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SUMMARY

We present closed form expressions of asymptotic bias for the causal odds ratio from two estimation
approaches of instrumental variable logistic regression: 1) the two-stage predictor substitution (2SPS)
method; and 2) the two-stage residual inclusion (2SRI) approach. Under the 2SPS approach, the first
stage model yields the predicted value of treatment as a function of an instrument and covariates,
and in the second stage model for the outcome, this predicted value replaces the observed value of
treatment as a covariate. Under the 2SRI approach, the first stage is the same, but the residual term
of the first stage regression is included in the second stage regression, retaining the observed treatment
as a covariate. Our bias assessment is for a different context than that of Terza[1] who focused on the
causal odds ratio conditional on the unmeasured confounder, whereas we focus on the causal odds
ratio among compliers under the principal stratification framework. Our closed form bias results show
that the 2SPS logistic regression generates asymptotically biased estimates of this causal odds ratio
when there is no unmeasured confounding and that this bias increases with increasing unmeasured
confounding. The 2SRI logistic regression is asymptotically unbiased when there is no unmeasured
confounding, but when there is unmeasured confounding, there is bias and it increases with increasing
unmeasured confounding. The closed form bias results provide guidance for using these IV logistic
regression methods. Our simulation results are consistent with our closed form analytic results under
different combinations of parameter settings. Copyright c© 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Instrumental variable (IV) methods are used to estimate effects of receiving treatment or
exposure to risk factor on outcome when there is unmeasured confounding in medical research,
such as in clinical trials under non-adherence to treatment[2] or observational studies[3, 4].
We present closed form expressions of asymptotic bias for the causal odds ratio from two-
stage logistic regressions, which is an extension of the conventional IV method for continuous
outcomes to a binary outcome.
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Pennsylvania School of Medicine, Blockley Hall, Guardian Dr., Philadelphia, PA 19104-6021 (E-
mail:bcai@mail.med.upenn.edu)



BIAS OF TWO-STAGE LOGISTIC REGRESSION 1

In the following discussion, we use ”treatment” to represent either treatment received or
exposure to a risk factor. An IV has the following properties: a) it is associated with treatment;
b) it has no direct causal effect on the outcome(exclusion restriction); and c) it is independent
of all (unmeasured) confounders of the treatment-outcome relationship[3, 5, 7, 8]. Note that in
randomized trials, the randomized treatment assignment IV is independent of all confounders
because it is randomized. In an observational study, the IV could be associated with measured
confounders as long as it is independent of all unmeasured confounders of the treatment-
outcome relationship conditional on the measured confounders, and the measured confounders
are controlled for in the analysis [7]. Under these conditions, the IV analysis of the treatment-
outcome relationship controls for measured and unmeasured confounding [5, 9, 10, 11].

In the context of randomized trials, the IV analysis has been used to adjust for all
measured and unmeasured confounding due to treatment non-compliance when estimating
the effect of actually receiving treatment. Such confounding factors impact outcome while
causing treatment non-compliance or switching from one treatment to another. While intent-
to-treat (ITT) inference comparing randomized groups but ignoring treatment non-compliance
is protected against such unmeasured confounding, this inference pertains to the effect of
prescribing or assigning treatment in the population with the same rate and pattern of non-
compliance in the particular trial. Using randomized treatment as an IV, IV inference for the
effect of receiving treatment is not dependent on the rate of compliance in the trial except
that lower compliance leads to higher variability[12]. This IV inference aims to estimate the
effect of actually receiving treatment, which is useful for individual patient decisions and for
predicting the effect of making the treatment available to populations in which the rate of
compliance might differ from the trial[13, 14].

Besides clinical trials, IV methods are used in observational studies, such as data-based
evaluations of the effect of medication on clinical or adverse outcomes. IVs such as physician’s
prescribing preference[15, 16, 17, 18, 19], clinic or hospital[20],or geographic region[21, 22, 23]
have been used to adjust for confounders of the intervention-outcome relationship.

For the additive effect of treatment, Angrist, Imbens and Rubin [5] consider five assumptions
for a setting with a proposed IV that are explained in detail in Section 2. Briefly, the
key assumptions are that the proposed IV is associated with treatment, is independent
of unmeasured confounders given the measured confounders and that the IV only affects
outcome through treatment received and there are no defiers. With these assumptions, they
used principal stratification[6] to motivate interpretation of the IV estimand. Under the
principal stratification framework, the population is divided into sub-classes based on potential
treatment receipt that would occur under each level of the IV. In the context of randomized
trials with non-compliance, the principal strata are defined as compliers, who adhere to the
assignment of treatment but do not take it when not assigned to it; always-takers and never-
takers, who respectively always or never take treatment regardless of assignment; and defiers,
who only take treatment when not assigned to it. They proved that the probability limit of
the two-stage least squares estimator, the usual IV estimator, is the average causal effect of
receiving treatment among compliers, which is called the local average treatment effect (LATE)
or the complier average causal effect (CACE). Under certain no-interaction assumptions, this
effect pertains to other sub-groups including anyone who takes the treatment or all patients.
The estimands for other types of estimators based on structural mean models can be interpreted
similarly [24, 25].

For binary outcomes, the IV approach has been extended in different ways for inference
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based on odds ratios under logistic models, where the odds ratio is interpreted as the
effect of treatment on outcome in compliers. Those approaches include the Bayesian logistic
model estimated with Markov-Chain Monte Carlo techniques[26], the structural mean model
(SMM)[27, 28, 29], and a multi-stage approach including an estimation step for the prediction
of treatment as a function of the IV[30].

Terza et al.[1] extended the two-stage IV approach for non-linear models including the
logistic regression model (two-stage predictor substitution (2SPS)), where the predictor of
treatment as a function of the IV replaces observed treatment in the treatment-outcome
model. This two-stage logistic regression IV approach was applied to observational studies
and compared with other IV methods such as the probit structural equation model and a
generalized method of moment (GMM) IV approach[31]. Alternatively, Nagelkerke et al.[32]
and Terza et al.[1] offered an approach where the treatment-outcome model includes a residual
term from the treatment-IV model (two-stage residual inclusion (2SRI)). The 2SRI procedure
is equivalent to the 2SPS approach under the linear model, but this is not the case under the
logistic model. Terza[1] showed analytical and simulation-based differences under a true model
for the causal effect of treatment conditional on the unmeasured confounder.

