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Summary

Screening for sexually transmitted diseases has benefited greatly from the use of group testing 

(pooled testing) to lower costs. With the development of assays that detect multiple infections, 

screening practices now involve testing pools of individuals for multiple infections 

simultaneously. Building on the research for single infection group testing procedures, we 

examine the performance of group testing for multiple infections. Our work is motivated by 

chlamydia and gonorrhea testing for the Infertility Prevention Project (IPP), a national program in 

the United States. We consider a two-stage pooling algorithm currently used to perform testing for 

the IPP. We first derive the operating characteristics of this algorithm for classification purposes 

(e.g., expected number of tests, misclassification probabilities, etc.) and identify pool sizes that 

minimize the expected number of tests. We then develop an expectation-maximization algorithm 

to estimate probabilities of infection using both group and individual retest responses. Our 

research shows that group testing can offer large cost savings when classifying individuals for 

multiple infections and can provide prevalence estimates that are actually more efficient than those 

from individual testing.
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1. Introduction

The Infertility Prevention Project (IPP) is a national program funded by the Centers for 

Disease Control and Prevention (CDC) and the Department of Health and Human Services 

(HHS). The primary goals of the IPP are to identify individuals who are infected with 

chlamydia and/or gonorrhea, to monitor trends in prevalence, and to provide treatment for 

those infected. The dangers of chlamydia and gonorrhea, both bacterial infections, are their 

potentially serious sequelae, which include pelvic inflammatory disease, ectopic pregnancy, 

*tebbs@stat.sc.edu. 

Supplementary Materials: The Web Appendices referenced in Sections 3–5 and 7 are available with this paper at the Biometrics 
website on Wiley Online Library.

HHS Public Access
Author manuscript
Biometrics. Author manuscript; available in PMC 2015 March 24.

Published in final edited form as:
Biometrics. 2013 December ; 69(4): 1064–1073. doi:10.1111/biom.12080.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sterility, and infertility (Lewis, Lockary, and Kobic, 2012). In addition, both are believed to 

facilitate the transmission of other sexually transmitted diseases (STDs), including HIV and 

human papillomavirus infection (Farley, Cohen, and Elkins, 2003; Samoff et al., 2005). In 

2011 alone, there were approximately 1.7 million new cases of chlamydia and gonorrhea 

reported in the United States. However, because both infections are largely asymptomatic, it 

is believed that even a greater number of cases go unreported each year (CDC, 2012).

The IPP started as a CDC trial program in 1988, carried out initially in Alaska, Idaho, 

Oregon, and Washington. It soon after spread to all 50 states, operating within each of the 10 

federal HHS regions. The manner in which individuals are tested for chlamydia and 

gonorrhea as part of the IPP has always varied from state to state. The state of Iowa 

currently uses group testing (pooled testing), where individual specimens are tested in pools 

for both infections simultaneously. Pools that test negative are declared to contain all 

negative individuals. Pools that test positive for either infection are resolved (or “decoded”) 

by testing each specimen individually. The practical motivation for pooling is that it can 

offer substantial cost savings. For example, the Iowa IPP has reported over $2.2 million in 

savings since switching from individual testing to group testing in 1999 (Jirsa, 2008).

Dorfman (1943) first proposed group testing as a way to screen military inductees for 

syphilis during World War II. Since his seminal work, pooling has been used to test for a 

variety of STDs, including HIV and hepatitis B/C (Cardoso, Koerner, and Kubanek, 1998; 

Pilcher et al., 2005), elsewhere for chlamydia and gonorrhea (Lindan et al., 2005), and for 

other infections like West Nile Virus (Busch et al., 2005) and H1N1 influenza virus (Van et 

al., 2012). Statistical research in group testing generally splits into two areas: classification 

and estimation. The classification problem deals with case identification; i.e., the 

identification of each individual as being positive or negative (Kim et al., 2007). The 

estimation problem deals with estimating the overall probability of infection in a population 

(Hughes-Oliver and Swallow, 1994; Liu et al., 2012) or subject-specific probabilities using 

regression (Vansteelandt, Goetghebeur, and Verstraeten, 2000; Xie, 2001; Delaigle and 

Meister, 2011). Both problems are of interest to states as part of the IPP. Classification is 

needed to diagnose individuals for treatment purposes and estimation is needed to monitor 

disease prevalence.

