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Considering the widely existing processing time uncertainty in the real-world production process, this paper constructs a fuzzy
mathematical model for the silicon single crystal production batch scheduling problem to minimize the maximum completion
time. In this paper, a two-stage hybrid optimization algorithm (TSHOA) is proposed for solving the scheduling model. Firstly, the
improved diferential evolution algorithm (IDE) is used to solve the order quantity allocation problem of silicon single crystal with
diferent sizes to obtain the quantity of silicon single crystal rods with diferent sizes produced by diferent types of single crystal
furnaces. Secondly, the variable neighborhood search (VNS) algorithm is adopted to optimize the order quantity sequencingof
batch production processes. Finally, simulations and comparisons demonstrate the feasibility of the model and the efectiveness
of TSHOA.

1. Introduction

As an important basic semiconductor material, silicon single
crystal is widely used in semiconductor integrated circuit
chips and other felds. With the rapid development of the
information industry, several types of electronic equipment
are increasing, and the replacement is rapid, resulting in a
sharp increase in the number and types of semiconductor
chips. China’s industrial demand for silicon single crystals
accounts for about one-third of the global total demand, but
its production capacity lags far behind that of developed
countries and mainly depends on import supply. To break
the import restriction, get rid of the industrial monopoly and
promote the development of silicon single crystal produc-
tion in the direction of mass production and industriali-
zation; China has carried out a series of scientifc and
technological reform policies [1]. In view of the demand for
large-scale and multiple variety orders, how to improve
production efciency and reduce production costs is the core
for semiconductor manufacturing enterprises to improve

their competitiveness and the key to further realize scale and
industrialization.

Te Czochralski method is the main technical method
for growing silicon single crystals. Its manufacturing process
for growing silicon single crystals is complex and change-
able, with many complex growth processes and long pro-
duction cycles. It is recognized as one of the most complex
manufacturing systems [2]. To break the bottleneck of
foreign monopoly technology and have its own core tech-
nology, many domestic scholars are committed to im-
proving the growth quality of silicon single crystals [3–5]. In
recent years, many enterprises have conquered large-scale
silicon single crystals and entered the preliminary mass
production stage. Foreign silicon single crystal production
enterprises developed earlier than domestic silicon single
crystal enterprises. To carry out large-scale production and
improve production efciency, foreign silicon single crystal
production enterprises have begun to study and practice the
issue of silicon single crystal order allocation, shorten the
production cycle, improve production efciency, and reduce
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production costs through reasonable production scheduling
[6, 7]. However, domestic silicon single crystal enterprises
still use manual scheduling methods for production plan-
ning. Terefore, it has become a major research hotspot to
study advanced and practical algorithms to solve the pro-
duction scheduling problem for domestic production
enterprises.

However, the infuence of uncertain processing time
will cause a huge social and economic impact on enterprise
production, which has attracted more and more re-
searchers’ attention [8–11]. For example, Sakaw and Mori
[8] frst proposed a triangular fuzzy number ranking cri-
terion to compare the size of fuzzy numbers and applied
this criterion to solve the fuzzy job shop scheduling
problem. Engin and Yilmaz [9] used a fuzzy processing
time and a fuzzy due date to formulate the multiobjective
hybrid fow-shop scheduling with multiprocessor tasks
problem. Alharbi and El-Wahed Khalifa [10] adopted
pentagonal fuzzy numbers to represent the processing time
to solve the fow-shop scheduling problem under fuzzy
environment. Chen [11] used triangular fuzzy number to
represent the uncertainty of job processing time to mini-
mize the maximum fuzzy completion time for the fuzzy
distributed fexible job shop scheduling problem. Te sil-
icon single crystal production batch scheduling problem is
a constrained combinatorial optimization problem, which
belongs to NP-hard problem; it is difcult to solve it by
traditional optimization methods. In recent years, most
researchers use intelligent optimization algorithm to solve
the NP-hard problem and have achieved good results. For
example, Lei et al. [12] improved the coding method and
proposed a hybrid frog leaping algorithm (SFLA) to solve
the green fexible job shop scheduling problem with the
objective function of minimizing workload and total en-
ergy consumption. Lei and Yang [13] took the energy
consumption constraint as the objective function in the
frst stage, and then sent the solution set obtained in the
frst stage to the second stage. In the second stage, a certain
energy consumption value was taken as the constraint for
fne solution to obtain a scheduling scheme meeting the
energy consumption constraint. Guo and Zhong [14] put
forward many requirements on the scheduling model of
remanufacturing jobs, established a four objective sched-
uling model, and introduced multiple population coevo-
lution based on artifcial fsh swarm algorithm to solve the
model. Li et al. [15] proposed a new improved artifcial
immune algorithm (IAIS) for the second type of fuzzy
fexible job shop scheduling problem under the fuzzy
processing time. Rui and Gong [16] adopted the improved
decomposition based multiobjective evolutionary algo-
rithm (IMOEA/D) and designed a variable neighborhood
search combining fve local search strategies to optimize
the maximum fuzzy completion time. Tere is no related
literature about the existing fuzzy scheduling research on
the batch scheduling problem of silicon single crystal
production.

To sum up, the production scheduling problem generally
focuses on two aspects, that is, how to establish an appro-
priate model to describe the actual scheduling and how to

solve the model to fnd the best feasible solution that meets
the objective. In view of the solution ideas and methods of
above scheduling problems, this paper establishes a mini-
mum fuzzy maximum completion time optimization model
for silicon single crystal production batch scheduling
problem and proposes an intelligent optimization algorithm
to solve the model.

2. Silicon Single Crystal Batch Scheduling
Problem with Multiple Size under Fuzzy
Processing Time

2.1. Te Model of the Silicon Single Crystal Batch Scheduling
Problem. Tis paper studies the optimal scheduling
according to the production equipment matching situation
and production task demand of a silicon single crystal
production plant. Among them, the corresponding thermal
feld dimensions of the single crystal furnace equipped by the
plant are 22-inch thermal feld, 24-inch thermal feld, 28-
inch thermal feld, and 32-inch thermal feld.

