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Summary

Screening for sexually transmitted diseases has benefited greatly from the use of group testing
(pooled testing) to lower costs. With the development of assays that detect multiple infections,
screening practices now involve testing pools of individuals for multiple infections
simultaneously. Building on the research for single infection group testing procedures, we
examine the performance of group testing for multiple infections. Our work is motivated by
chlamydia and gonorrhea testing for the Infertility Prevention Project (IPP), a national program in
the United States. We consider a two-stage pooling algorithm currently used to perform testing for
the IPP. We first derive the operating characteristics of this algorithm for classification purposes
(e.g., expected number of tests, misclassification probabilities, etc.) and identify pool sizes that
minimize the expected number of tests. We then develop an expectation-maximization algorithm
to estimate probabilities of infection using both group and individual retest responses. Our
research shows that group testing can offer large cost savings when classifying individuals for
multiple infections and can provide prevalence estimates that are actually more efficient than those
from individual testing.
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1. Introduction

The Infertility Prevention Project (IPP) is a national program funded by the Centers for
Disease Control and Prevention (CDC) and the Department of Health and Human Services
(HHS). The primary goals of the IPP are to identify individuals who are infected with
chlamydia and/or gonorrhea, to monitor trends in prevalence, and to provide treatment for
those infected. The dangers of chlamydia and gonorrhea, both bacterial infections, are their
potentially serious sequelae, which include pelvic inflammatory disease, ectopic pregnancy,
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sterility, and infertility (Lewis, Lockary, and Kobic, 2012). In addition, both are believed to
facilitate the transmission of other sexually transmitted diseases (STDs), including HIV and
human papillomavirus infection (Farley, Cohen, and Elkins, 2003; Samoff et al., 2005). In
2011 alone, there were approximately 1.7 million new cases of chlamydia and gonorrhea
reported in the United States. However, because both infections are largely asymptomatic, it
is believed that even a greater number of cases go unreported each year (CDC, 2012).

The IPP started as a CDC trial program in 1988, carried out initially in Alaska, Idaho,
Oregon, and Washington. It soon after spread to all 50 states, operating within each of the 10
federal HHS regions. The manner in which individuals are tested for chlamydia and
gonorrhea as part of the IPP has always varied from state to state. The state of lowa
currently uses group testing (pooled testing), where individual specimens are tested in pools
for both infections simultaneously. Pools that test negative are declared to contain all
negative individuals. Pools that test positive for either infection are resolved (or “decoded”)
by testing each specimen individually. The practical motivation for pooling is that it can
offer substantial cost savings. For example, the Iowa IPP has reported over $2.2 million in
savings since switching from individual testing to group testing in 1999 (Jirsa, 2008).

Dorfman (1943) first proposed group testing as a way to screen military inductees for
syphilis during World War II. Since his seminal work, pooling has been used to test for a
variety of STDs, including HIV and hepatitis B/C (Cardoso, Koerner, and Kubanek, 1998;
Pilcher et al., 2005), elsewhere for chlamydia and gonorrhea (Lindan et al., 2005), and for
other infections like West Nile Virus (Busch et al., 2005) and HIN1 influenza virus (Van et
al., 2012). Statistical research in group testing generally splits into two areas: classification
and estimation. The classification problem deals with case identification; i.e., the
identification of each individual as being positive or negative (Kim et al., 2007). The
estimation problem deals with estimating the overall probability of infection in a population
(Hughes-Oliver and Swallow, 1994; Liu et al., 2012) or subject-specific probabilities using
regression (Vansteelandt, Goetghebeur, and Verstraeten, 2000; Xie, 2001; Delaigle and
Meister, 2011). Both problems are of interest to states as part of the IPP. Classification is
needed to diagnose individuals for treatment purposes and estimation is needed to monitor
disease prevalence.

While classification and estimation have received a large amount of attention in group
testing, this research has been limited largely to a single disease. However, in addition to the
IPP, the infectious disease literature is replete with applications where individuals are tested
in pools for multiple infections simultaneously. For example, the American Red Cross
(ARC) uses group testing to screen millions of blood donations each year for HIV, hepatitis
B, and hepatitis C (ARC, 2013), as do Red Cross organizations in Japan and Germany (Mine
et al., 2003; Hourfar et al., 2008). The only statistical research that has examined multiple
infections in group testing is Hughes-Oliver and Rosenberger (2000), who investigate
optimal design for estimation. However, this work assumes that a perfect assay test is
available, which is not realistic in the IPP, and the authors do not consider classification,
which is needed to begin treatment for infected individuals and to help prevent the spread of
future infections.
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In this paper, we examine both classification and estimation for group testing with multiple
infections, motivated by current IPP screening practices described in Section 2. To the best
of our knowledge, this is the first research paper that examines classification for multiple
infections with group testing. The estimation part expands on the work in Hughes-Oliver
and Rosenberger (2000), by allowing for imperfect testing and also for the inclusion of retest
responses that arise naturally as part of the classification process. As laboratories across the
United States continue to see their federal funding reduced, the group testing methodology
outlined in this paper could allow them to reduce the cost of screening for multiple
infections while maintaining their current testing loads.

In Section 2, we describe the pooling algorithm used by the state of Iowa as part of the IPP.
In Section 3, we derive the operating characteristics of this algorithm, including expressions
for the expected number of tests and classification accuracy measures, and we discuss
optimal pool size selection. In Section 4, we develop an expectation-maximization (EM)
algorithm to estimate multiple disease prevalences. This procedure is substantially different
than the one outlined in Hughes-Oliver and Rosenberger (2000), which uses only the
responses from initial pools. In Section 5, we use simulation to investigate small sample
characteristics of the estimators in Section 4. In Section 6, we apply our methods to data
from the IPP. In Section 7, we discuss extensions to more than two infections and future
areas of research.