While classification and estimation have received a large amount of attention in group 

testing, this research has been limited largely to a single disease. However, in addition to the 

IPP, the infectious disease literature is replete with applications where individuals are tested 

in pools for multiple infections simultaneously. For example, the American Red Cross 

(ARC) uses group testing to screen millions of blood donations each year for HIV, hepatitis 

B, and hepatitis C (ARC, 2013), as do Red Cross organizations in Japan and Germany (Mine 

et al., 2003; Hourfar et al., 2008). The only statistical research that has examined multiple 

infections in group testing is Hughes-Oliver and Rosenberger (2000), who investigate 

optimal design for estimation. However, this work assumes that a perfect assay test is 

available, which is not realistic in the IPP, and the authors do not consider classification, 

which is needed to begin treatment for infected individuals and to help prevent the spread of 

future infections.
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In this paper, we examine both classification and estimation for group testing with multiple 

infections, motivated by current IPP screening practices described in Section 2. To the best 

of our knowledge, this is the first research paper that examines classification for multiple 

infections with group testing. The estimation part expands on the work in Hughes-Oliver 

and Rosenberger (2000), by allowing for imperfect testing and also for the inclusion of retest 

responses that arise naturally as part of the classification process. As laboratories across the 

United States continue to see their federal funding reduced, the group testing methodology 

outlined in this paper could allow them to reduce the cost of screening for multiple 

infections while maintaining their current testing loads.

In Section 2, we describe the pooling algorithm used by the state of Iowa as part of the IPP. 

In Section 3, we derive the operating characteristics of this algorithm, including expressions 

for the expected number of tests and classification accuracy measures, and we discuss 

optimal pool size selection. In Section 4, we develop an expectation-maximization (EM) 

algorithm to estimate multiple disease prevalences. This procedure is substantially different 

than the one outlined in Hughes-Oliver and Rosenberger (2000), which uses only the 

responses from initial pools. In Section 5, we use simulation to investigate small sample 

characteristics of the estimators in Section 4. In Section 6, we apply our methods to data 

from the IPP. In Section 7, we discuss extensions to more than two infections and future 

areas of research.

2. IPP Pooling Algorithm

We now describe the pooling protocol used by the University of Iowa Hygienic Laboratory 

(UIHL). As per IPP guidelines, individual specimens are collected from individuals across 

the state and are shipped to the UIHL to be tested for both chlamydia and gonorrhea. Upon 

arrival, individual specimens are cross-classified by gender and specimen type (urine or 

swab). The IPP pooling algorithm is outlined below.

IPP POOLING ALGORITHM

1. Individual specimens are randomly assigned to (master) pools of size c > 1.

2. Each pool is tested for both infections using a single assay (i.e., a single assay 

detects both infections simultaneously).

3. i. Individuals in pools that test negative for both infections are diagnosed as 

negative for both infections.

ii. Individuals in pools that test positive for either infection are retested 

(individually) for both infections using the same assay in Step 2. Diagnoses 

for both infections are made from the outcomes of the individual tests.

Several comments are in order. First, it should be noted that only female swab specimens are 

tested using this procedure in Iowa; all other specimens are tested individually. Because 

males are more likely to be tested only when symptoms are present (e.g., painful urination, 

etc.), it is believed that the proportion of positive male specimens received by the UIHL is 

too large to make pooling worthwhile. On the other hand, females are tested routinely as part 

of annual checkups and pregnancy examinations (pooling female urine samples has been 
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considered by the UIHL but has not been implemented). Other states use this pooling 

protocol for each of the four gender/specimen type strata; for example, see Lewis et al. 

(2012) for a description of IPP screening practices in Idaho.

