) OCM+PCA (d) Rank-2 PCA on Sb
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Fig. 4. Comparison of the two-stage methods in the REUTERS data set.

(a) Rank-2 LDA (b) LDA+PCA (c) OCM+PCA (d) Rank-2 PCA on Sb
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Fig. 5. Example of effects of data centering in the MEDLINE data set.

(a)OCM+PCA with data centering (b)OCM+PCA without data centering
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