Te types of silicon single crystal required for the order
task are 6-inch, 8-inch, 10-inch, and 12-inch. According to
the production conditions, the types of silicon single crystal
that can be grown by diferent types of single crystal furnaces
are shown in Table 1. Where “Yes” means that this type of
silicon single crystal can be grown by this type of single
crystal furnace and “No” means that this type of silicon
single crystal cannot be grown by this type of single crystal
furnace.

Because the production process is often accompanied
by many uncertainties, the processing time of each silicon
single crystal can only be determined as a rough range.
Terefore, this article uses triangular fuzzy number (TFN)
to represent the processing time of each process with
TFN = (t1, t2, t3). Te membership function graph is
shown in Figure 1. Te abscissa represents the processing
time, and the ordinate represents the membership value.
Te closer the membership value is to 1, the higher the
degree of belonging to the fuzzy set is. Among them, t1
closest to the origin represents the most optimistic pro-
cessing time, t2 that in the middle represents the most
probable processing time, and t3 farthest from the origin
represents the most conservative processing time. Te
membership expression of TFN is shown in formula (1)
[17] and that will have several special cases as shown in
formula (2)–(4).

μTFN(x) �

0, x≤ t1,

x − t1

t2 − t1
, t1 < x≤ t2,

t3 − x

t3 − t2
, t2 < x< t3,

0, x≥ t3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

(1) If t2 � t3,
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μTEN(x) �

0, x≤ t1,

x − t1

t2 − t1
, t1 < x≤ t2 � t3,

0, x> t2 � t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

(2) If t1 � t2,

μTEN(x) �

0, x< t1 � t2,

t3 − x

t3 − t2
, t1 � t2 ≤x< t3,

0, x≥ t3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

(3) If t1 � t2 � t3,

μTEN(x) �
1, x � t1 � t2 � t3,

0, otherwise.
􏼨 (4)

Because the processing time is expressed in TFN, the
fuzzy completion time Ci is also TFN, expressed as Ci � (c1,
c2, c3); c1, c2, and c3 represent the most optimistic com-
pletion time (i.e., the lower bound of Ci ), the most likely
completion time, and themost conservative completion time
(i.e., the upper bound of Ci ) of the i-th size order job,
respectively.

Te model of the scheduling problem in this paper is
described as follows. Te order quantity of L-type silicon
wafers with diferent sizes is converted into N jobs and
allocated to M single crystal furnaces with diferent types.
Each job has multiple processes, and each process can only

have one optional single crystal furnace. Te processing
sequence of the processes is fxed, and the performance of
each single crystal furnace equipment is diferent. Te
purpose of scheduling is to determine the jobs allocated on
diferent types of single crystal furnace equipment, so as to
minimize the maximum fuzzy completion time of the whole
production system. Te following constraints must be met
[18]:

(1) Te same job can only be processed on one equip-
ment at any time

(2) Only one job can be processed by the same equip-
ment at any time

(3) Te single crystal furnace cannot be interrupted
during the production process, but can wait at a
specifc process

(4) Te same job can only be processed in the next
operation after the previous operation is completed

(5) Assuming that the failure factor is not considered, all
single crystal furnaces are able to work normally

Te symbols and defnitions involved in this study are
shown in Table 2.

According to the symbol defnition, the objective
function in this paper can be expressed as follows:

Objective function:

f � min 􏽧TEND􏼐 􏼑 � max C1, C2, · · · , Ci( 􏼁i ∈ [1, L]. (5)

Subject to:

Ci � max 􏽥eti,j,z􏼐 􏼑, i ∈ [1, L], j ∈ 1, Ms􏼂 􏼃, z ∈ [1, Z], s ∈ [1, 4], (6)

􏽥eti,j,z � 􏽥sti,j,z + 􏽦ti,j, i ∈ [1, L], j ∈ 1, Ms􏼂 􏼃, z ∈ [1, Z], s ∈ [1, 4], (7)

􏽘

Ms

j�1
ok,j � 1, k ∈ [1, N], s ∈ [1, 4], (8)

􏽘

N

k�1
ok,j � 1, j ∈ 1, Ms􏼂 􏼃, s ∈ [1, 4], (9)

Table 1: Corresponding production type representation.

Te type of silicon single
crystal

Te type of single crystal furnace
22
inch

24
inch

28
inch

32
inch

6 inch Yes Yes No No
8 inch Yes Yes Yes No
10 inch Yes Yes Yes No
12 inch No No Yes Yes

μTFN (x)

0

1

x

t1 t2 t3

Figure 1: Te membership function of triangular fuzzy number.
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􏽥sti,j,z � 􏽥eti,j,z−1 + 2, i ∈ [1, L], j ∈ 1, Ms􏼂 􏼃, s ∈ [1, 4], (10)

Ni ≤Di, Di � 􏽘

Ms

j�1
Yj ∗Ui,s, i ∈ [1, L], j ∈ 1, Ms􏼂 􏼃, s ∈ [1, 4], (11)

􏽥sti,j,z ≥ 0, 􏽦ti,j ≥ 0, i ∈ [1, L], j ∈ 1, Ms􏼂 􏼃, z ∈ [1, Z], s ∈ [1, 4], (12)

0≤Ui,s ≤Qi,s, Qi,s � Ceiling
Ni

Ys

􏼠 􏼡, i ∈ [1, L], s ∈ [1, 4], (13)

where equation (5) represents the objective function.
Equations (6) and (7) represent the calculation of fuzzy
completion time. Equations (8)–(10) are equality con-
straints, where equation (8) indicates that each job can
only be processed by one furnace, equation (9) indicates
that each furnace can only process one job at the same
time, and equation (10) indicates that the fuzzy starting
time of the next batch is equal to the fuzzy completion
time of the previous batch plus the time to replace the
quartz crucible, and the replacement time is 2 h. Equa-
tions (11)–(13) are inequality constraints, where equation
(11) indicates that the actual production quantity must be
greater than the order required quantity. Equation (12)
indicates that the starting time variables and running
time variables must be greater than or equal to 0.
Equation (13) represents the upper and lower limits of the
number of the i-th size silicon single crystal produced on
the s-type single crystal furnace, and Ceiling means
rounding up.