Second, an obvious question arises regarding the master pool size in Step 1, namely, what is 

the “best” value for c? The UIHL uses master pools of size c = 4 because this is how the 

pooling algorithm was originally calibrated with the automated TECAN DTS platform 

currently in place. However, a different master pool size might reduce the total number tests 

needed and therefore be more cost efficient. Pool size selection has received a large amount 

of attention in the statistics literature for single infections (Hughes-Oliver and Swallow, 

1994; Kim et al., 2007; Liu et al., 2012). In addition, Hughes-Oliver and Rosenberger (2000) 

consider pool size selection for multiple infections, but only for estimation.

Third, the same assay is used (a) to test for both chlamydia and gonorrhea and (b) to test 

both master pools in Step 2 and individuals in Step 3(ii). Along with other states, the UIHL 

currently uses the GenProbe Aptima Combo 2 Assay nucleic acid amplification test 

(GenProbe, San Diego), which simultaneously detects the presence of chlamydia and 

gonorrhea in both pooled and individual samples. Therefore, instead of administering 

separate, infection-specific assays in Step 3(ii), UIHL officials have judged it simpler (and 

more cost efficient) to use this same dual-infection assay when retesting individuals-even 

when a master pool tests positive for only one infection. Specimens are carefully prepared 

by the UIHL to ensure that testing error rates are the same for both pooled and individual 

samples.

In this paper, we derive the classification characteristics of the pooling procedure described 

above, and we develop an EM algorithm to estimate population level prevalences with the 

observed data from the procedure. Unlike classification and estimation research with single 

infections, we deal with multiple disease statuses on the same individual, which are not 

necessarily observed (due to pooling and assay testing error) but are likely correlated. Our 

work is potentially applicable for any laboratory that tests for chlamydia and gonorrhea (as 

part of the IPP or otherwise) and for others that screen for multiple infections.

3. Classification

3.1. Notation and assumptions

Suppose N individuals are to be tested and that each individual is initially assigned to one 

master pool. Let Ỹik = (Ỹi1k, Ỹi2k)′ denote the vector of true individual statuses, where Ỹijk = 

1 if the ith individual in the kth pool is positive for the jth infection, Ỹik = 0 otherwise, for i 

= 1, 2, …, ck, j = 1, 2, and k = 1, 2, …, K. For generality, we allow the master pool sizes ck 

to be different across the K pools; in addition, notation that indexes different pools will be 

helpful in Section 4 when we consider estimation. We assume throughout that the Ỹik’s are 

independent and identically distributed random vectors, but we allow for correlation 

between the (latent) infection statuses on the same individual, Ỹi1k and Ỹi2k, and write
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for ỹ1, ỹ2 ∈ {0, 1}, where p00 + p10 + p01 + p11 = 1.

Let  denote the vector of true statuses for the kth master pool, where 

 and I(·) is the indicator function; i.e.,  if the kth pool contains 

at least one individual that is truly positive for the jth infection,  otherwise. To allow 

for misclassification, let Zk = (Z1k, Z2k)′ denote the vector of testing responses for the kth 

master pool, where Zjk = 1 if this pool tests positive for the jth infection, Zjk = 0 otherwise. 

Define the sensitivity and the specificity for the jth infection by  and 

, respectively, for j = 1, 2. We assume that Se:j and Sp:j are known 

and do not depend on the pool size ck. This assumption is standard in the group testing 

literature for single infections and proper assay calibration is needed to ensure that this is 

reasonable in application. We also assume that testing responses are independent, 

conditional on the true status of the specimen being tested. This assumption is common for 

single infections in group testing (see, e.g., Kim et al., 2007) and is needed to derive closed-

form expressions for the expected number of tests and probabilities of misclassification. 

Under these assumptions, we show in Web Appendix A that the probability mass function of 

the master pool testing response Zk = (Z1k, Z2k)′, for z1, z2 ∈ {0, 1}, is given by

where , and , for ,  ∈{0, 1}. 