2. IPP Pooling Algorithm

We now describe the pooling protocol used by the University of lowa Hygienic Laboratory
(UIHL). As per IPP guidelines, individual specimens are collected from individuals across
the state and are shipped to the UTHL to be tested for both chlamydia and gonorrhea. Upon
arrival, individual specimens are cross-classified by gender and specimen type (urine or
swab). The IPP pooling algorithm is outlined below.

IPP POOLING ALGORITHM

1. Individual specimens are randomly assigned to (master) pools of size ¢ > 1.

2. Each pool is tested for both infections using a single assay (i.e., a single assay
detects both infections simultaneously).

3. i. Individuals in pools that test negative for both infections are diagnosed as
negative for both infections.

ii. Individuals in pools that test positive for either infection are retested
(individually) for both infections using the same assay in Step 2. Diagnoses
for both infections are made from the outcomes of the individual tests.

Several comments are in order. First, it should be noted that only female swab specimens are
tested using this procedure in Iowa; all other specimens are tested individually. Because
males are more likely to be tested only when symptoms are present (e.g., painful urination,
etc.), it is believed that the proportion of positive male specimens received by the UTHL is
too large to make pooling worthwhile. On the other hand, females are tested routinely as part
of annual checkups and pregnancy examinations (pooling female urine samples has been

Biometrics. Author manuscript; available in PMC 2015 March 24.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Tebbs et al. Page 4

considered by the UTHL but has not been implemented). Other states use this pooling
protocol for each of the four gender/specimen type strata; for example, see Lewis et al.
(2012) for a description of IPP screening practices in Idaho.

Second, an obvious question arises regarding the master pool size in Step 1, namely, what is
the “best” value for ¢? The UIHL uses master pools of size ¢ = 4 because this is how the
pooling algorithm was originally calibrated with the automated TECAN DTS platform
currently in place. However, a different master pool size might reduce the total number tests
needed and therefore be more cost efficient. Pool size selection has received a large amount
of attention in the statistics literature for single infections (Hughes-Oliver and Swallow,
1994; Kim et al., 2007; Liu et al., 2012). In addition, Hughes-Oliver and Rosenberger (2000)
consider pool size selection for multiple infections, but only for estimation.

Third, the same assay is used (a) to test for both chlamydia and gonorrhea and (b) to test
both master pools in Step 2 and individuals in Step 3(ii). Along with other states, the UTHL
currently uses the GenProbe Aptima Combo 2 Assay nucleic acid amplification test
(GenProbe, San Diego), which simultaneously detects the presence of chlamydia and
gonorrhea in both pooled and individual samples. Therefore, instead of administering
separate, infection-specific assays in Step 3(ii), UIHL officials have judged it simpler (and
more cost efficient) to use this same dual-infection assay when retesting individuals-even
when a master pool tests positive for only one infection. Specimens are carefully prepared
by the UIHL to ensure that testing error rates are the same for both pooled and individual
samples.

In this paper, we derive the classification characteristics of the pooling procedure described
above, and we develop an EM algorithm to estimate population level prevalences with the
observed data from the procedure. Unlike classification and estimation research with single
infections, we deal with multiple disease statuses on the same individual, which are not
necessarily observed (due to pooling and assay testing error) but are likely correlated. Our
work is potentially applicable for any laboratory that tests for chlamydia and gonorrhea (as
part of the IPP or otherwise) and for others that screen for multiple infections.

3. Classification

3.1. Notation and assumptions

Suppose N individuals are to be tested and that each individual is initially assigned to one
master pool. Let ?ik = (Y1 Yipr) denote the vector of true individual statuses, where ij =
1 if the ith individual in the kth pool is positive for the jth infection, Y;; = 0 otherwise, for i
=1,2,...,cj=1,2,and k=1, 2, ..., K. For generality, we allow the master pool sizes cj
to be different across the K pools; in addition, notation that indexes different pools will be
helpful in Section 4 when we consider estimation. We assume throughout that the ?ik’s are
independent and identically distributed random vectors, but we allow for correlation
between the (latent) infection statuses on the same individual, ¥;j; and Yj5, and write

~ o . (1= 3 1—3a) G (1—Fa) (1—d1 iy G158
pr(Yiu =1, Yioe="02)=Poo B1)01~4 Pi;rln ! )Pm " DP‘% )2'.

Biometrics. Author manuscript; available in PMC 2015 March 24.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Tebbs et al.

Page 5
for y1, 2 € {0, 1}, where pog + p1o + po1 +p11=1.

Let Z1= (Z 1ks Z 2#;)" denote the vector of true statuses for the kth master pool, where
— Cj“' -" A . . . . . el . .
ij:ir(z;_:ﬁ wk>0) and I(-) is the indicator function; i.e., Z ;,=1if the kth pool contains

at least one individual that is truly positive for the jth infection, 7 k=0 otherwise. To allow
for misclassification, let Z; = (Zy, Zp;) denote the vector of testing responses for the kth
master pool, where Zy = 1 if this pool tests positive for the jth infection, Zy = 0 otherwise.
Define the sensitivity and the specificity for the jth infection by S, ;=pr(Z;,=1] Z_'.r' x=1)and
SPZ
and do not depend on the pool size c;. This assumption is standard in the group testing

j:pr(ij:U@ j&=0), respectively, for j = 1, 2. We assume that S,; and S,.; are known

literature for single infections and proper assay calibration is needed to ensure that this is
reasonable in application. We also assume that testing responses are independent,
conditional on the true status of the specimen being tested. This assumption is common for
single infections in group testing (see, e.g., Kim et al., 2007) and is needed to derive closed-
form expressions for the expected number of tests and probabilities of misclassification.
Under these assumptions, we show in Web Appendix A that the probability mass function of
the master pool testing response Z; = (Z1y, Zoi), for z;, zp € {0, 1}, is given by

1 1 -
_3.