2.2. Fuzzy Number and Its Operation. When calculating the
objective function corresponding to diferent individuals or
solutions of the fuzzy production scheduling problem, it is
necessary to add, subtract, multiply, divide, and take the

largest of the fuzzy number (the processing time). At the
same time, when evaluating the advantages and disadvan-
tages of diferent solutions, it is necessary to carry out
comparative operations. Te defnition for two triangular
fuzzy numbers, TEN􏽥s � (s1, s2, s3) and 􏽥t � (t1, t2, t3), is as
follows:

(1) Addition, subtraction, and multiplication
operations:

􏽥s + 􏽥t � s1 + t1, s2 + t2, s3 + t3( 􏼁,

􏽥s − 􏽥t � s1 − t1, s2 − t2, s3 − t3( 􏼁,

λ∗􏽥s � λs1, λs2, λs3( 􏼁.

(14)

(2) Comparison operations: for triangular fuzzy num-
bers 􏽥s � (s1, s2, s3) and 􏽥t � (t1, t2, t3), the following
criteria are usually used for comparison [13]:

Criteria 1:
If L0(􏽥t) � (t1 + 2t2 + t3)/4> L0(􏽥s) � (s1 + 2s2 +

s3)/4, then 􏽥t>􏽥s, otherwise, 􏽥t<􏽥s
Criteria 2:
If L0(􏽥t) � L0(􏽥s), then compare L1(􏽥t) � t2 and
L1(􏽥s) � s2, when L1(􏽥t)> L1(􏽥s), then 􏽥t>􏽥s
Criteria 3:

Table 2: Symbol defnition.

Symbol Expression
M Number of machines
N Number of jobs
L Dimension type
Z Maximum of production batch
i Dimension sequence
j Machine sequence
k Job sequence
z Production batch
s Machine type
Yj Loading capacity of the j-th machine
Ni Te order quantity of the i-th size order silicon single crystal
Di Actual production quantity of the i-th size order silicon single crystal
ok,j Te k-th job is operated on the j-th machine
Ui,j Te number of the i-th size silicon single crystal grown on the j-th machine
􏽦ti,j Fuzzy processing time of the i-th size silicon single crystal on the j-th machine
Ci Fuzzy completion time of the i-th size silicon single crystal order
􏽧TEND Fuzzy maximum completion time

􏽥sti,j,z Fuzzy starting time of the i-th size silicon single crystal in z-batch on the j-th machine
􏽥eti,j,z Fuzzy completion time of the i-th size silicon single crystal in z-batch on the j-th machine
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If L0(􏽥t) � L0(􏽥s) and L1(􏽥t) � L1(􏽥s), then compare
L2(􏽥t) � t3 − t1 and L2(􏽥s) � s3 − s1; when
L2(􏽥t)>L2(􏽥s), then 􏽥t>􏽥s

(3) Larger operations: at present, the following two
methods are commonly used to calculate the larger
operation of triangular fuzzy numbers, namely, the S
method and the L method [8]. Te defnitions are as
follows:
S method defnition:

􏽥s∨􏽥t � s1∨ t1, s2∨ t2, s3∨ t3( 􏼁. (15)

L method defnition:

􏽥s∨􏽥t �
􏽥s, if 􏽥s>􏽥t,
􏽥t, otherwise.

􏼨 (16)

Taking 􏽥s and 􏽥t as examples, the results, respectively,
obtained by S method and L method for fuzzy larger op-
eration are shown in Figure 2.

According to the two operations above, the result ob-
tained by L method is 􏽥s or 􏽥t and the result obtained by S
method is the set combination of two triangular fuzzy
numbers.Terefore, this paper adopts the Lmethod as larger
operation of triangular fuzzy numbers.

3. Framework of a Two-Stage Hybrid
Optimization Algorithm (TSHOA)

3.1. Encoding and Decoding. According to the problem
description of silicon single crystal batch scheduling prob-
lem with multiple size under fuzzy processing time, the fnal
scheduling result is composed of two parts. Te frst part is
how to allocate the order numbers of silicon single crystal
rod for diferent types of single crystal furnaces, and the
other part is how to allocate the batch plans for produced
order quantity on the single crystal furnaces. Terefore,
algorithm coding consists of two stages.

3.1.1. Te First Stage. Te coding in the frst stage is rep-
resented by a vector composed of the number of silicon
single crystal with diferent sizes produced by diferent types
of single crystal furnaces as shown in Table 1. Te vector
dimension is 10 dimensions, and the vector composition
form is shown in the following formula:

x � xi1, xi2, xi3, xi4, xi5, xi6, xi7, xi8, xi9, xi10􏼂 􏼃. (17)

where xi1 represents the number of 6-inch silicon single
crystal produced by the single crystal furnace corre-
sponding to the 22-inch thermal feld. xi2 represents the
number of 8-inch silicon single crystal produced by the
single crystal furnace corresponding to the 22-inch thermal
feld. xi3 represents the number of 10-inch silicon single
crystal produced by the single crystal furnace corre-
sponding to the 22-inch thermal feld. xi4 represents the
number of 6-inch silicon single crystal produced by the
single crystal furnace corresponding to the 24-inch thermal

feld, and the following variables meaning can be analo-
gized in the same way.