Straightforward calculations show that , , 

 and θ11 = 1 − θ00 − θ10 − θ01.

3.2. Expected number of tests

An important characteristic of any group testing classification algorithm is the expected 

number of tests needed to complete it. Let Tk denote the number of tests needed to provide 

both infection diagnoses for all individuals in the kth master pool. For the pooling algorithm 

in Section 2, we show in Web Appendix A that

(1)

where γj = 1 − Se:j − Sp:j, for j = 1, 2. From Equation (1), one notes that the expected 

number of tests depends on the assay sensitivity and specificity for both infections, the pool 

size ck, and the individual probabilities p00, p10, and p01. The expected number of tests also 

depends on the correlation ρ = corr(Ỹi1k, Ỹi2k) through the values of p00, p10, and p01. 

Because Ỹi1k, and Ỹi2k are binary random variables, ρ satisfies
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(2)

(see, e.g., Emrich and Piedmonte, 1991), where π1 = pr(Ỹi1k = 1) = p10 + p11 and π2 = 

pr(Ỹi2k = 1) = p01 + p11 are the marginal infection probabilities. That is, the correlation ρ is 

not unrestricted in [−1, 1] unless π1 = π2.

With E(Tk) in closed form, it is possible to determine the master pool size ck that minimizes 

the expected number of tests on a per-individual basis. For the algorithm in Section 2, we 

define the “optimal” pool size to be . Figure 1 identifies optimal 

master pool sizes for different values of π1 and π2 when Se:1 = 0.942, Sp:1 = 0.976, Se:2 = 

0.992, and Sp:2 = 0.987. These are the values of the sensitivity and specificity (1 = 

chlamydia, 2 = gonorrhea) associated with the GenProbe Aptima Combo 2 Assay when 

testing female swab specimens. Figure 1 shows that the optimal pool size  depends largely 

on π1 and π2, as expected, but only mildly on the correlation ρ. For example, when π1 = π2 = 

0.04, Figure 1 shows that  when ρ = 0; this optimal size increases to  when ρ ≈ 

0.17 and again to  only when ρ ≈ 0.91. Although the correlation does not largely affect 

the optimal pool size, it does play an important role in estimation; see Section 4.

3.3. Classification accuracy

In addition to the expected number of tests, it is also important to characterize an 

algorithm’s classification accuracy. We define the pooling sensitivity (pooling specificity) 

for the jth infection, denoted by PSe:j (PSp:j), to be the probability an individual is classified 

as positive (negative) for the jth infection given that the individual is truly positive 

(negative) for the jth infection, j = 1, 2. For the algorithm in Section 2, we show in Web 

Appendix A that

Unfortunately, the expressions for PSp:1 and PSp:2 are not nearly as friendly, but we have 

derived them to be in closed form; see Web Appendix A. We also define the pooling 

positive predictive value for the jth infection, PPVj, as the probability an individual is truly 

positive for the jth infection, given that the individual has been classified as positive for the 

jth infection, j = 1, 2. The pooling negative predictive value for the jth infection, denoted by 

NPVj, is defined similarly for negative individuals. By Bayes’ Rule, for j = 1, 2,
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4. Estimation

Having derived the salient characteristics of the IPP algorithm with respect to classification, 

we now turn our attention to estimation. Specifically, our goal is to estimate the population 

probabilities p00, p10, p01, and p11 with the observed data from the algorithm.

The observed data consist of (a) the testing responses Zk = (Z1k, Z2k)′ from the K master 

pools and (b) the additional ck individual testing responses Yik = (Yi1k, Yi2k)′ from those 

pools which tested positive for either infection. For notational purposes, we aggregate all 

master pool testing responses into a vector denoted by Z and all individual testing responses 

into a vector denoted by Y. Because of the correlation between a pool’s response and 

individual retesting responses on the same pool, it is difficult to write out a closed-form 

expression for the observed data likelihood. We therefore develop an EM algorithm by 

introducing the individuals’ true statuses Ỹijk, as “missing data.” This leads to the complete 

data likelihood

where ϑ = (p00, p10, p01)′ and where the vector Ỹ contains all of the true statuses Ỹijk. Note 

that we write p11 = 1 − p00 − p10 − p01 in LC(ϑ|Z, Y, Ỹ) to reduce the dimension of the 

parameter space and to avoid constrained optimization.