: z: =l—z 1 2z z
pr(Zie=z21, Zor=22)= Y > 0z | [(S75.;7 ) ( 55y jJ' "

F1=0%2=0 7=1

where ESJ:]- - Se:jﬁgpzj:l - Sp:j’ and 821 équr(jlszl.\ 2‘(2%:22:’ for 21’ 22 E{O’ 1}
Straightforward calculations show that ¢y =pt, #10=(poo+p10)™* — piiy
0p1=(poo+po1)™* — pohand 611 =1 = tho — G0 — G-

3.2. Expected number of tests

An important characteristic of any group testing classification algorithm is the expected
number of tests needed to complete it. Let 7 denote the number of tests needed to provide
both infection diagnoses for all individuals in the kth master pool. For the pooling algorithm
in Section 2, we show in Web Appendix A that

E{Tk}:pr(ZlkZO. 22k20)+(_1+ck) {1 - pr(Zlk:[], ZQ;,-_ZU?J}
e Al T a
=l+e¢, {1 — Se1Se2 — M2P0+Se12(Poot+P10) F+Seam {P00+P01)q’} , W

where y;=1-S,.; — S, for j = 1, 2. From Equation (1), one notes that the expected
number of tests depends on the assay sensitivity and specificity for both infections, the pool
size ¢y, and the individual probabilities pgg, p19, and pg;. The expected number of tests also
depends on the correlation p = corr( ¥j1z, Yiop) through the values of pgo, p1o, and poy.
Because Y, and Yjy; are binary random variables, p satisfies
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. (1 — m3) [ma(1 — 1) /'r’frl(l — 1) [ma(l—m)
max { Vo —m) \/ T —m) [ =T V- Vaa-m)f @

(see, e.g., Emrich and Piedmonte, 1991), where 7 = pr(Yjx = 1) =pjo + p11 and m =
pr(Yiox = 1) = po; + p1; are the marginal infection probabilities. That is, the correlation p is

not unrestricted in [—1, 1] unless 7 = m.

With E(Tk) in closed form, it is possible to determine the master pool size ¢ that minimizes
the expected number of tests on a per-individual basis. For the algorithm in Section 2, we
define the “optimal” pool size to be ¢ =aryg ﬂl‘i‘?lck>]C;1 E(T;). Figure 1 identifies optimal
master pool sizes for different values of 7y and m, when S,.1 =0.942, §,.; = 0.976, S,., =
0.992, and S),.» = 0.987. These are the values of the sensitivity and specificity (1 =
chlamydia, 2 = gonorrhea) associated with the GenProbe Aptima Combo 2 Assay when
testing female swab specimens. Figure 1 shows that the optimal pool size cj, depends largely
on 7 and m, as expected, but only mildly on the correlation p. For example, when 7 = m =
0.04, Figure 1 shows that cr=4 when p = 0; this optimal size increases to c;=3when p~
0.17 and again to ¢; =¢ only when p = 0.91. Although the correlation does not largely affect
the optimal pool size, it does play an important role in estimation; see Section 4.

3.3. Classification accuracy

In addition to the expected number of tests, it is also important to characterize an
algorithm’s classification accuracy. We define the pooling sensitivity (pooling specificity)
for the jth infection, denoted by PS,; (PS,), to be the probability an individual is classified
as positive (negative) for the jth infection given that the individual is truly positive
(negative) for the jth infection, j = 1, 2. For the algorithm in Section 2, we show in Web
Appendix A that

{ Se2ty2p10(Pootp10) ™ (Protpn) }

Pse;1=S£:1+Se;1§5;l
= . vep— -1
25¢:2 {‘56:1+’J'1P01(PUU+P01)( "(por+p11) } .

PS€:2253;2+SE:'

Unfortunately, the expressions for PS),.; and PS> are not nearly as friendly, but we have
derived them to be in closed form; see Web Appendix A. We also define the pooling
positive predictive value for the jth infection, PPV}, as the probability an individual is truly
positive for the jth infection, given that the individual has been classified as positive for the
jthinfection, j = 1, 2. The pooling negative predictive value for the jth infection, denoted by
NPV, is defined similarly for negative individuals. By Bayes’ Rule, forj =1, 2,

:’TjPSc:j
i PSei+(1 — 7)) (1 = PS,y5)

(1 — ?TJJPSPJ

PPV.= - —.
! (1 —m;)PSpj+m;(1 — PSe;j)

and NP\*"j:
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4. Estimation

Having derived the salient characteristics of the IPP algorithm with respect to classification,
we now turn our attention to estimation. Specifically, our goal is to estimate the population
probabilities pyo, P10, Po1, and p; with the observed data from the algorithm.