Given the focus of much of the clinical trials literature on the causal effect of treatment in
compliers, there is a need for assessment of the 2SPS and 2SRI two-stage logistic estimators
with respect to this causal effect. We present analytical and simulation results for the bias of
these two estimators under a causal logistic model expressed in terms of potential outcomes
under the principal stratification framework, following the results of Angrist et al.[5] for the
additive model. We also confirm our analytic result with simulations, and the simulations
further reveal patterns of bias for different ranges of confoundings. Our bias evaluation is for
a different context from that of Terza et al.[1], who focused on the causal odds ratio in the
total population conditional on the unmeasured confounder, whereas we focus on the causal
odds ratio among compliers.

2. ASSUMPTION AND NOTATION

We have the same five assumptions as Angrist, Imbens and Rubin stated in their causal
model[5]: 1) Stable unit treatment value assumption (SUTVA)[33, 34], which means that
potential outcomes for each person is unrelated to the treatment status of other individuals;
this assumption also implies the consistency assumption, which means the potential outcome of
a certain treatment will be the same regardless of the treatment assignment mechanism[35]; 2)
Random assignment assumption, which means that the IV is unrelated, as the randomized
assignment, to all confounders in the randomized clinical trials, or it is unrelated to the
unmeasured confounders (conditional on the measured confounders) of the treatment-outcome
relationship in observational studies; 3) Exclusion restriction, which means that any effect of
treatment assignment on outcomes must be via an effect of treatment assignment on treatment
received; 4)Nonzero average causal effect of treatment assignment on treatment received, which
means that the treatment assignment should be associated with treatment received; and 5)
Monotonicity, which means that there is no one who does the opposite of his/her treatment
assignment, regardless of the actual assignment.

With the above five assumptions, we first define R and Z as the treatment assignment and
treatment received variables, respectively. First, R=1 denotes that a patient is assigned to
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the study treatment, and R=0 means a patient is assigned to the other treatment (or non-
treatment), thus R is the IV. Similarly, Z=1 means that a patient receives the study treatment,
and Z=0 means that a patient receives the other treatment (or non-treatment). Additionally,
Y (1) and Y (0) are the variables for potential outcomes. Y (1) indicates what the outcome for
a patient would be if this patient were to take the study treatment, and Y (0) indicates what
the outcome for this patient would be if he/she were to take the other treatment (or non-
treatment). In contrast, Y is the variable for the observed outcome. Similarly, Z(1) and Z(0)

are the variables for potential treatment. Z(1) indicates what treatment a patient would take
if this patient were assigned to the study treatment, and Z(0) indicates what treatment this
patient would take if he/she were assigned to the other treatment (or non-treatment). Based on
the principal stratification and potential outcome framework, patients are defined as always-
takers (AT) if Z(1) = 1 and Z(0) = 1; compliers (C) if Z(1) = 1 and Z(0) = 0; never-takers
(NT) if Z(1) = 0 and Z(0) = 0; and defiers (DF) if Z(1) = 0 and Z(0) = 1.

Accordingly, we define the following parameters in the principal stratification framework:

ω1
A = Pr

(
Y (1) = 1|AT

)
,

ω1
C = Pr

(
Y (1) = 1|C

)
,

ω1
N = Pr

(
Y (1) = 1|NT

)
,

ω0
A = Pr

(
Y (0) = 1|AT

)
,

ω0
C = Pr

(
Y (0) = 1|C

)
,

ω0
N = Pr

(
Y (0) = 1|NT

)
,

r = Pr (R = 1) ,
ρA = Pr(AT ),
ρC = Pr(C).

With our monotonicity assumption, there are no defiers[5], i.e., Pr(DF ) = 0. Hence,

Pr(NT ) = ρN = 1− ρA − ρC .

The causal log odds ratio for compliers is parameterized as:

ψ = logit
[
Pr

(
Y (1) = 1|C

)]
− logit

[
Pr

(
Y (0) = 1|C

)]
= logit

(
ω1

C

)
− logit

(
ω0

C

)
.

The parameter ψ is the log of the odds ratio that compares the probability of Y = 1 if all
compliers received the study treatment to the probability of Y = 1 if all compliers received
the other treatment (or no treatment).

3. BIAS OF TWO-STAGE PREDICTOR SUBSTITUTION (2SPS)

In this section, we derive a closed form expression for the probability limit of the two-stage 2SPS
logistic regression estimator based on the principal stratification framework and assumptions.
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We can then obtain closed form expressions for the bias, which is the difference between the
expected value of the two-stage regression estimator and the causal log odds ratio.

3.1. Probability limit of the estimator

The first stage regression is the treatment received on the treatment assignment R as the IV.
LetD = E(Z|R) and D̂ be an estimator of D (e.g., maximum likelihood) such that D̂ converges
in probability to D, D̂ = Ê(Z|R). Two-stage logistic regression estimates the causal log odds
ratio with the coefficient for D̂ in the logistic regression of Y on D̂. Let ξ̂ be an estimator
(e.g., maximum likelihood) of the log odds ratio for D in the logistic regression of Y on D, and
let ξ̂

∗
be the estimator of the log odds ratio for D̂ in the logistic regression of Y on D̂(i.e.,

the two-stage 2SPS estimator). As the sample size gets larger, D̂ −→ D and |ξ̂∗ − ξ̂| p−→ 0
[36, 37], i.e., ξ̂

∗
converges in probability to ξ under the true model conditional on D, which is

P (Y = 1|D) = expit(η + ξD). We now find an expression for ξ as a function of the log odds
ratio for treatment received among compliers under the principal stratification framework.