In the E-step, one calculates Q(ϑ, ϑ(d)) = E{log LC(ϑ|Z, Y, Ỹ)|Z, Y; ϑ(d)} at the current 

parameter estimate . In the M-step, one finds the value ϑ(d+1) that 

maximizes Q(ϑ, ϑ(d)); i.e., ϑ(d+1) = arg max ϑ Q(ϑ, ϑ(d). Setting ∂Q(ϑ, ϑ(d)/∂ϑ equal to zero 

and solving the resulting system leads to the first order critical point 

 whose individual components are given by 

, 

, and 

, where, , 

, and . It is easy to show that the Hessian of 

Q(ϑ, ϑ(d)) is negative definite; i.e., that (ϑ(d+1)) maximizes Q(ϑ, ϑ(d)).

Because of the dependence among the latent statuses Ỹijk and the observed data {Z, Y}, 

calculating the expectations  in closed form is difficult. We therefore 

develop a Gibbs sampler to estimate them. Let , where 

, , and  are as previously defined and where . At the current 

Tebbs et al. Page 7

Biometrics. Author manuscript; available in PMC 2015 March 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimate ϑ(d) and conditional on Z, Y, and Ỹ−ik (i.e., all true statuses in Ỹ except those in 

Ỹik), the random vector  follows a multinomial distribution with “cell probabilities” 

, , , and , 

where

, and . Note that these cell probabilities depend on 

both the observed data {Z, Y} and the unobserved statuses of other individuals in the kth 

pool, that is, Ỹi′jk, for i′ = i. In Web Appendix B, we show how the conditional distributions 

 are used to estimate the expectations  in the E-

Step.

Let  denote the estimate of ϑ at convergence of the EM algorithm. A 

direct appeal to the missing information principle and Louis’s method (1982) gives the 

observed data information matrix

(3)

Estimated standard errors are obtained from , making the construction of large 

sample Wald confidence intervals possible. Calculating the matrices on the right hand side 

of Equation (3) uses the same Gibbs sampler described previously; complete details are 

provided in Web Appendix B. Finally, note that p11, the marginal probabilities π1 = p10 + 

p11 and π2 = p01 + p11, and ρ = corr(Ỹi1k, Ỹi2k) are each functions of ϑ = (p00, p10, p01)′. 

Large sample Wald inference for these parameters is possible using the Delta Method, as 

shown in the next section.

5. Simulation Study

We used simulation to evaluate the performance of the EM algorithm in Section 4 and also 

to provide insight on how the pooling procedure in Section 2 compares to individual testing 

in terms of the number of tests expended. For a given ϑ = (p00, p10, p01)′, we first simulated 

true statuses Ỹik = (Ỹi1k, Ỹi2k)′ corresponding to N = 1000 individuals. For given values of 

Se:j and Sp:j, we then randomly assigned individual statuses Ỹik to pools of optimal size  as 

described in Section 3.2. For j = 1, 2, the true pool statuses  were recorded 

using  and diagnosed pool statuses Zk = (Z1k, Z2k)′ were recorded by 
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simulating Zjk ~ Bernoulli . For those pools which were 

diagnosed as positive for either infection, we also simulated individual diagnoses Yik = (Yi1k, 

Yi2k)′ according to Yijk ~ Bernoulli {Se:j Ỹijk + (1 − Sp:j) (1 − Ỹijk)}. This entire process was 

repeated B = 1000 times at each configuration of ϑ, Se:j, and Sp:j.