The observed data consist of (a) the testing responses Zj = (Z1, Zp)' from the K master
pools and (b) the additional ¢; individual testing responses Y j; = (Y;1x Yior) from those
pools which tested positive for either infection. For notational purposes, we aggregate all
master pool testing responses into a vector denoted by Z and all individual testing responses
into a vector denoted by Y. Because of the correlation between a pool’s response and
individual retesting responses on the same pool, it is difficult to write out a closed-form
expression for the observed data likelihood. We therefore develop an EM algorithm by
introducing the individuals’ true statuses f,-jk, as “missing data.” This leads to the complete
data likelihood

o K - - - - - - - -
” =Y (1Y 50n) Y (1-Yor) (1-Y00)Y o YinY o
L‘r_r("‘?|ZsYsY}:H HP:()U 1) ch}Pmm( k)'Pt(n 1i) 1(1 — Poo — P —'PU1) 1k

i=1k=1
2 K Cl: Ckvr

TT] (s75 % 1( o~ Y,,jk>0) g *“b J; I(Zz’.:li %kao)
ef Teg foa¥]

j=1k=1 _

o ¥ (1= Yir) Vi (1= Y1 i) g¥ir(1- ¥ i) et Z220)

1jk uk ( '(J ik ol yk yk gell— aj.’c;‘

X{HS Se:s Spei 5,5 }

where ¥= (poo, P10, Po1)’ and where the vector Y contains all of the true statuses Yijk- Note
that we write py; = 1 = pgo — p1o — po1 in Le(9Z, Y, ¥) to reduce the dimension of the
parameter space and to avoid constrained optimization.

In the E-step, one calculates Q(4, J9D) = E{ log Lc(JZ, Y, ?)|Z, Y; J9D} at the current

parameter estimate (%) — =(} Pr(;f; p{é" pf]‘i') In the M-step, one finds the value «*¢*+1) that
maximizes Q(J, J9); i.e., D = arg max 9 Q(J, J9. Setting 9Q(J, J¥/0J equal to zero
and solving the resulting system leads to the first order critical point

YL = (pldtl) D) Ay whose individual components are given by

PTI=NTY ST B2, Vi),
P . c K .
plo V=N ST B(Wia|Z, Y9, and

(‘H‘l) 7—1 K I agld)s = , 't N ~
=N Z Za::1E(” ?-"’*'3|Z-‘Y"9 » Where, TV =(1 — Vg )(1 — YVige
Wira=Y (1 — Yo ) and Ws=(1 — Y ;1) Y ;o It is easy to show that the Hessian of
0(, JD) is negative definite; i.e., that (F9+D) maximizes Q(<3, J9).

Because of the dependence among the latent statuses )7,;,-;{ and the observed data {Z, Y},
calculating the expectations E(1V;,|Z, ¥';9'¥)) in closed form is difficult. We therefore
develop a Gibbs sampler to estimate them. Let W, =(TW 1, Wika, Wiks, Wiga)»> Where
At the current

W s W,y and 137, , are as previously defined and where 117, , =V, V oy
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estimate J9 and conditional on Z, Y, and ?_ik (i.e., all true statuses in Y except those in
Y., the random vector W, follows a multinomial distribution with “cell probabilities”

ak(d] £k(d}; 'c'k:(u’-_] '.l'k:(d_‘]_ 'ik(fl},r 'c'k:(u’-_] '.l'k:(d_‘] ek‘(d;; ckkdj ak(d] ek‘(d;; ckkdj
Poo =C1 '/ p / p /e and pyy =0

00 1 + 10 T2 + 20l 3 +
where
ik r}‘ Ld] 2 Zial— Z?;\ oo - ]_ y“' Yy L7+ 2oy >0)
C]_ Poo (Sc 7 S ) {Sp} S ) ( Sp:j )
i=1
ik(d) _ (d) —Z Zage  Sie —Zop 1m0k v 1Y o Vi L (Bt 22 >0
ga‘ 4 )_ LOSZUCS 15(5.52&562 23. (Sl lz,\S z?c) LSC}?kaLl ]_.ksl Y; kS 2.!«)
1—Zo 1 Zip Otk 4 —d; 1V T Z 3+ Zap >0
C;k L) i]dllsezékse 5 k(SZw Lic) @1 Zupb u) LS}))ksf 5 ?zksl }’”’“b :11 )
‘J
- IZy 4+ 2Zs >O]
tk{d] (l (e} {d) c.lf] Zik 7;. =l- L i i ke
=l =py —Pip — ]___[ i (S S )

k() ike(d) . . ~

o Z, G, and dp=1 {an—} 7 j1>0). Note that these cell probabilities depend on
both the observed data {Z, Y} and the unobserved statuses of other individuals in the kth
pool, that is, 17,~7k, for i”=i. In Web Appendix B, we show how the conditional distributions
Wi {2, Y,V _;;9(Y} are used to estimate the expectations E(117;;|Z, Y ;99! in the E-
Step.

Let 9=(pyq, D10s Por» ) denote the estimate of «J at convergence of the EM algorithm. A
direct appeal to the missing information principle and Louis’s method (1982) gives the
observed data information matrix

IZ,Y;l?}- 3)

\ 8?logL,,(92.Y,Y dlogL, (9|2, Y,Y
f(ﬁ):E{ 0§l | ; )|Z,Y;i9}co'v{ og p( | YY)

5959 ES)

Estimated standard errors are obtained from _# ({9)71, making the construction of large
sample Wald confidence intervals possible. Calculating the matrices on the right hand side
of Equation (3) uses the same Gibbs sampler described previously; complete details are
provided in Web Appendix B. Finally, note that p;, the marginal probabilities 771 = pjg +
p11 and 7 = po; + p11, and p = corr( Yy, Yipg) are each functions of 4= (poo, P10 Po1) -
Large sample Wald inference for these parameters is possible using the Delta Method, as
shown in the next section.