According to the variable solution results of the frst
stage, it is analyzed and judged whether it is necessary to
enter the second stage. To describe the assignments more
clearly, a visual representation of variable assignments is
presented in Table 3. When the sum of the order quantity
exceeds the total number of single crystal furnaces, it is
necessary to enter the second stage to obtain the batch al-
location scheme to solve the objective function. Otherwise, it
means that one batch can complete the production. Te
maximum fuzzy processing time is taken as the fuzzy
completion time of this type of single crystal furnace, and the
fnal completion time is the maximum fuzzy completion
time of all types of single crystal furnaces, that is, in Table 3,
the total completion time of each column of variables to
complete the production is summed, and the fuzzy com-
pletion time of the column with the maximum completion
time is the maximum fuzzy completion time of the total
factory. For example, if xi1 + xi2 + xi3 = 10 and M1 = 5, the
number of 22-inch thermal feld single crystal furnaces is 5,
and it is necessary to enter the second stage at this time.

3.1.2. Te Second Stage. Suppose the frst stage solution
result is xi1 � 4, xi2 � 3, and xi3 � 3, that is, the result of the
frst stage solution is that 6-inch silicon single crystal rods
should be produced 4, 8-inch and 10-inch silicon single
crystal rods should be produced 10, respectively; all types of
this silicon single crystal rods need to be produced on a 22-
inch single crystal furnace. Because the processing time from
the same type of single crystal furnace that processes dif-
ferent sizes of silicon single crystals is diferent, so the main
purpose of the second stage is how to distribute the pro-
duction process, so that the total completion time of the
distribution results is the shortest. Te dimension of the

0

1

x

0

1

x

s1 t1 t2 s2 s3 t3

s1 t1 t2 s2 s3 t3

t = (t1, t2, t3) s = (s1, s2, s3)

μTFN (x)

μTFN (x)

L : (t1, t2, t3) S : (s1, s2, s3)

~
~

Figure 2: Larger operation of triangular fuzzy number.
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variables in the second stage is determined by the sum-
mation of the corresponding columns in the frst stage. For
the convenience of recording, the variables in the second
stage are composed of s (s� 4, it represents 4 diferent types
of single crystal furnaces) cell arrays. Suppose that, each
array ceils consist of 1, 2, 3, and 4, which represent 6-inch, 8-
inch, 10-inch, and 12-inch silicon single crystal rods, re-
spectively. Terefore, each digit in the coding string of the
second stage represents a job number, respectively. For the
same job number, the number of occurrences represents the
number of the processing of the same size silicon single
crystal rod. And the second stage variable encoding rep-
resentation is shown in equation (18). Take Table 3 as ex-
ample, in the frst stage, the frst column corresponds to the
column summation xi1 + xi2 + xi3 � 10, then the variable
dimension is 10 dimensions. Assume that there are 5 single
crystal furnaces corresponding to the 22-inch thermal feld,
i.e., if 10 silicon single crystal rods need to be produced, the
initial variables are randomly generated as shown in formula
(19).

p � p
1

􏽮 􏽯, p
2

􏽮 􏽯, p
3

􏽮 􏽯, p
4

􏽮 􏽯􏽨 􏽩, (18)

p
1

� p1 p2 p3 p4 p5 p6 p7 p8 p9 p10􏼂 􏼃

� 2 3 2 1 1 3 2 1 1 3􏼂 􏼃,
(19)

where p represents the second stage variable representation.
p1 represents the cell array variable representation of the frst
type of single crystal furnace, and the s type of single crystal
furnace models are arranged in order. It can be seen from
formula (19) that the p1 code length is 10 in which p1 � 2
means that the frst 8-inch silicon single crystal rod is
produced on the M1,1, p2 � 3 means that the frst 10-inch
silicon single crystal rod is produced on the M1,2, p3 � 2
means that the second 8-inch silicon single crystal rod is
produced on the M1,3, and the following is the same, but p6
� 3 does not represent the sixth single crystal furnace, but
means that the second 10-inch silicon single crystal rod is
produced on the frst completed single crystal furnace in the
frst batch of 5 sets single crystal furnaces; it can be noted for
the virtual sixth single crystal furnace. By analogy, the fuzzy
completion time of the last single crystal furnace in the last
batch can be obtained by solving the variables. Similarly, the
fuzzy completion time of diferent types of single crystal
furnaces can be obtained. Te maximum fuzzy completion
time in s type of single crystal furnace is obtained as the
objective function through L method comparison criterion.

3.2. Improved Diferential Algorithm (IDE)

3.2.1. Improved Mutation Operations. Standard diferential
evolution (DE) is a swarm evolution-based algorithm
proposed by Storn and Price [19]. Te algorithm has the
characteristics of memorizing individual optimal solu-
tions and sharing information within the population, that
is, optimizing the solutions to the problem through co-
operation and competition among individuals in the
population. Te mutation operation is the core of the DE
algorithm, which afects the performance of the algorithm
to a large extent. Te fve types of typical mutation
strategies commonly used are as follows:

v
G+1
i,j � x

G
i,j + F × x

G
r1,j − x

G
r2,j􏼐 􏼑, (20)

v
G+1
i,j � x

G
r3,j + F × x

G
r1,j − x

G
r2,j􏼐 􏼑, (21)

v
G+1
i,j � xbestGj + F × x

G
r1,j − x

G
r2,j􏼐 􏼑, (22)

v
G+1
i,j � xbestGj + F × x

G
r1,j − x

G
r2,j􏼐 􏼑 + F × x

G
r3,j − x

G
r4,j􏼐 􏼑,

(23)

v
G+1
i,j � x

G
r1,j + F × x

G
r2,j − x

G
r3,j􏼐 􏼑 + F × x

G
r4,j − x

G
r5,j􏼐 􏼑, (24)

where r1, r2, r3, r4, and r5 are integers that are diferent
from each other, representing diferent individuals in the
population; j denotes the dimension of individuals in the
population; xG

i,j denotes the parent individual of the G-th
generation; xbestGj denotes the optimal individual of the
G-th generation, and F is the variation factor.