When R=0, only always-takers will receive the treatment; when R=1, both always-takers
and compliers will get the treatment. It follows that:

d0 = E(Z|R = 0) = ρA (1)

and
d1 = E(Z|R = 1) = ρA + ρC . (2)

Then for the second stage logistic regression we have:

logitPr (Y = 1|R = 0)
= logitPr (Y = 1|D = d0)
= η + ξd0,

logitPr (Y = 1|R = 1)
= logitPr (Y = 1|D = d1)
= η + ξd1.

Solving the above two equations for ξ, we have:

ξ =
logitPr (Y |R = 1)− logitPr (Y |R = 0)

d1 − d0
.

Under the five assumptions stated in Section 2 and the above parameter settings, the
probability of observed Y given R can be expressed as the conditional probability of potential
outcome Y (0) and Y (1). We can then calculate Pr (Y |R = 1) and Pr (Y |R = 0) as follows:

logitPr (Y |R = 1) = logit
(
ρAω

1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N

)
,

logitPr (Y |R = 0) = logit
(
ρAω

1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N

)
.
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The full proof of these equations is in Appendix A1. From the above equation, we can calculate
ξ as follows:

ξ =
logitPr (Y |R = 1)− logitPr (Y |R = 0)

d1 − d0
(3)

=
logit

(
ρAω

1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N

)
− logit

(
ρAω

1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N

)
ρC

.

Since ξ̂ converges in probability to ξ, equation (3) is a closed form expression for the probability
limit of the two-stage logistic regression estimator of ξ̂.

3.2. Bias analysis

Having derived the closed form expression of ξ, we can calculate the difference between ψ and
ξ, the asymptotic bias of the two-stage logistic regression.

B2SPS = ξ − ψ (4)

=
1
ρC

(
logit

(
ρAω

0
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N

)
−logit

(
ρAω

0
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N

) )
−

(
logit

(
ω1

C

)
− logit

(
ω0

C

))
=

1
ρC

(
logit(ρAω

0
A + ρCω

1
C + expit

(
logit

(
ω0

C

)
+ δ

)
ρN )

−logit(ρAω
0
A + ρCω

0
C + expit

(
logit

(
ω0

C

)
+ δ

)
ρN )

)
−

(
logit

(
ω1

C

)
− logit

(
ω0

C

))
.

In the above equation, we re-parameterize the ω0
N and introduce a new parameter δ as follow,

logit
(
ω0

N

)
= logit

(
ω0

C

)
+ δ,

then

ω0
N = expit

(
logit

(
ω0

C

)
+ δ

)
= ω0

C

eδ

ω0
Ce

δ − ω0
C + 1

.

The parameter δ is the difference between ω0
N and ω0

C on the logit scale, so it is the log
odds ratio of never-takers over compliers regarding the outcome. Given differences between
principal strata are due to unmeasured confounders related to outcome, δ in equation (4) can
be interpreted as the magnitude of confounding, where δ = 0 implies no confounding because
ω0

N=ω0
C .

From the equation (4), we can easily see:

a) When ρC = 1 (everyone is a complier in a randomized controlled trial with perfect
adherence), B2SPS = 0. This is because when ρC = 1, both ρA and ρN are 0. In equation (4),
if we replace ρC by 1 and both ρA and ρN by 0, we have B2SPS = 0.

b) When ω1
C = ω0

C (there is no causal effect), B2SPS = 0. If we replace ω1
C by ω0

C in equation
(4), all terms are canceled out and we have B2SPS = 0.

c) The bias function does not include R, thus bias is not related to Pr(R = 1).
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d) Bias can exist even when there is no confounding, that is, when ρA = 0 and ω0
C = ω0

N .
Replacing ρA by 0 in equation (4), we have

B2SPS =

logit
(
ρAω

1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N

)
−logit

(
ρAω

1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N

)
ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
=
logit

(
ρCω

1
C + ω0

N − ρCω
0
N

)
− logit

(
ω0

N

)
ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

In this equation, B2SPS is generally not 0, because ρC in the denominator can not be canceled
out with the ρC in the logit function of the numerator. The no always-taker condition occurs
when patients in a trial can’t possibly have access to the treatment without being assigned to
that treatment. Since never-taker can not get the study treatment, confounding occurs only
when there is difference between the probability of outcome of compliers and that of never-
takers when they are not given the treatment. Thus, there is no confounding when ρA = 0 and
ω0

C = ω0
N .

With the closed form expression (4), we can analyze the magnitude of bias under different
parameter settings according to specific studies. To simplify the analysis and show the
relationship between bias and confounding, we create four such scenarios when there are no
always-takers. We plot bias against δ while fixing all other parameters.

(Figure 1a-d Here)

Fig 1a. Plot of bias on magnitude of confounding δ with 2SPS approach. ρA=0, ρC=0.8,
ω1

C=0.6, ω0
C=0.3.

Fig 1b. Plot of bias on magnitude of confounding δ with 2SPS approach. ρA=0, ρC=0.5,
ω1

C=0.6, ω0
C=0.3.

Fig 1c. Plot of bias on magnitude of confounding δ with 2SPS approach. ρA=0, ρC=0.5,
ω1

C=0.06, ω0
C=0.03.

Fig 1d. Plot of bias on magnitude of confounding δ with 2SPS approach. ρA=0, ρC=0.5,
ω1

C=0.006, ω0
C=0.003.

All four plots show that the bias is not 0 when there is no confounding (δ = 0). When the
compliance rate decreases from 0.8 to 0.5, the bias on the logit scale is about 5 time larger
(compare plot 1a and plot 1b). Comparing plot 1b and plot 1c, we can see that when the event
rate is lower, the bias range is larger, but when the event rate is decreased from 0.03 to 0.003,
the absolute bias does not increase further.
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4. BIAS OF TWO-STAGE RESIDUAL INCLUSION (2SRI)

In this section, we extend to the 2SRI estimator, the derivation in Section 3 of bias of the
2SPS under the principal stratification framework. In the first stage regression of treatment
received on the treatment assignment R as an IV, the residual is E = Z − E(Z|R), and the
second stage regression model is

Pr(Y = 1) = expit (λ0 + λ1Z + λ2E) . (5)

The estimator of λ1 is an estimate of the causal log odds ratio for receiving treatment among
compliers. We derive a closed form expression for the probability limit of the estimator of λ1.
This enables us to derive a closed form expression for the asymptotic difference between the
probability limit of the estimator of λ1 and the causal log odds ratio among compliers.