In our investigation, we let Se:j = 0.95 and Sp:j = 0.99, for j = 1, 2, and also Se:j = 0.99 and 

Sp:j = 0.95. The first case allows for an assay that is highly specific for both infections and 

the second for an assay that is highly sensitive. At all configurations of ϑ, Se:j, and Sp:j, we 

used the initial value ϑ(0) = (0.25, 0.25, 0.25)′ for each data set; however, we found that the 

performance of our EM algorithm was largely invariant to the choice of ϑ(0). When 

implementing the Gibbs sampler at each E-step and in the calculation of , as 

described in Section 4, we used G = 500 iterates (which included a = 100 burn-in iterates); 

complete details are provided in Web Appendix B. Convergence was declared when the 

maximum value in ϑ(d+1) − ϑ(d) was less than 0.001 in absolute value.

A subset of our results appears in Table 1 and complete results are given in Web Appendix 

C. Our choices for ϑ = (p00, p10, p01)′ included four different values of p00, the probability 

that an individual is not infected with either disease, with p00 ∈ {0.80, 0.85, 0.90, 0.95}. 

These choices were motivated by our IPP application data set in Section 6. For each value of 

p00, the remaining probabilities were varied to include a broad range of configurations. We 

also include simulation results for p11, π1 = p10 + p11, π2 = p01 + p11, and ρ. Note that each 

of these parameters can be written as g(ϑ) for a suitably chosen function g : ℝ3 → ℝ with 

continuous first partial derivatives. Therefore, the large sample variance of  can be 

approximated using the Delta Method, that is, var , where 

ġ(ϑ) is the gradient of g evaluated at ϑ. An approximate 100(1 − α)% confidence interval 

for g(ϑ) is given by , where zα/2 is the upper α/2 quantile of the 

standard normal distribution and where  is any consistent estimator of var .

The results in Table 1 and Web Appendix C demonstrate that our EM algorithm performs 

well overall; mean estimates, averaged over B = 1000 data sets, are all extremely close to the 

true values. In addition, the sample standard deviation of the 1000 estimates (SD) and the 

averaged standard error (SE) are always in close agreement. This suggests that the large 

sample covariance matrix of  is being estimated correctly on average and also that 

variances obtained from the Delta Method (for p11, π1, π2, and ρ) are good approximations. 

A potential criticism arises from examining the estimated Wald coverage probabilities, 

which when calculated at the nominal 95% level, are sometimes anti-conservative. 

However, closer inspection reveals that when this occurs, it is usually when estimating a 

very small probability or the correlation parameter ρ. The former is not surprising even 

when individual testing is used; the latter results likely because ρ is a highly nonlinear 

function of ϑ.

At each configuration of ϑ, Se:j, and Sp:j, we have also included the number of tests 

expended (averaged over B = 1000 data sets), denoted by . From Table 1 and the results in 

Web Appendix C, one notes that the number of tests depends largely on p00, as expected, 
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and that using more specific assays always leads to a smaller number of tests required. The 

latter finding is intuitive given the nature of the IPP algorithm; fewer false positives in Step 

2 lead to fewer additional individual retests. Under all settings, the average number of tests 

expended is less than N = 1000, the number of tests used under individual testing.

We have also compared our EM algorithm approach to the estimation procedure outlined in 

Hughes-Oliver and Rosenberger (2000), which assumes that Se:j = Sp:j = 1 and uses only the 

responses from master pools. This comparison reveals (at least under perfect testing) that 

adding the individual retesting responses improves estimation efficiency. Complete details 

are in Web Appendix C.

6. Application to IPP Data

Because the state of Iowa already implements the pooling algorithm in Section 2, we have 

decided to illustrate the potential benefits of the algorithm for a state (Nebraska) that 

currently uses individual testing as part of the IPP. Our data set from Nebraska consists of 

individual testing results for 23,146 subjects tested in 2008 and 27,551 subjects tested in 

2009. Having individual test results affords us the flexibility to make informative 

comparisons, for example, comparing the IPP algorithm in Section 2 to separate pooling 

algorithms for individual infections and, of course, comparing the IPP algorithm to 

individual testing.