5. Simulation Study

We used simulation to evaluate the performance of the EM algorithm in Section 4 and also
to provide insight on how the pooling procedure in Section 2 compares to individual testing
in terms of the number of tests expended. For a given 4= (pgg, p19, po1)’> we first simulated
true statuses Y;; = (¥i1z Yiop) corresponding to N = 1000 individuals. For given values of

Se:jand S,,.;, we then randomly assigned individual statuses Y to pools of optimal size cr as

described in Section 3.2. For j = 1, 2, the true pool statuses Z = VA s 2%}’ were recorded

~ K C* A
using Z =1 (Z-;:; Y4>>0) and diagnosed pool statuses Z = (Z;x, Zox) were recorded by
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simulating Zj ~ Bernoulli {S,.; Z ;+(1 — S,.;)(1 — Z,)}. For those pools which were
diagnosed as positive for either infection, we also simulated individual diagnoses Y j; = (Y;iz
Y;»1) according to Yj ~ Bernoulli {S,; 17,~jk +(1 =8y (1= Y,-jk)}. This entire process was
repeated B = 1000 times at each configuration of 4, Se.j» and Sp,..

In our investigation, we let S,.; = 0.95 and S),.; = 0.99, for j = 1, 2, and also S,.; = 0.99 and
Sp
the second for an assay that is highly sensitive. At all configurations of 44, S,.;, and S, ;, we
used the initial value J© = (0.25, 0.25, 0.25) for each data set; however, we found that the

performance of our EM algorithm was largely invariant to the choice of 9. When

;i = 0.95. The first case allows for an assay that is highly specific for both infections and

implementing the Gibbs sampler at each E-step and in the calculation of . #{ {9)71, as
described in Section 4, we used G = 500 iterates (which included a = 100 burn-in iterates);
complete details are provided in Web Appendix B. Convergence was declared when the
maximum value in J%*1) — 49 was less than 0.001 in absolute value.

A subset of our results appears in Table 1 and complete results are given in Web Appendix
C. Our choices for ¥= (pgyg, P10, Po1)’ included four different values of p, the probability
that an individual is not infected with either disease, with pgy € {0.80, 0.85, 0.90, 0.95}.
These choices were motivated by our IPP application data set in Section 6. For each value of
Poo the remaining probabilities were varied to include a broad range of configurations. We
also include simulation results for py1, 71 = p1o+ P11, ™ = Ppo1 + P11, and p. Note that each
of these parameters can be written as g(«9) for a suitably chosen function g : R3 — R with

continuous first partial derivatives. Therefore, the large sample variance of g(ﬁl] can be

approximated using the Delta Method, that is, var { g{{?)} = {g( ﬁl) }” F (ﬁ‘)_]’ g(19), where
&(9) is the gradient of g evaluated at «J. An approximate 100(1 — )% confidence interval

for g(+9) is given by g(+¥) + Zn 2 [-va".-r{g(@)}:lf E, where z,,/2 is the upper a/2 quantile of the

standard normal distribution and where war{g(:)} is any consistent estimator of var {g(d)}.

The results in Table 1 and Web Appendix C demonstrate that our EM algorithm performs
well overall; mean estimates, averaged over B = 1000 data sets, are all extremely close to the
true values. In addition, the sample standard deviation of the 1000 estimates (SD) and the
averaged standard error (SE) are always in close agreement. This suggests that the large
sample covariance matrix of jj is being estimated correctly on average and also that
variances obtained from the Delta Method (for py{, 71y, 7, and p) are good approximations.
A potential criticism arises from examining the estimated Wald coverage probabilities,
which when calculated at the nominal 95% level, are sometimes anti-conservative.
However, closer inspection reveals that when this occurs, it is usually when estimating a
very small probability or the correlation parameter p. The former is not surprising even
when individual testing is used; the latter results likely because pis a highly nonlinear
function of 4.

At each configuration of 4, Se,j, and Sp we have also included the number of tests

NA
expended (averaged over B = 1000 data sets), denoted by 7. From Table 1 and the results in

Web Appendix C, one notes that the number of tests depends largely on pq, as expected,
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and that using more specific assays always leads to a smaller number of tests required. The
latter finding is intuitive given the nature of the IPP algorithm; fewer false positives in Step
2 lead to fewer additional individual retests. Under all settings, the average number of tests
expended is less than N = 1000, the number of tests used under individual testing.

We have also compared our EM algorithm approach to the estimation procedure outlined in
Hughes-Oliver and Rosenberger (2000), which assumes that S,.; = S,,.; = 1 and uses only the
responses from master pools. This comparison reveals (at least under perfect testing) that
adding the individual retesting responses improves estimation efficiency. Complete details
are in Web Appendix C.

6. Application to IPP Data

Because the state of lowa already implements the pooling algorithm in Section 2, we have
decided to illustrate the potential benefits of the algorithm for a state (Nebraska) that
currently uses individual testing as part of the IPP. Our data set from Nebraska consists of
individual testing results for 23,146 subjects tested in 2008 and 27,551 subjects tested in
2009. Having individual test results affords us the flexibility to make informative
comparisons, for example, comparing the IPP algorithm in Section 2 to separate pooling
algorithms for individual infections and, of course, comparing the IPP algorithm to
individual testing.

To perform our analysis, we first use the 2008 individual test outcomes as “training data” to
calculate optimal pool sizes ¢;. We then implement the algorithm in Section 2 with the 2009
individuals using optimally-sized pools (that we construct and decode ourselves) and
estimate population prevalences using the methods in Section 4. For verisimilitude, this is
done separately within each of the four gender/specimen type strata, acknowledging that
assay characteristics vary across these strata. Individuals in 2009 are assigned to pools
chronologically (within strata) based on the specimen’s date of arrival for testing. A
complete summary of the 2008 training data, including stratum sample sizes, estimated
prevalences and correlations, optimal pool sizes, and assay characteristics, is provided in
Table 2. When constructing this table, we assumed that the 2008 individual outcomes were
the true statuses.