4.1. Closed form expression for the probability limit of the estimator

For the 2SRI approach, in general, equation (5) is not the true model for Pr(Y = 1|Z,E),
as the true model includes the interaction term between Z and E; this makes it much more
difficult to develop a closed form expression for the probability limit of the estimator. However,
if we assume that there are no always-takers, so that Pr (Z = 1, R = 0) = 0, then the true
model does not have the interaction term and the 2SRI model in equation (5) is the true
model (see the details in Appendix A2). In this section, we develop a closed form expression
for the probability limit of the estimator of λ1 only under the no always-taker assumption.
The no always-taker assumption is true in clinical trials when patients in the placebo group
cannot access the study drug. In contrast, the bias results for the 2SPS estimator depend on
a true model conditional on just Z (treatment-received) that does not require the absence of
always-takers.

The residual E = Z − E(Z|R) is estimated from the first stage regression, and is included
as a covariate in the second stage regression. Letting Ê = Z− Ê(Z|R), we consider the second
stage regression Pr(Y = 1|Z, Ê) = expit(λ0 + λ1Z + λ2Ê). The 2SRI approach estimates the
causal log odds ratio with the estimated coefficient for Z in the logistic regression of Y on Z
and Ê. Let λ̂1 denote the estimated coefficient for Z in the logistic regression of Y on Z and E,
and let λ̂∗1 denote the estimated coefficient for Z in the logistic regression of Y on Z and Ê. As
the sample size gets larger, Ê −→ E and |λ̂∗1 − λ̂1|

p−→ 0[36, 37]. The estimator λ̂∗1 converges
in probability to λ1 under the model Pr(Y = 1|Z,E) = expit(λ0 + λ1Z + λ2E) when there
are no always-takers. When there are always-takers, the 2SRI model is misspecified. In this
situation, λ̂∗1 estimated from the second stage logistic regression converges to the point that
minimizes the Kullback-Leibler distance between the family of probability distributions being
maximized over the true probability distribution[38].

Under the no always-taker assumption, we can find an expression for λ1 as follows. From
the equations (1) and (2), we have

E(Z|R) = ρA + ρCR,

so

E = Z − E(Z|R) = Z − ρA − ρCR.
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Note that Z,E and Z,R contain the same information; i.e., knowing Z,E tells us Z,R and
vice versa, so that Pr(Y = 1|Z,E) = Pr(Y = 1|Z,R). For the second stage regression, we
have

logitPr (Y = 1|Z,E) (6)
= λ0 + λ1Z + λ2E

= λ0 + λ1Z + λ2 (Z − ρA − ρCR)
= λ0 − λ2ρA + (λ1 + λ2)Z − λ2ρCR

= logitPr (Y = 1|Z,R) .

Then we have three equations based on the possible values of Z and R ((Z=1,R=0) is not
possible because there are no always-takers):

logitPr (Y = 1|Z = 1, R = 1) (7)

= logitPr
(
Y (1) = 1|Z = 1, R = 1

)
= logit

(
ρA

ρA + ρC
ω1

A +
ρC

ρA + ρC
ω1

C

)
= λ0 − λ2ρA + (λ1 + λ2)− λ2ρC ,

logitPr (Y = 1|Z = 0, R = 1) (8)

= logitPr
(
Y (0) = 1|Z = 0, R = 1

)
= logitPr(Y (0) = 1|NT )

= logit(ω0
N )

= λ0 − λ2ρA − λ2ρC ,

logitPr (Y = 1|Z = 0, R = 0) (9)

= logitPr
(
Y (0) = 1|Z = 0, R = 0

)
= logit

(
1− ρA − ρC

1− ρA
ω0

N +
ρC

1− ρA
ω0

C

)
= λ0 − λ2ρA.

Solving equations (7), (8) and (9) for λ1 yields the closed form expression for λ1 as:

λ1 = logit

(
ρA

ρA + ρC
ω0

A +
ρC

ρA + ρC
ω1

C

)
− logit(ω0

N ) (10)

− 1
ρC

logit

(
1− ρA − ρC

1− ρA
ω0

N +
ρC

1− ρA
ω0

C

)
+

1
ρC

logit(ω0
N ).

4.2. Bias analysis

With the closed form expression for the probability limit of λ̂1, we can calculate B2SRI , the bias
defined as the difference between the log odds ratio for treatment-received among compliers
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and the estimated log odds ratio with the 2SRI approach.

B2SRI = λ1 − ψ (11)

= logit

(
ρA

ρA + ρC
ω1

A +
ρC

ρA + ρC
ω1

C

)
− logit(ω0

N )

− 1
ρC

logit

(
1− ρA − ρC

1− ρA
ω0

N +
ρC

1− ρA
ω0

C

)
+

1
ρC

logit(ω0
N )

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
= logit

(
ρA

ρA + ρC
ω1

A +
ρC

ρA + ρC
ω1

C

)
− logit

(
expit

(
logit

(
ω0

C

)
+ δ

))
− 1
ρC

logit

(
1− ρA − ρC

1− ρA

(
expit

(
logit

(
ω0

C

)
+ δ

))
+

ρC

1− ρA
ω0

C

)
+

1
ρC

logit
(
expit

(
logit

(
ω0

C

)
+ δ

))
− logit

(
ω1

C

)
+ logit

(
ω0

C

)
.