To perform our analysis, we first use the 2008 individual test outcomes as “training data” to 

calculate optimal pool sizes . We then implement the algorithm in Section 2 with the 2009 

individuals using optimally-sized pools (that we construct and decode ourselves) and 

estimate population prevalences using the methods in Section 4. For verisimilitude, this is 

done separately within each of the four gender/specimen type strata, acknowledging that 

assay characteristics vary across these strata. Individuals in 2009 are assigned to pools 

chronologically (within strata) based on the specimen’s date of arrival for testing. A 

complete summary of the 2008 training data, including stratum sample sizes, estimated 

prevalences and correlations, optimal pool sizes, and assay characteristics, is provided in 

Table 2. When constructing this table, we assumed that the 2008 individual outcomes were 

the true statuses.

To emulate how the 2009 diagnoses would be made using the pooling procedure in Section 

2, we first treat the 2009 observed individual statuses as the true statuses. Then, in order to 

account for potential misclassification, we simulate both group and (where necessary) 

individual testing diagnoses using the values of Se:j and Sp:j, j = 1, 2, in Table 2. Doing this 

also enables us to characterize the accuracy of the algorithm by comparing simulated 

diagnoses with the “true” statuses. To average over the effect of simulating the observed 

2009 diagnoses, we repeat this entire process B = 1000 times for each gender/specimen type 

combination. All values reported in Tables 3 and 4 are averages over these 1000 

implementations.

Table 3 summarizes the 2009 classification results. To evaluate the benefit of screening for 

two infections simultaneously, we also implemented Dorfman (1943) retesting separately for 

each infection. In Dorfman’s procedure, pools that test positive are decoded by retesting 
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each individual. To ensure the fairest comparison, we used optimal pool sizes in each 

algorithm; Dorfman’s optimal pool size was determined for each infection using Equation 

(2) in Kim et al. (2007). In terms of the number of tests expended, the results in Table 3 

illustrate the benefits of group testing for multiple infections. For example, with N = 14, 530 

female swab specimens, the IPP algorithm uses 7709.8 tests on average; this is a 46.9% 

reduction in the number of tests when compared to individual testing and a 19.3% reduction 

when compared to separate Dorfman retesting (which requires 6381.5 + 3168.1 = 9549.6 

tests on average). In terms of accuracy, there is mild evidence that the IPP algorithm 

provides slightly higher PSe than Dorfman’s procedure implemented separately, but 

somewhat lower values of PPV for gonorrhea. The latter occurs because gonorrhea is much 

less prevalent than chlamydia (in Nebraska and nationwide also); more individuals will be 

re-diagnosed for gonorrhea when the master pool tests positive for chlamydia only. 

Comparing the classification accuracy results to individual testing (see Table 2), one 

observes the IPP algorithm provides slightly lower sensitivity (PSe < Se) but slightly higher 

specificity (PSp > Sp). These findings are consistent with the group testing literature for 

single infections (Kim et al., 2007).

Table 4 summarizes the 2009 estimation results. Using the methods in Section 4, we provide 

estimates and standard errors for ϑ = (p00, p10, p01)′ and also for p11, π1, π2, and ρ. To 

implement the EM algorithm, we used the same starting values, Gibbs sampler 

specifications, and convergence criteria described in Section 5. We also include in Table 4 

the corresponding estimates and standard errors from individual testing, using the same 

assay error rates in Table 2. One will note that the point estimates from the IPP algorithm 

and individual testing are nearly identical. In addition, one finds that the group testing 

estimates are actually more efficient than those from individual testing. While this latter 

finding might seem counterintuitive, similar behavior was observed by Tu, Litvak, and 

Pagano (1995) and Liu et al. (2012) for single infection group testing procedures in the 

presence of testing error. Therefore, for states that might be considering adopting the IPP 

pooling protocol, our analysis suggests that doing so could be beneficial. There are 

potentially large cost savings available and prevalence estimates are as good or better than 

those from individual testing.