To emulate how the 2009 diagnoses would be made using the pooling procedure in Section
2, we first treat the 2009 observed individual statuses as the true statuses. Then, in order to
account for potential misclassification, we simulate both group and (where necessary)
individual testing diagnoses using the values of S,.; and S, j = 1, 2, in Table 2. Doing this
also enables us to characterize the accuracy of the algorithm by comparing simulated
diagnoses with the “true” statuses. To average over the effect of simulating the observed
2009 diagnoses, we repeat this entire process B = 1000 times for each gender/specimen type
combination. All values reported in Tables 3 and 4 are averages over these 1000
implementations.

Table 3 summarizes the 2009 classification results. To evaluate the benefit of screening for
two infections simultaneously, we also implemented Dorfman (1943) retesting separately for
each infection. In Dorfman’s procedure, pools that test positive are decoded by retesting
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each individual. To ensure the fairest comparison, we used optimal pool sizes in each
algorithm; Dorfman’s optimal pool size was determined for each infection using Equation
(2) in Kim et al. (2007). In terms of the number of tests expended, the results in Table 3
illustrate the benefits of group testing for multiple infections. For example, with N = 14, 530
female swab specimens, the IPP algorithm uses 7709.8 tests on average; this is a 46.9%
reduction in the number of tests when compared to individual testing and a 19.3% reduction
when compared to separate Dorfman retesting (which requires 6381.5 + 3168.1 = 9549.6
tests on average). In terms of accuracy, there is mild evidence that the IPP algorithm
provides slightly higher PS, than Dorfman’s procedure implemented separately, but
somewhat lower values of PPV for gonorrhea. The latter occurs because gonorrhea is much
less prevalent than chlamydia (in Nebraska and nationwide also); more individuals will be
re-diagnosed for gonorrhea when the master pool tests positive for chlamydia only.
Comparing the classification accuracy results to individual testing (see Table 2), one
observes the IPP algorithm provides slightly lower sensitivity (PS, < S,) but slightly higher
specificity (PS;, > S,,). These findings are consistent with the group testing literature for
single infections (Kim et al., 2007).

Table 4 summarizes the 2009 estimation results. Using the methods in Section 4, we provide
estimates and standard errors for Y = (pgo, P10, Po1) and also for py1, 71, m, and p. To
implement the EM algorithm, we used the same starting values, Gibbs sampler
specifications, and convergence criteria described in Section 5. We also include in Table 4
the corresponding estimates and standard errors from individual testing, using the same
assay error rates in Table 2. One will note that the point estimates from the IPP algorithm
and individual testing are nearly identical. In addition, one finds that the group testing
estimates are actually more efficient than those from individual testing. While this latter
finding might seem counterintuitive, similar behavior was observed by Tu, Litvak, and
Pagano (1995) and Liu et al. (2012) for single infection group testing procedures in the
presence of testing error. Therefore, for states that might be considering adopting the IPP
pooling protocol, our analysis suggests that doing so could be beneficial. There are
potentially large cost savings available and prevalence estimates are as good or better than
those from individual testing.

7. Discussion

We have examined group testing for classification and estimation with multiple infections,
motivated by chlamydia and gonorrhea screening practices as part of the nationally-
implemented IPP. When compared to individual testing, pooling for multiple infections
reduces the number of tests and improves estimation efficiency. We have also observed that
multiple infection pooling confers these same benefits when compared to group testing for
single infections. To disseminate our work, the web site www.chrisbilder.com/grouptesting
contains R programs that implement the methodology described in this paper.

This research could be extended in several ways. First, we have focused on the IPP
algorithm in Section 2 explicitly because it is already in use by Iowa and by other states.
However, other pooling algorithms could be formulated for classification purposes. The IPP
algorithm is a hierarchical, (two-stage) Dorfman-type algorithm; i.e., individuals are
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assigned to non-overlapping pools and positive pools are decoded using individual testing.
Kim et al. (2007) present a comprehensive evaluation of other pooling algorithms for single
infections, including hierarchical algorithms that utilize a larger number of stages for
decoding and array-based testing. We believe that these other algorithms could be
generalized to classify individuals for multiple infections. In terms of estimation, our EM
algorithm framework in Section 4 would generalize immediately to handle other pooling
algorithms. As long as one can write out a complete data likelihood, the only change is that
different conditional expectations would be estimated in the E-step. For the IPP algorithm in
Section 2, we have observed (in separate investigations) that our joint modeling approach in
Section 4 improves estimation efficiency when compared to modeling the infection statuses
Y15 and Yipi separately. For other pooling algorithms, especially those involving a larger
number of stages, we conjecture that these efficiency gains could be even larger.

Another extension would be to recast the IPP algorithm, or possibly other algorithms
mentioned in the last paragraph, more generally for J >2 infections. This extension might be
of interest for the American Red Cross, for example, who uses pooling to simultaneously
screen blood donations for HIV, hepatitis B, and hepatitis C (ARC, 2013). For the IPP
algorithm with J > 2, derivations for the classification operating characteristics could be
carried out in the same way as those for the J = 2 case, outlined in Web Appendix A, and
obtaining prevalence estimates using the EM algorithm would also follow similarly; see
Web Appendix B. We have formulated this extension with J = 3 using a multinomial
distribution with 23 = 8 cell probabilities, but the calculations involved are far more tedious
than the J = 2 derivations shown in the Web Appendices.