δ is the same parameter as in equation (4). The following conclusions follow from equation (11):

a) When ρC = 1 (everyone is a complier), B2SRI = 0. If ρC = 1, both ρA and ρN equal to
0. Plug in these values of ρC , ρA and ρN to the equation (11), B2SRI = 0. ρC = 1 can only
occur in a randomized control trial with perfect adherence.

b) When ω0
C = ω0

N , and ω1
A = ω1

C (there is no confounding), we replace ω0
N with ω0

C , and
ω1

A with ω1
C in equation (11), yielding B2SRI = 0. That is, when there is no confounding, the

2SRI approach is unbiased.

As in section 3 with the 2SPS estimator, we use equation (11) to analyze the magnitude of
bias of the 2SRI estimator under different scenarios as follows.

(Figure 2a-d Here)

Fig 2a. Plot of bias on magnitude of confounding δ with 2SRI approach. ρA=0, ρC=0.8,
ω1

C=0.6, ω0
C=0.3.

Fig 2b. Plot of bias on magnitude of confounding δ with 2SRI approach. ρA=0, ρC=0.5,
ω1

C=0.6, ω0
C=0.3.

Fig 2c.Plot of bias on magnitude of confounding δ with 2SRI approach. ρA=0, ρC=0.5,
ω1

C=0.06, ω0
C=0.03.

Fig 2d. Plot of bias on magnitude of confounding δ with 2SRI approach. ρA=0, ρC=0.5,
ω1

C=0.006, ω0
C=0.003.

All four plots (Fig 2a-2d) show that when there is no confounding (δ = 0), the bias of
the 2SRI estimator is zero. The first scenario shows that when the compliance rate is high
(0.8), the bias is small for a wide range of confounding. The second scenario shows that if the
outcome is not rare, the bias is very small unless δ is smaller than -1 or greater than 2, which
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means that the odds ratio comparing compliers to never-takers with respect to the potential
outcomes is smaller than 0.37 or greater than 7.4. These scenarios correspond to very strong
confounding. Figure 2c shows the scenario when the outcome is rare, with ω1

C and ω0
C one

tenth of those in scenario 1, The bias for this scenario is larger than that of scenario 1, but
the bias is still moderate if the confounding is not very severe. In scenario 4, we make the
outcome even rarer. The magnitude of bias does not change much compared to the bias under
scenario 3. Therefore, we can conclude that for the 2SRI model, there is bias when there is
confounding, but the bias is small to moderate if the confounding is not severe.

5. SIMULATION

5.1. Simulation algorithm

We simulated the data sets according to the following algorithm:

Step 1: Generate a data set with total number of N subjects. Among these subjects,
always-takers (ATs), compliers (Cs), and never-takers (NTs) are generated from a multinomial
distribution with probability of ρA for ATs, probability of ρC for Cs and probability of ρN

for NTs. With the statistical programming package R, this step can be implemented by
W=t(rmultinom(n, 1, c(ρA,ρC , ρN ))).

Step 2: With the probability of Pr(R = 1) = r, randomly assign about rN of the subjects
to R=1 and the rest of (1 − r)N subject to R = 0. This step can be implemented by
R=t(rmultinom(n, 1, c(r,1-r))) in the package R.

Step 3: Simulate Y (0) and Y (1) based on the value of AT, C or NT, and the parameter ω1
A,

ω1
C , ω1

N , ω0
A, ω0

C , and ω0
N . For instance, if an subject is AT, then Pr(Y (0) = 1) = ω0

A, and
Pr(Y (1) = 1) = ω1

A. With these probabilities, we can create Y (1) and Y (0) with the binomial
distribution. We implemented this step in the package R with the following program:

prY0=W[,1]*ω0
A+W[,2]*ω0

C+W[,3]*ω0
N

dim(prY0)=c(n,1)
prY1=W[,1]*ω1

A+W[,2]*ω1
C+W[,3]*ω1

N

dim(prY1)=c(n,1)
Y0=apply(prY0, 1, function (x) rbinom(1,1,x))
Y1=apply(prY1, 1, function (x) rbinom(1,1,x))

Step 4: Based on AT, C or NT, and R, determine Z. For instance, if an observation is in
either the AT or C group, and the treatment assignment R=1, then Z=1.

Step 5: Based on Z , Y (0) and Y (1), determine Y
Y = Y (1)Z + Y (0)(1− Z).
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5.2. Simulation results

For each setting, we ran the simulation 2000 times, with the sample size of n=10000. For
both 2SPS and 2SRI approaches, we simulated data with different selection of parameters.
As examples, Table 1 shows the results with the parameter settings without always-takers:
ρA = 0; ρC = 0.5 (thus ρN = 0.5); ω0

C = 0.3 or ω0
C = 0.03; ω1

C = 0.6 or ω1
C = 0.06; δ varies

among 2, 1.5, 1, 0.5, 0, -0.5, -1, -1.5 or -2. For these simulations, the bias is calculated as the
difference between the mean of estimated log odds ratio (ξ̂ for 2SPS and λ̂1 for 2SRI) and the
log odds ratio among compliers ψ. The mean square of error (MSE) is calculated as the mean
square of the difference between the estimated log odds ratio and the log odds ratio among
compliers.

Under all parameter settings without always-takers, the bias resulting from simulations is
consistent with the analytic results, and when there is no confounding, the bias is not zero for
2SPS but is zero for 2SRI (Table 1). The simulation results of MSE follow the same pattern
as the results for absolute bias with these large sample simulations. We are currently doing
further research on the MSE properties of the different estimators.

(Insert Table 1 here)

We also performed simulations including always-takers with the parameter settings: ρA = 0.2;
ρC = 0.5 (thus ρN = 0.3); ω0

C = 0.3 or ω0
C = 0.03; ω1

C = 0.6 or ω1
C = 0.06; δ varies among

2, 1.5, 1, 0.5, 0, -0.5, -1, -1.5 or -2. Under these parameter settings, the analytic results are
available for the 2SPS procedure, but are not possible for the 2SRI approach as discussed in
Section 4. As shown in table 2, the bias from simulated data is consistent with the analytic
results for the 2SPS approach when there are always-takers. For 2SRI, the results show that
the bias is smaller than for 2SPS, and is close to 0 when δ is 0, but for some parameter settings
with strong confounding, the bias is larger than for 2SPS.