7. Discussion

We have examined group testing for classification and estimation with multiple infections, 

motivated by chlamydia and gonorrhea screening practices as part of the nationally-

implemented IPP. When compared to individual testing, pooling for multiple infections 

reduces the number of tests and improves estimation efficiency. We have also observed that 

multiple infection pooling confers these same benefits when compared to group testing for 

single infections. To disseminate our work, the web site www.chrisbilder.com/grouptesting 

contains R programs that implement the methodology described in this paper.

This research could be extended in several ways. First, we have focused on the IPP 

algorithm in Section 2 explicitly because it is already in use by Iowa and by other states. 

However, other pooling algorithms could be formulated for classification purposes. The IPP 

algorithm is a hierarchical, (two-stage) Dorfman-type algorithm; i.e., individuals are 
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assigned to non-overlapping pools and positive pools are decoded using individual testing. 

Kim et al. (2007) present a comprehensive evaluation of other pooling algorithms for single 

infections, including hierarchical algorithms that utilize a larger number of stages for 

decoding and array-based testing. We believe that these other algorithms could be 

generalized to classify individuals for multiple infections. In terms of estimation, our EM 

algorithm framework in Section 4 would generalize immediately to handle other pooling 

algorithms. As long as one can write out a complete data likelihood, the only change is that 

different conditional expectations would be estimated in the E-step. For the IPP algorithm in 

Section 2, we have observed (in separate investigations) that our joint modeling approach in 

Section 4 improves estimation efficiency when compared to modeling the infection statuses 

Ỹi1k, and Ỹi2k separately. For other pooling algorithms, especially those involving a larger 

number of stages, we conjecture that these efficiency gains could be even larger.

Another extension would be to recast the IPP algorithm, or possibly other algorithms 

mentioned in the last paragraph, more generally for J ≥ 2 infections. This extension might be 

of interest for the American Red Cross, for example, who uses pooling to simultaneously 

screen blood donations for HIV, hepatitis B, and hepatitis C (ARC, 2013). For the IPP 

algorithm with J > 2, derivations for the classification operating characteristics could be 

carried out in the same way as those for the J = 2 case, outlined in Web Appendix A, and 

obtaining prevalence estimates using the EM algorithm would also follow similarly; see 

Web Appendix B. We have formulated this extension with J = 3 using a multinomial 

distribution with 23 = 8 cell probabilities, but the calculations involved are far more tedious 

than the J = 2 derivations shown in the Web Appendices.

Finally, a much more ambitious extension would be to acknowledge that individuals being 

tested have different risk factors (e.g., gender, race, number of sexual partners, etc.) and 

incorporate population heterogeneity into the classification and estimation procedures for 

multiple infections. Classification techniques in the presence of heterogeneity have been 

proposed recently for a single infection (Bilder, Tebbs, and Chen, 2010; McMahan, Tebbs, 

and Bilder, 2012). Generalizing this work for J > 1 infections would be more complex. First, 

a key question would arise as it pertains to classification, namely, is it desired to produce 

diagnoses for each infection or does it suffice to classify an individual as positive for at least 

one infection? The former would be of interest in public health settings, such as the IPP, 

where individuals require treatment for multiple diseases; the latter might be of interest for 

blood screening purposes, where it is critical to keep all infected units out of the blood 

supply. Second, depending on whether complete identification or purely negative 

identification is the goal, the next challenge would be to formulate exactly how multiple 

infection algorithms would exploit the different levels of risk. For example, using the 

algorithm in Section 2, positive pools could be resolved by retesting individuals in order 

according to their maximum risk probability or their combined risk probability in the same 

spirit as the “informative” Dorfman-type algorithms in McMahan et al. (2012) for single 

infections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

IPP pooling algorithm. Optimal pool sizes  for different values of the correlation ρ when 

Se:1 = 0:942, Sp:1 = 0:976, Se:2 = 0:992, and Sp:2 = 0:987. In the lower left corner of each 

subfigure, we did not show the optimal pool sizes larger than  = 9 to avoid crowding. In 

the ρ = 0:25 and ρ = 0:50 subfigures, values of (π1; π2)′ in the white regions are not possible.
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