Finally, a much more ambitious extension would be to acknowledge that individuals being
tested have different risk factors (e.g., gender, race, number of sexual partners, etc.) and
incorporate population heterogeneity into the classification and estimation procedures for
multiple infections. Classification techniques in the presence of heterogeneity have been
proposed recently for a single infection (Bilder, Tebbs, and Chen, 2010; McMahan, Tebbs,
and Bilder, 2012). Generalizing this work for J > 1 infections would be more complex. First,
a key question would arise as it pertains to classification, namely, is it desired to produce
diagnoses for each infection or does it suffice to classify an individual as positive for at least
one infection? The former would be of interest in public health settings, such as the IPP,
where individuals require treatment for multiple diseases; the latter might be of interest for
blood screening purposes, where it is critical to keep all infected units out of the blood
supply. Second, depending on whether complete identification or purely negative
identification is the goal, the next challenge would be to formulate exactly how multiple
infection algorithms would exploit the different levels of risk. For example, using the
algorithm in Section 2, positive pools could be resolved by retesting individuals in order
according to their maximum risk probability or their combined risk probability in the same
spirit as the “informative” Dorfman-type algorithms in McMabhan et al. (2012) for single
infections.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
IPP pooling algorithm. Optimal pool sizes ¢}, for different values of the correlation p when
Se:1 =0:942, S, = 0:976, S,.2 = 0:992, and S, = 0:987. In the lower left corner of each

subfigure, we did not show the optimal pool sizes larger than ¢; =9 to avoid crowding. In

the p=0:25 and p = 0:50 subfigures, values of (111; m,)’ in the white regions are not possible.

1duosnuep Joyiny

Biometrics. Author manuscript; available in PMC 2015 March 24.



Page 16

=1 GeET=10 g
8160 €000 €000 0I00 100
1260 S800 6800 0€€0 €0 ¢ 8T60 €000 +000 0100 100 '
S¥6'0 S000  S000 0200 00 L €P60 9000 9000 0£00 €00 O
V60  LO00 9000 O¥00 00 'L €660 LOOO LOOO 0S60 S60 %d
=1 RE6Y=.1 1d
9160 €000 +000 0100 100
LT60  SSO0 8500  SEI0  ¥I'0 O S€60  LOOO LOOO OYO0  +00 'O
1€60  LO00 8000 0S00 SO0 % TP60  LOOO LOOO 000 S00 Od
SP6'0 8000 8000 0900 900 £ €p60 0100 0100 0060 060 %d
=" LFIL=1D
- 0260 €000 €000 0100 100 ''d
SE60 €400 FFO0  S900  L0O ¢ 0S60  LOOO 9000 Ov00 +00 'O
IS60  L000  LOOO  0SO0 SO0 % 0S60 0100 0100 0010 oro O4d
LS60 0100 0100 OI1'0 110 2 €560 <TIO0 <CIO0 0S80 sg0 %d
=" 0TI8=.L
- 6160 €000 000 0100 100 ''d
ST60  ¥E0'0  S€00  0I00— 100- ¢ €460 0100 0100 0600 600 '0d
€60 0100 0100 0010  OI'0 %« L[p6O 0100 0100 0010 o010 O4d
€660 0100 0100 OI1'0 110 ' G660 €100 €100 0080 080 %d
A0D =S as Ues|N onil AOD =S as Ues|N anil

Biometrics. Author manuscript; available in PMC 2015 March 24.

Tebbs et al.

“popuadxa $159) Jo Joquunu s5e1aae oy “L pue 1 az1s [0od ewmndo
) 216 PIPNOUL OS[Y "8 ()"0 ST ‘[QA] IOUIPLUOD 9,66 B SUINSSe ‘sajewnsd Aiiqeqold 28819400 9} 10 JOLID JO UISIBW I ], "PIPN]OUI OS[B AIB S[RAIUL
Q0UIPHUOD P[BM %6 [BUILOU [3Im PAJRId0SSE (A0D) AN[Iqeqolid o5e1oA00 pajewns? pue (4S) JOLIS PIEpUE)S PaSeIoAY "S[ENPIAIPUI )O0] = N M

ora ‘5198 BIEP ()00 = g WO} pAIe[no[ed ((S) UONRIAID pIepue)s pue uedjy 'z ‘1 = [10] ‘660 = 95 pue ¢6'0 = 25 yum synsa1 uonenuis wpLose Jdi

T alqel

Author Manuscript Author Manuscript Author Manuscript Author Manuscript



Page 17

Tebbs et al.

860=7  2660=775 B000="4 4 -
. . cy—, o (TvpvT =N)
060="% zeo=17s SVT0=¢ 1900="'d - . qumg/orewa,]
0z60="d - -

o=  + +

€660=29% ¢160="77¢ J Cr00="4 + - (8€€T=N)
Gero=¢ N QULIN/[BWA]
686'0= " 1p60="7g 0800="¢ -+
L68'0="d - -

6100="  + 4+

8L60=C9%  1660=1" , g100="% 4+ - orse

. . 0eL0=¢ O Ul qeMs/aRIN
sL60="% 6s60=""% SIT0=""¢ - +
pI80="d - -
p000="4d  + 4

9660 =% ¢86°0="175 6000="% + - ot

0= IPSE=N

. . 10To Q 0 a=0ld QULIN)/FTeIN
$86'0="% 6L60="7§ cLo0="d - 4
pie0="d - -

fipyweds  ANANSUSS  UOIeRUIOD  SdUBerRMd D O wnfens

‘wnyens Yoo Ury)im S[enpIAIpur
6002 241 10] 12 saz1s jood [ewndo suruRIep 01 pasn are (0 ‘ayLouos) g «(O ‘epAweryo) | = [ 4g pue /2 jo sanfea pue sajewINSs ISAY], ‘UIAIS
os[e a1e N sozis 9[dwes wnjens ‘(10119 unsa) ou Jurnsse) OO Ul SINSAI FUNSI) [BNPIAIPUL Y} UO PISe] AIe SAJBWINSA [[V "Alewwins eiep umuren} 4d1

¢ ?olqel

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Biometrics. Author manuscript; available in PMC 2015 March 24.