(Insert Table 2 here)

6. DISCUSSION

The IV approach has been applied to logistic regression to control for unmeasured confounding
in estimating treatment effects under non-adherence in randomized trials and under actual
medical care in observational studies. However, there has been little if no evaluation of the
bias of this use of IV in the context of estimating the effect of treatment among those who are
compliers or take the treatment. Accordingly, we have developed closed form expressions for
the asymptotic bias of the 2SRI and 2SPS approaches to two-stage logistic regression, and we
have shown that these analytic results are consistent with the simulation results under different
parameter settings. Terza et al.[1] showed that the 2SRI approach is unbiased when the true
model is conditional on the unmeasured confounder. For the treatment effect conditional on
compliance or receiving treatment, Nagelkerke et al.[32] and Ten Have et al.[29] presented
simulations showing that the bias of 2SRI approach increases as the magnitude of confounding
increases. Our analytical and simulation results confirm such bias for the 2SRI as well as for
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the 2SPS approach. We further show that unlike the 2SRI approach, the 2SPS procedure is
biased even when there is no unmeasured confounding.

An important contribution of this research is the expression of the conditional distribution
of observed outcomes Y given treatment assignment R as a function of the probability
of compliance and the conditional distribution of potential outcomes Y (0) and Y (0), given
compliance status. With this contribution, we can analytically present probability limits and
therefore the bias of the estimators of the causal effects of treatment given compliance and
treatment status. Further, we provide analytic estimates of bias for a variety of situations.
These analytic estimates of bias can help researchers evaluate if the bias is small under specific
conditions (e.g. high compliance, and moderate confounding). Hence, our results can be used
as a guide for deciding if the 2SRI or 2SPS strategy is appropriate. This method can be
potentially applied to the bias analysis of causal inference with other non-linear two-stage
regressions, such as regressions of probit models and log linear models.

When the 2SRI or 2SPS is appropriately used, these approaches have the advantage that
they are very easy to implement with any software package that can do logistic regression (e.g.,
SAS, R, or STATA). Logistic regression is used for both the first and second stages of either
the 2SRI or 2SPS procedures. The predicted or residual values from the first stage logistic
regression of treatment on the IV are used as covariates in the second stage logistic regression:
the predicted value of treatment replaces observed treatment for 2SPS, whereas the residual
from the first stage regression is added as a covariate along with observed treatment for 2SRI.

The bias for both the 2SPS and 2SRI approaches occurs even when all of the IV assumptions
are met. Additional research is needed in resolving such bias, and also in assessing departures
from the IV assumptions under the logistic IV model. To resolve the bias of the 2SRI and 2SPS
approaches, the logistic structural nested mean model of Vansteelandt and Goetghebeur [39] in
the randomized trial context when controls do not have access to the treatment can be extended
to the observational data context when all subjects have access to treatment. Additionally, such
a modeling approach may be modified to assess departures from the exclusion restriction using
a similar weighted estimating equations approach as in Ten Have et al. (2007)[40]. Our bias
analysis for the two-stage logistic regression can help researchers decide in which situations
the bias of two stage logistic regression is small, in which case the two stage logistic regression
maybe a reasonable method to use in contrast to more complicated methods.
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APPENDIX

A1. Prove that the probability of observed Y given R can be expressed by the following
equations.

Pr (Y |R = 1) = ρAω
0
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N ,

and
Pr (Y |R = 0) = ρAω

0
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N .

In these equations, AT means always-taker, C means complier, and NT means never-taker,
and

ω1
A = Pr

(
Y (1) = 1|AT

)
,

ω1
C = Pr

(
Y (1) = 1|C

)
,

ω1
N = Pr

(
Y (1) = 1|NT

)
,

ω0
A = Pr

(
Y (0) = 1|AT

)
,

ω0
C = Pr

(
Y (0) = 1|C

)
,

ω0
N = Pr

(
Y (0) = 1|NT

)
,

r = Pr (R = 1) ,
ρA = Pr(AT ),
ρC = Pr(C),
ρN = Pr(NT ).

Proof:

Pr
(
Y (1) = 1|Z = 1, R = 1

)
= Pr

(
Y (1) = 1, Z = 1, R = 1

)
/Pr(Z = 1, R = 1)

=
Pr(Y (1) = 1, AT,R = 1) + Pr(Y (1) = 1, C,R = 1)

Pr(R = 1, AT ) + Pr(R = 1, C)

=
Pr(Y (1) = 1, AT ) Pr(R = 1) + Pr(Y (1) = 1, C) Pr(R = 1)

Pr(R = 1) Pr(AT ) + Pr(R = 1)Pr(C)

=
Pr(Y (1) = 1|AT ) Pr(AT ) + Pr(Y (1) = 1|C) Pr(C)

Pr(R = 1) Pr(AT ) + Pr(R = 1)Pr(C)

=
Pr(AT )

Pr(AT ) + Pr(C)
Pr(Y (1) = 1|AT ) +

Pr(C)
Pr(AT ) + Pr(C)

Pr(Y (1) = 1|C)

=
ρA

ρA + ρC
ω1

A +
ρC

ρA + ρC
ω1

C .

Note: According to the assumptions of the IV, R is independent of Y (1) and the principal
stratum, thus in the above equation, Pr(Y (1) = 1, AT,R = 1) = Pr(Y (1) = 1, AT )Pr(R = 1)
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and Pr(Y (1) = 1, C,R = 1) = Pr(Y (1) = 1, C)Pr(R = 1).