According to formula (20), in the standard DE, the
mutation vector vG+1

i,j , basis vector xG
i,j, and diference

vector xG
r1,j − xG

r2,j are all taken from the same dimension,
then for the entire population, the mutation, crossover, or
selection operations between each dimension are mu-
tually independent, that is, the evolutionary process
between each dimension is unrelated. If a certain di-
mension or several dimensions in the population cause
the algorithm to fall into a precocious state due to the
high degree of aggregation of individuals, it is difcult to
jump out of the local optimal solution by its own di-
mension alone. Terefore, this paper introduces the idea
of diferent-dimensional mutation proposed in the lit-
erature [20], and at the same time, this paper adopts a
variety of mutation strategies. Te specifc expression is
as follows [21]:

Mutation strategy 1:

v
G+1
i,j � x

G
r3,j + F × x

G
r1,j − x

G
r2,j􏼐 􏼑

1≤ i≤
Np

3
.

(25)

Mutation strategy 2:

Table 3: Te frst stage encoding variable representation.

Silicon single crystal size
Single crystal furnace type

(thermal feld size)
22 inch 24 inch 28 inch 32 inch

6 inch xi1 xi4 — —
8 inch xi2 xi5 xi7 —
10 inch xi3 xi6 xi8 —
12 inch — — xi9 xi10
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v
G+1
i,j � xbestGj + F × x

G
r1,j − x

G
r2,j􏼐 􏼑

Np

3
< i≤

2Np

3
.

(26)

Mutation strategy 3:

v
G+1
i,j � x

G
r1,n + F × x

G
r2,m − x

G
r3,m􏼐 􏼑

2Np

3
< i≤Np,

(27)

where Np represents the number of individuals in the
population, i≠ r1≠ r2≠ r3, and j≠ n≠m. It can be
seen from formulas (25)–(27) that the whole pop-
ulation frst performs a random global search mu-
tation strategy, such as formula (25). Ten, the
mutation strategy is transformed, and the global best
individual is used as the base vector for local opti-
mization, as shown in formula (26). Finally, a dif-
ferent-dimensional mutation strategy such as
formula (27) is adopted. When the evolutionary
solution of one-dimension falls into a local optimum,
the particles of other dimensions can be used to jump
out of the current local optimum to avoid the al-
gorithm from entering a premature state. Tis
multistrategy diferent-dimensional mutation
method combines the advantages of each mutation
strategy, efectively balancing the exploration and
exploitation capabilities of the algorithm.

It can be seen from the mutation strategy that the
mutation factor F has a greater impact on the performance of
the algorithm. In the early stage of the algorithm, mutation
factor F is a larger value, which improves the global search
ability of the algorithm; in the later stage of the algorithm, a
smaller mutation factor F can make the algorithm more
refned to improve the local search ability of the algorithm.
Terefore, dynamically adjusting the value of the variation
factor F is crucial to the balance the exploration ability and
optimization ability of the algorithm. Terefore, this article
proposes a new dynamic adjustment variation factor, which
determines the variation factor of the current individual
according to the ftness value ranking of the individual in
population.Te specifc expression is shown in the following
formulas:

F(i) � Fmin +
s(i)

Np
∗ F

G
max − Fmin􏼐 􏼑, (28)

F
G
max � Fmax −

Gen
Gmax

Fmax − Fmin( 􏼁, (29)

where F G
max is the maximum variation factor of the G-th

generation population, which is generated by formula (29)
[22], Fmax and Fmin, respectively, represent the maximum
and minimum values of the variation factor, Gen and
Gmax, respectively, represent the current algebra and the
maximum algebra, and s(i) represent the ranking of

individual i in the entire population Np, which is sorted
according to the individual ftness value. In this way, each
individual in the population has an independent variation
factor, and selects the desired search method according to
its own characteristics, that is, if the variation factor is
large, it means that the ranking is high in the entire
population, and the corresponding individual ftness
value is large, and the individual should focus on the
global search, otherwise, the individual should focus on
the local fne search.

3.2.2. Crossover Improvements. Te crossover operation
recombines the mutant individual generated by the mu-
tation operation with the original individual according to
the crossover probability CR to generate a new individual.
Te traditional crossover operation is obtained by syn-
thesizing the mutant individual and the original indi-
vidual, but the conventional crossover operation has a
slow evolution speed and produces better results. Te
probability of the individual is small, so according to the
idea of crossover operation between the optimal indi-
vidual and the original individual in the improved particle
swarm algorithm [23], the improved crossover operation
is shown in the following formula [21]:

u
G+1
i,j �

v
G+1
i,j , rand()≤CRorj � jrand,

xbestGj , otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(30)

CR � CRmax −
Gen
Gmax

CRmax − CRmin( 􏼁, (31)

where CR is adaptively adjusted by formula (31), xbestG is
the optimal individual of the G-th generation, and the new
individual is synthesized from the optimal individual and the
mutant individual. In the early stage of the algorithm, the
mutation individual vG+1

i,j accounts for a large proportion of
the newly generated crossover individuals, which is helpful
for the global optimization of the algorithm. In the later
stage of the algorithm, the optimal individual xbestGj ac-
counts for a large proportion of the newly generated
crossover individuals, which is helpful for the local opti-
mization of the algorithm.