Page 18

Tebbs et al.

Author Manuscript

Author Manuscript

G00'0="¢d

+

+

Aipyeds

AuAnsues  Uolep 10D

sous e Id

9

o) wnens

Author Manuscript

Author Manuscript

Biometrics. Author manuscript; available in PMC 2015 March 24.



Page 19

Tebbs et al.

6660 7660 L66°0 166°0 6660 $86°0 6660 9660 uewgo
6660 7660 8660 7660 6660 L86°0 6660 L66°0 AdN ddI
€060 9160 560 0L60 €260 760 8960 196°0 uewpoQ
L8L°0 €260 8L8°0 9960 6L8°0 €76°0 Sv6'0 560 Add ddI
6660 7660 6660 8660 7660 0660 6660 L66°0 . uewgIo(
9660 7660 8660 L66°0 0660 0660 6660 9660 dd1
860 L88°0 €80 L68°0 7860 6160 6960 8560 . uewyIo
886°0 $68°0 9L8°0 $06°0 L86°0 8260 LL60 1960 5 ddI
©1'891€ () €189 (L TILIL (D O6LTT (088  (HOTLIL (D EBLOL  (B)LL98c  p  vewpioq
(V) 8'60LL (P) S'8LLT (€) 1°'L091 (h) TY9s€E dd1
0€SHT L6V 0161 619 N
o o] 9 2 9 2 o 2
qens auln qens auun
aews4 9N

‘sasayyuared ur uaa13 are sozis jood [ewndQ ‘uondoJuI Yora 10J A[reredas
INO PALLIBD ST 2INPadoId uewWIIO Y, "USAIS Os[e aIe A $9zZIs o[dwres wnjens "¢ Uondag ur wytose oY) Sursn eiens adA) uswroads/ropuas 1noj 10J

‘suonruswadwr )| = g 190 pagerdae ‘(AN PU® ‘Add ‘“Sd °Sd) seanseow Kovinooe pue () $1$9} JO Jqunu Uedy “S}NSSI UOHBIYISSEI 00T ddl

€9lgel

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Biometrics. Author manuscript; available in PMC 2015 March 24.



Page 20

Tebbs et al.

N=6G1 > : ”G—& =1 g . ”G—&
=Ly e — 00 690°0= Ly e — 00 qemS/orewa]
scooo 0007 g TEOOTTE g BI0OTH gy FEE0TTE -
‘=g n=11g
¥100°0 S000= "¢ 71000 S00°0="¢ +
‘0=d ‘=104 T n=d (= L0
1€€0°0 008°0=¢ 61000 S00°0="% 6620°0 86T°0=¢ 1000 600 0="¢ = (Ler=N)
. = QULIN)/A[RWR]
N=61 =01 =L n=0ld
€2000 LID0= 17000 cL00=" 61000 LID0=5 6000 cl00="¢ +
0=Lly ‘=19d — «(1= U0
£700°0 080°0="4 9¥00'0 H60="¢ 17000 080 °0=" £700°0 H60="¢ -
L100=" L10'0="4d
seopg “T00T ¢ rogg “10°07 ¢ +
‘N=d O H_.Cnm ‘N=d G H_.Cnm
oo V079 pgppg THOUTTE gy HOO0TE gy THO0TTE - (o161 =)
. . qQeMmS/QIRIN
H00=¢tL n=Yd T =6l ‘=0l
L9000 0L0°0="5¢ 68000 6ET0=""¢ 65000 0L0°0="5¢ $800°0 6ET0=""¢ +
NI G 0="d ¢ 0=l ‘=0
wooo HTOTH goip0 TBLO0ZTE Gape JTOTH g HE0TE -
‘= "Lld ‘n="Lld
21000 S00°0="¢ 11000 S00°0="¢ +
GT'0=¢ ‘0= '0d ¢1'0=¢ ‘0= L0g
o0 PO g TTOOTTE g TETOTY g PIOOZTE - (6£19=N)
0=ty 10°0="1d 0=ty J00="0ld SHHOREN
02000 [e00=*4 LEOODO 6L00="¢ 61000 [e0o=4 €000 6L00="¢ +
‘N=1L1w cne = "d ‘N=Llw cne = "d
sco00 OO g T060STE g TBOOTH g G0610=TC -
ES) arewIsy ES) alewIsy ES ajewIsy ES arewsy 5 wnpus
bu1se) enpialpu | wyiliobfe dd|

-91qissod st 10110 Furpunol JyYSIs SPIIp 21y}

0) papunoi are sayewnsa jutod [y “sesodind uostredwod 10J papn[our Os[e a1e SUTIS9) [BNPIAIPUL WIOIJ S)NSAI Y], "'USAIS OS[e oI A7 SzZIs o[dwes wmens

*p UOT}OSS UI spoyaur oy Sursn ‘suonejuswo[duwir )OO = g 19A0 pageIoAe ‘(gS) SIOLId PIEPUR)S PUE SAJBUINSS I9)oWRIR *SI[NSAI UONRWNSS 600 ddI

Author Manuscript

v alqel

Author Manuscript

Author Manuscript

Author Manuscript

Biometrics. Author manuscript; available in PMC 2015 March 24.



Page 21

Tebbs et al.

bunsal renpiaipu|

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Biometrics. Author manuscript; available in PMC 2015 March 24.