Pr
(
Y (0) = 1|Z = 0, R = 0

)
=

Pr(NT )
Pr(NT ) + Pr(C)

Pr(Y (0) = 1|NT ) +
Pr(C)

Pr(NT ) + Pr(C)
Pr(Y (0) = 1|C)

=
1− ρA − ρC

1− ρA
ω0

N +
ρC

1− ρA
ω0

C ,

Pr (Y = 1|R = 1)

= Pr
(
Y (1) = 1, Z = 1|R = 1

)
+ Pr

(
Y (0) = 1, Z = 0|R = 1

)
= Pr(Y (1) = 1|Z = 1, R = 1) Pr(Z = 1|R = 1) + Pr(Y (0) = 1|Z = 0, R = 1) Pr(Z = 0|R = 1)

=
(

ρA

ρA + ρC
ω0

A +
ρC

ρA + ρC
ω1

C

)
(ρA + ρC) + ω0

N (1− ρA − ρC)

= ρAω
0
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N ,

Pr (Y = 1|R = 0)

= Pr
(
Y (1) = 1, Z = 1|R = 0

)
+ Pr

(
Y (0) = 1, Z = 0|R = 0

)
= Pr(Y (1) = 1|Z = 1, R = 0) Pr(Z = 1|R = 0) + Pr(Y (0) = 1|Z = 0, R = 0) Pr(Z = 0|R = 0)

= ω0
AρA +

(
1− ρA − ρC

1− ρA
ω0

N +
ρC

1− ρA
ω0

C

)
(1− ρA)

= ρAω
0
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N .

A2. Prove: Pr(Y = 1|Z,E) = expit(λ0 + λ1Z + λ2E) is not the true model and the true
model should include the interaction between Z and E, or the interaction between Z and R.
When there are no always-takers, the true model does not include the interaction.

Proof: The true model is

Pr (Y = 1|Z,E) = Pr (Y = 1|Z,R)
= E(Y |Z,R)
= I(Z=0,R=0)E (Y |Z = 0, R = 0) + I(Z=1,R=0)E (Y |Z = 1, R = 0)

+I(Z=0,R=1)E (Y |Z = 0, R = 1) + I(Z=1,R=1)E (Y |Z = 1, R = 1)
= E (Y |Z = 0, R = 0)

+Z [E (Y |Z = 1, R = 0)− E (Y |Z = 0, R = 0)]
+R [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)]

+ZR
[

E (Y |Z = 1, R = 1)− E (Y |Z = 1, R = 0)
−E (Y |Z = 0, R = 1) + E (Y |Z = 0, R = 0)

]
= λ0 + λ1Z + λ2R+ λ3ZR.
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In the above equations,

λ0 = E (Y |Z = 0, R = 0) ,
λ1 = [E (Y |Z = 1, R = 0)− E (Y |Z = 0, R = 0)] ,
λ2 = [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)] ,

λ3 =
E (Y |Z = 1, R = 1)− E (Y |Z = 1, R = 0)
−E (Y |Z = 0, R = 1) + E (Y |Z = 0, R = 0)

= E (Y |Z = 1, R = 1)− (λ0 + λ1 + λ2) .

So the true model includes the interaction between Z and R.

When there are no always-takers, we have I(Z=1,R=0) ≡ 0, then the true model becomes

Pr (Y = 1|Z,E) = Pr (Y = 1|Z,R)
= E(Y |Z,R)
= I(Z=0,R=0)E (Y |Z = 0, R = 0)
+ I(Z=0,R=1)E (Y |Z = 0, R = 1) + I(Z=1,R=1)E (Y |Z = 1, R = 1)
= E (Y |Z = 0, R = 0)
+R [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)]
+ Z [E (Y |Z = 1, R = 1)− E (Y |Z = 0, R = 1)]
= λ0 + λ1R+ λ2Z.

In the above equations,

λ0 = E (Y |Z = 0, R = 0) ,
λ1 = [E (Y |Z = 0, R = 1)− E (Y |Z = 0, R = 0)] ,
λ2 = [E (Y |Z = 1, R = 1)− E (Y |Z = 0, R = 1)] .

The true model does not include the interaction term.

A3. Some details about the bias analysis.

a)When there is no confounding, the treatment effect estimated with 2SPS can be biased.

The bias of 2SPS estimator is:

B2SPS =

logit
(
ρAω

1
A + ρCω

1
C + ω0

N − ρAω
0
N − ρCω

0
N

)
−logit

(
ρAω

1
A + ρCω

0
C + ω0

N − ρAω
0
N − ρCω

0
N

)
ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

One no-confounding scenario is that there are no always-takers, and compliers and never-
takers have the same probability of potential outcome, e.g., ρA = 0 and ω0

C = ω0
N . Plugging

in these values to the above equation, we have;
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B2SPS =

logit
(
0ω1

A + ρCω
1
C + ω0

C − 0ω0
C − ρCω

0
C

)
−logit

(
0ω1

A + ρCω
0
C + ω0

C − 0ω0
C − ρCω

0
C

)
ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
=
logit

(
ρCω

1
C + ω0

C − ρCω
0
C

)
− logit

(
ω0

C

)
ρC

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

This equation generally not 0. We can easily see that it is 0 if on linear scale instead of on a
logit scale.

b)When there is no confounding, the treatment effect estimated with 2SRI is unbiased.

The bias of the 2SRI estimator with no always-takers is:

B2SRI = λ1 − ψ

= logit

(
ρA

ρA + ρC
ω1

A +
ρC

ρA + ρC
ω1

C

)
− logit(ω0

N )

− 1
ρC

logit

(
1− ρA − ρC

1− ρA
ω0

N +
ρC

1− ρA
ω0

C

)
+

1
ρC

logit(ω0
N )

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
.

. Plug in ρA = 0 and ω0
C = ω0

N to this equation, we have:

B2SRI = λ1 − ψ

= logit

(
0

0 + ρC
ω1

A +
ρC

0 + ρC
ω1

C

)
− logit(ω0

C)

− 1
ρC

logit

(
1− 0− ρC

1− 0
ω0

C +
ρC

1− 0
ω0

C

)
+

1
ρC

logit(ω0
C)

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
= logit

(
ω1

C

)
− logit(ω0

C)− 1
ρC

logit(ω0
C) +

1
ρC

logit(ω0
C)

− logit
(
ω1

C

)
+ logit

(
ω0

C

)
= 0.