3.2.3. Selection Improvements. Te individual obtained by
the crossover operation and the original individual will
retain the individual with good ftness value to the next
generation, so as to ensure that the algorithm is constantly
approaching the optimal solution. Te traditional selection
operation ignores the excellent characteristics of the mutant
individual. Tis paper adopts the selection strategy idea of
the traditional GA algorithm [24], the generation of new
individuals is selected among the original individuals,
mutant individuals, and crossover individuals. Take the
minimum problem as an example, as shown in the following
formula [21]:
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x
G+1
i �

x
G
i , f x

G
i􏼐 􏼑 �� min f x

G
i􏼐 􏼑, f v

G+1
i􏼐 􏼑, f u

G+1
i􏼐 􏼑􏼐 􏼑,

v
G+1
i , f v

G+1
i􏼐 􏼑 �� min f x

G
i􏼐 􏼑, f v

G+1
i􏼐 􏼑, f u

G+1
i􏼐 􏼑􏼐 􏼑,

u
G+1
i , f u

G+1
i􏼐 􏼑 �� min f x

G
i􏼐 􏼑, f v

G+1
i􏼐 􏼑, f u

G+1
i􏼐 􏼑􏼐 􏼑.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(32)

3.3. Variable Neighborhood Search Algorithm. Te variable
neighborhood search (VNS) algorithm [25] is an improved
local search algorithm. It is mainly composed of two parts,
namely, neighborhood action and variable neighborhood
descent. Te neighborhood action can generate multiple
diferent neighborhoods of the current solution, and the
variable neighborhood descent can obtain the optimal value
by searching alternately with the neighborhood search
structure composed of diferent actions. Te basic steps of
the VNS algorithm are as follows:

Step 1: we generate the initial solution x according to
the upper and lower limits of the variables and set the
number of neighborhood search structures kmax, the
maximum number of searches dmax, and the maximum
number of iterations Gmax.
Step 2: we randomly select a feasible solution x′

according to the k-th neighborhood structure Nk(x) of
the current solution x and then search for x′ in the frst
neighborhood search structure; at this time, k= 1, d= 1,
and g � 1.
Step 3: if the ftness value of the newly generated so-
lution x″ is better than the current solution, update the
optimal solution to x″, we continue to use the current
neighborhood search structure to search, otherwise, let
d= d+ 1, if d>dmax. It shows that the neighborhood
search structure has been unable to obtain a better
solution, that is, the neighborhood search structure has
been obtained the local optimal solution of the
neighborhood, let k= k+ 1.
Step 4: if k≤ kmax is not reached, we go to step 3,
otherwise, we go to step 5.
Step 5: let g � g + 1; if g≤Gmax, we go to step 2;
otherwise, we end the iteration and output the optimal
solution.

Tis article mainly adopts the following three neigh-
borhood structures:

Neighborhood search structure,N1: we randomly select
two processes with diferent process codes in the
processes to exchange.
Neighborhood search structure,N2: we randomly select
a process in the processes and exchange this process
with its subsequent process, if the process is the same,
we reselect it backward until the process is diferent, if
this process is the last process in the processes, then we
rerandomize.
Neighborhood search structure N3: we randomly select
a process in the processes and exchange this process
with its previous process; if the process is the same, we
reselect it forward until the process is diferent; if this

process is the frst in the processes, then we
rerandomize.

3.4. Te TSHOA Algorithm. In this article, a two-stage op-
timization algorithm (TSHOA) is used to solve the fuzzy
silicon single crystal scheduling problem under uncertain
time with multiple sizes. First, the silicon wafer orders are
converted into the number of silicon single crystal rods after
obtaining orders with diferent types of single crystal fur-
naces and silicon wafers of diferent sizes, and the IDE al-
gorithm is used to obtain the allocation of silicon single
crystal rods of diferent sizes produced by diferent types of
single crystal furnaces to complete the frst stage of problem
solving. Ten, the VNS algorithm is used to solve the second
stage, and the batch allocation solution are carried out for
the silicon single crystal rods that need to be produced in
multiple batches, so as to minimize the fnal fuzzy com-
pletion time.

Te TSHOA proposed in this article combines the ad-
vantages of the DE algorithm and the VNS algorithm. Te
DE algorithm has fast convergence performance, simple
parameters, and easy operation, but the algorithm is very
easy to fall into local optimization. Te VNS algorithm is an
improved local search algorithm, which has strong local
search ability and can efectively help the DE algorithm jump
out of the local optimum.Terefore, the proposed algorithm
has better global and local search capabilities and has high
solution accuracy. But because of the variable neighborhood
search feature of the VNS algorithm, when the problem scale
is large, the space of the neighborhood solution will also
grow, which will consume a lot of search time. Specifcally,
the steps are as follows:

Step 1: we set the initialization parameters of the al-
gorithm, the population size Np, the maximum itera-
tion termination number Gmax, the value range of the
independent variable, and let the initial iteration
number Gen� 1.
Step 2: we initialize the population. Te frst stage
initialization is performed. Te initial population is
obtained by random initialization according to the
upper and lower limits of the variables as shown in
formula (17).
Step 3: we calculate and analyze whether it is necessary
to enter the second stage according to the individual
results. As shown in Table 3, when the sum of the
corresponding columns of single crystal furnaces with
diferent thermal felds exceeds the number of single
crystal furnaces, enter the second stage to fnd out the
allocation plan and obtain the objective function. If
entering the second stage, use the neighborhood search
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algorithm under the three criteria to schedule and
optimize the process. If it does not exceed, it means that
the production can be completed in one batch, and the
longest fuzzy processing time is regarded as the fuzzy
completion time of this type of single crystal furnace.
Step 4: judging Gen≤Gmax, if satisfed, let
Gen �Gen + 1, otherwise, output the optimal allo-
cation plan for silicon single crystal production
according to the result with the smallest fuzzy
completion time.
Step 5: we calculate the ftness value according to the
ftness value to obtain the optimal individual xbest and
the ranking of the ftness value of the individual in the
whole population.
Step 6: we obtain the adaptive mutation factor
according to the ranking of ftness values and perform
mutation operation according to formulas (25)–(28).

Step 7: we perform the crossover operation according
to formula (30).
Step 8: we perform the selection operation according to
formula (32), select individuals with lower ftness
values to form a new population, and then go to step 3.

4. Simulation Test

Te research in this article is based on the order task of a
single crystal silicon manufacturer. Te size of the silicon
single crystal rods, charging amount of single crystal furnace
and the corresponding processes production time are shown
in Table 4. Te scheduling results obtained by the proposed
THSOA algorithm are compared to the results obtained by
the manual scheduling. All simulations are implemented in
MATLAB R2016a, Intel(R) Core (™) i7-7700 CPU
@3.60GHz processor with 8.00GB memory programming.

Table 4: Fuzzy processing time of each process.

Process and processing time
Size 22 inch 24 inch 28 inch 32 inch

(Charging
amount) (120 kg) (150 kg) (250 kg) (400 kg)

Charging fuzzy processing time

6 [0.6, 0.9, 1.2] [0.7, 1, 1.2] — —
8 [0.6, 0.9, 1.2] [0.7, 1, 1.2] [1.2, 1.5, 1.7] —
10 [0.6, 0.9, 1.2] [0.7, 1, 1.2] [1.2, 1.5, 1.7] —
12 — — [1.2, 1.5, 1.7] [1.7, 2, 2.2]

Melting fuzzy processing time

6 [6, 7, 8] [8, 9, 10] — —
8 [6, 7, 8] [8, 9, 10] [14, 15, 16] —
10 [6, 7, 8] [8, 9, 10] [14, 15, 16] —
12 — — [14, 15, 16] [19, 20, 21]

Seeding fuzzy processing time

6 [2, 3, 6] [2, 3, 6] — —
8 [2, 3, 6] [2, 3, 6] [2, 3, 6] —
10 [2, 3, 6] [2, 3, 6] [2, 3, 6] —
12 — — [2, 3, 6] [2, 3, 6]

Shouldering fuzzy processing time

6 [1.1, 1.2, 1.3] [1.1, 1.2, 1.3] — —
8 [1.4, 1.5, 1.6] [1.4, 1.5, 1.6] [1.4, 1.5, 1.6] —
10 [1.7, 1.8, 1.9] [1.7, 1.8, 1.9] [1.7, 1.8, 1.9] —
12 — — [2.2, 2.3, 2.4] [2.2, 2.3, 2.4]

Equal diameter growth fuzzy processing
time

6 [51, 53, 55] [64, 66, 68] — —
8 [28, 30, 32] [35, 37, 39] [59.9, 61.9, 63.9] —

10 [30, 32, 34] [38.5, 40.5,
42.5] [65.5, 67.5, 69.5] —

12 — — [78, 80, 82] [126, 128, 130]

Ending fuzzy processing time

6 [2.5, 3, 3.5] [2.5, 3, 3.5] — —
8 [3.5, 4, 4.5] [3.5, 4, 4.5] [3.5, 4, 4.5] —
10 [5, 6, 7] [5, 6, 7] [5, 6, 7] —
12 — — [9, 10, 11] [9, 10, 11]

Cooling down the furnace fuzzy processing
time

6 [5, 5.5, 6] [5, 5.5, 6] — —
8 [6, 7, 8] [6, 7, 8] [6, 7, 8] —
10 [8, 9, 10] [8, 9, 10] [8, 9, 10] —
12 — — [13, 14, 15] [13, 14, 15]

Total fuzzy processing time

6 [68.2, 73.6, 81] [83.3, 88.7, 96] — —

8 [47.5, 53.4,
61.3]

[56.6, 62.5,
70.3] [88, 93.9, 101.7] —

10 [53.3, 59.7,
68.1]

[63.9, 70.3,
78.6]

[97.4, 103.8,
112.1] —

12 — — [119.4, 125.8,
134.1]

[172.9, 179.3,
187.6]
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4.1.ParameterSettings. In the frst stage, the IDE algorithm
parameters are set as follows: the maximum variation
factor is Fmax = 1, the minimum variation factor is
Fmin = 0.1, crossover probability, the maximum crossover
probability is CRmax � 0.9, the minimum crossover
probability is CRmin � 0.1, the population size is Np � 60,
and the maximum number of iterations is 300. Te VNS
algorithm is used in the second stage, and the population
size Np � 50, the maximum number of iterations is 100,
the maximum number of searches is 10 times, and three
kinds of neighborhood search structures in Section 3.3 are
used.

Te number of 6-inch, 8-inch, 10-inch, and 12-inch
silicon single crystals is 30, 25, 22, and 18 pieces
per kilogram, respectively. Te order demand number of
6-inch, 8-inch, 10-inch, and 12-inch silicon single
crystals is 60,000 pieces, 80,000 pieces, 20,000 pieces,
and 50,000 pieces, respectively. And the number of
22-inch, 24-inch, 28-inch, and 32-inch single crystal
furnaces is 5.

4.2. Experimental Results’ Comparison and Analysis.
According to the order demand, the objective of this study is
that the fuzzy completion time is the shortest. Figure 3 is the
objective convergence curve, the abscissa represents the
number of iterations times, and the ordinate represents
the convergent completion time. It can be seen from Figure 3
that the TSHOA has reached convergence nearly 80 iterative
times and its convergence speed is fast, so the solution efciency
can be greatly improved in the process of solving the problem.

At present, the single crystal furnace of larger thermal
felds is used to produce the corresponding size silicon
single crystal rods by using the manual scheduling
method. And the order allocation results obtained by the
proposed algorithm and manual scheduling method are
shown in Tables 5 and 6. When the quantity of silicon
single crystals with diferent sizes is determined, it will be
more wasteful to use manual methods, and the use of
optimization-based algorithm will not only meet the
production needs but also try to avoid resource waste. For
example, it can be seen from Tables 5 and 6 that if the

Table 5: Te allocation results obtained by the TSHOA scheduling.

Silicon single crystal rod size
Termal felds’ size

Actual production quantity (kg) Order quantity (kg)
22 inch 24 inch 28 inch 32 inch

6 inch 3 11 — — 2010 2000
8 inch 11 1 7 — 3220 3200
10 inch 3 2 1 — 910 910
12 inch — — 2 6 2900 2778

Table 6: Te allocation results obtained by the manual scheduling.

Silicon single crystal rod size
Termal felds’ size

Actual production quantity (kg) Order quantity (kg)
22 inch 24 inch 28 inch 32 inch

6 inch 0 14 — — 2100 2000
8 inch 0 0 13 — 3250 3200
10 inch 0 0 4 — 1000 910
12 inch — — 0 7 2800 2778
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Figure 3: Te convergence curve of optimization objective.
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output quantity of a 6-inch silicon single crystal is 2000 kg,
the optimal production result will also produce 2100 kg
obtained by the manual method production, while only
2010 kg will be produced based on the optimization-based
method, which will reduce the waste of 90 kg output
resources.

Te allocation results obtained by the TSHOA algorithm
and the manual scheduling method are given in Tables 7 and
8, and the production batches are allocated in silicon single
crystal furnace of diferent thermal felds size, among them,
1, 2, 3, and 4 stand for numerical index, which means silicon
single crystal rods of 6 inch, 8 inch, 10 inch, and 12 inch,
respectively.

From the batch allocation results of Tables 7 and 8, the
solution results obtained by the optimization-based algo-
rithm can be used for production in a 22-inch single crystal
furnace. However, if the production cycle is shortened
through the manual scheduling method, a large size silicon
single crystal furnace can be used to produce small size
silicon single crystal rods to improve production efciency,
but it will undoubtedly increase the burden of production
energy consumption, material consumption, etc. Table 8
shows that the 22-inch silicon single crystal furnace is not
used, which undoubtedly increases the waste of resources.
From the batch allocation results of Tables 7 and 8 and the
fuzzy processing times of Table 4, the fuzzy completion time

Table 7: Te production batch allocation results obtained by the TSHOA scheduling.

Silicon single crystal furnace size Device ID Te frst batch Te second batch Te third batch Te fourth batch

22-inch thermal feld

M11 2 3 3 —
M12 2 3 1 —
M13 1 1 2 —
M14 2 2 2 2
M15 2 2 2 2

24-inch thermal feld

M21 1 1 1 —
M22 1 1 1 —
M23 1 1 3 —
M24 1 1 — —
M25 2 1 3 —

28-inch thermal feld

M31 1 1 — —
M32 2 1 — —
M33 3 1 — —
M34 1 3 — —
M35 1 1 — —

32 inches thermal feld

M41 4 4 — —
M42 4 — — —
M43 4 — — —
M44 4 — — —
M45 4 — — —

Table 8: Te production batch allocation results obtained by the manual scheduling.

Silicon single crystal furnace size Device ID Te frst batch Te second batch Te third batch Te fourth batch

22-inch thermal feld

M11 — — — —
M12 — — — —
M13 — — — —
M14 — — — —
M15 — — — —

24-inch thermal feld

M21 1 1 1 —
M22 1 1 1 —
M23 1 1 1 —
M24 1 1 1 —
M25 1 1 — —

28-inch thermal feld

M31 1 2 1 —
M32 1 2 2 —
M33 1 1 1 1
M34 1 1 1 1
M35 1 2 1 —

32-inch thermal feld

M41 4 4 — —
M42 4 4 — —
M43 4 — — —
M44 4 — — —
M45 4 — — —
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Figure 4: Fuzzy scheduling Gantt chart obtained by the 22-inch thermal feld single crystal furnace.
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Figure 6: Fuzzy scheduling Gantt chart obtained by the 28-inch thermal feld single crystal furnace.
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of every size single crystal furnace can be obtained. Te
maximum fuzzy completion time obtained by the TSHOA
and manual scheduling method is (273.9, 290.1, 312) and
(384.4, 407.6, 438.8), respectively. So, the proposed TSHOA
algorithm can greatly reduce the processing time, improve
production efciency, and thus reduce production cost.

Figures 4–6 are the fuzzy scheduling Gantt charts ob-
tained by the single crystal furnaces corresponding to the 22-
inch thermal feld, the 24-inch thermal feld, and the 28-inch
thermal feld, respectively. Te lower triangle represents the
fuzzy opening time of the process, and the upper triangle
represents the fuzzy completion time of the process. Tere
are three subscripts on the triangle, which represent the
batch of processing, the size of processing, and the current
process.

5. Conclusion

In this paper, the silicon single crystal production batch
scheduling problem with multiple size under uncertain
processing time is studied. Taking minimizing the fuzzy
maximum completion time as the optimization objective, a
two-stage hybrid optimization algorithm (TSHOA) is
designed.

Te main conclusions are as follows:

(1) Te scheduling problem faced in the actual pro-
duction process is transformed into a mathematical
problem, and a scheduling mathematical model with
the objective function of minimizing the maximum
completion time is established.

(2) Te algorithm mainly combines the respective ad-
vantages of the improved diferential evolution
(IDE) algorithm and the variable neighborhood
search algorithm (VNS) to solve the scheduling
mathematical model.

(3) Te IDE was used to solve the problem of order
quantity allocation for silicon single crystals with
diferent sizes, so as to obtain the quantity of silicon
single crystal rods with diferent sizes produced by
diferent types of single crystal furnaces.

(4) Te VNS algorithm is used to perform batch
scheduling on the order size ranking problem to
determine the optimal batch production process.Te
experimental results obtained by the optimization-
based algorithm are compared with the manual
method analysis to save production time and im-
prove production efciency.

(5) Te article adopts fuzzy processing method to deal
with the widely existing processing time uncertainty
production scheduling problems, which is more in
line with production requirements.

Te limitations of the study are as follows:
Tis article is a preliminary study of fuzzy scheduling

problem on multiple size silicon single crystal production
using intelligent optimization algorithm. Firstly, this article
only considers the completion time as a production index of
the optimization objective. Although it can be recognized in

theoretical simulation, it is more ideal in the actual pro-
duction process. Te actual production environment should
also consider many factors such as energy consumption,
economic cost, machine breakdown, and other objective.
Secondly, the proposed intelligent optimization algorithm
should be more universal, not just for solving the problems
studied in this paper. Terefore, in the future research work,
the proposed algorithm needs to be improved to solve more
practical production scheduling problems.
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