.
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Fig 1a. Plot of bias on magnitude of confounding δ with 2SPS approach: Aρ =0, Cρ =0.8,   
ω1

c=0.6, ω0
c =0.3. 

 
 
 

 
δ

Fig 1b. Plot of bias on magnitude of confounding δ with 2SPS approach: Aρ =0, Cρ =0.5,   
ω1

c =0.6, ω0
c =0.3. 
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Fig 1c. Plot of bias on magnitude of confounding δ with 2SPS approach: ω₁=0,   ω₂=0.5,   
ω₁₂=0.06,   ω₀₂=0.03. 
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Fig 1d. Plot of bias on magnitude of confounding δ with 2SPS approach: Aρ =0, Cρ =0.5,   
ω1

c =0.006, ω0
c =0.003. 
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Fig 2a. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.8,   
ω1

c=0.6, ω0
c =0.3. 
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Fig 2b. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.5,   
ω1

c=0.6, ω0
c =0.3. 



 

δ

 
Fig 2c. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.5,   
ω1

c=0.06, ω0
c =0.03. 
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Fig 2d. Plot of bias on magnitude of confounding δ with 2SRI approach: Aρ =0, Cρ =0.5,   
ω1

c=0.006, ω0
c =0.003. 



 
Table 1. Comparison of simulation result and analytic result when there are no always-takers. 

                        

         2SPS      2SRI     

ω0
C ω1

C 
True 

LogOR δ 
LogOR by 

Regression 
Observed 

Bias 

Analytic 
Result of 

Bias MSE 
LogOR by 

Regression 
Observed 

Bias 

Analytic 
Result of 

Bias MSE 

0.3 0.60 1.2528 -2.0 1.6295 0.3768 0.3754 0.1500 0.6256 -0.6272 -0.6266 0.4095 

   -1.5 1.5601 0.3073 0.3061 0.1024 0.9112 -0.3416 -0.3415 0.1295 

   -1.0 1.4740 0.2213 0.2200 0.0567 1.1127 -0.1400 -0.1410 0.0301 

   -0.5 1.3813 0.1286 0.1263 0.0238 1.2244 -0.0284 -0.0309 0.0095 

   0.0 1.2961 0.0433 0.0405 0.0088 1.2559 0.0031 0.0000 0.0075 

   0.5 1.2362 -0.0166 -0.0200 0.0069 1.2383 -0.0145 -0.0179 0.0071 

   1.0 1.2079 -0.0449 -0.0435 0.0090 1.2103 -0.0425 -0.0413 0.0088 

   1.5 1.2228 -0.0300 -0.0289 0.0081 1.2268 -0.0259 -0.0250 0.0079 

   2.0 1.2666 0.0138 0.0145 0.0080 1.3172 0.0644 0.0651 0.0123 

0.03 0.0600 0.7246 -2.0 1.2894 0.5648 0.5666 0.3901 -0.1732 -0.8978 -0.8474 0.9745 

   -1.5 1.2215 0.4969 0.4973 0.3131 0.2011 -0.5235 -0.5015 0.3865 

   -1.0 1.1225 0.3980 0.3994 0.2181 0.4788 -0.2458 -0.2314 0.1432 

   -0.5 0.9900 0.2654 0.2709 0.1232 0.6522 -0.0724 -0.0589 0.0666 

   0.0 0.8374 0.1128 0.1175 0.0585 0.7161 -0.0084 0.0000 0.0485 

   0.5 0.6770 -0.0475 -0.0459 0.0387 0.6630 -0.0616 -0.0571 0.0406 

   1.0 0.5198 -0.2048 -0.2005 0.0705 0.5002 -0.2243 -0.2169 0.0790 

   1.5 0.3911 -0.3334 -0.3310 0.1335 0.2658 -0.4587 -0.4525 0.2339 

      2.0 0.2932 -0.4314 -0.4306 0.2026 -0.0107 -0.7352 -0.7297 0.5593 
 
Note: The probability of always-takers ρA=0, the probability of compliers ρC=0.5 and the probability of 
never-takers ρN=0.5. 



 
Table 2. Comparison of simulation result and analytic result when there are always-takers. 

                        

         2SPS      2SRI     

ω0
C ω1

C 
True 

LogOR δ 
LogOR by 

Regression 
Observed 

Bias 

Analytic 
Result of 

Bias MSE 
LogOR by 

Regression 
Observed 

Bias 

Analytic 
Result of 

Bias MSE 

0.3 0.60 1.2528 -2.0 1.3159 0.0631 0.0615 0.0098 1.2554 0.0026 NA 0.0090 

   -1.5 1.3007 0.0480 0.0461 0.0081 1.2624 0.0096 NA 0.0085 

   -1.0 1.2809 0.0281 0.0257 0.0065 1.2677 0.0149 NA 0.0079 

   -0.5 1.2574 0.0046 0.0016 0.0057 1.2668 0.0140 NA 0.0074 

   0.0 1.2338 -0.0190 -0.0220 0.0061 1.2559 0.0031 NA 0.0066 

   0.5 1.2167 -0.0361 -0.0389 0.0073 1.2380 -0.0148 NA 0.0067 

   1.0 1.2112 -0.0416 -0.0434 0.0083 1.2221 -0.0306 NA 0.0077 

   1.5 1.2201 -0.0327 -0.0346 0.0077 1.2216 -0.0311 NA 0.0076 

   2.0 1.2393 -0.0135 -0.0162 0.0071 1.2410 -0.0118 NA 0.0071 

0.03 0.0600 0.7246 -2.0 0.8826 0.1580 0.1583 0.0753 0.9577 0.2331 NA 0.1092 

   -1.5 0.8623 0.1378 0.1390 0.0677 0.9177 0.1931 NA 0.0895 

   -1.0 0.8312 0.1067 0.1093 0.0578 0.8633 0.1387 NA 0.0677 

   -0.5 0.7880 0.0634 0.0652 0.0483 0.7983 0.0737 NA 0.0507 

   0.0 0.7276 0.0030 0.0034 0.0410 0.7250 0.0005 NA 0.0413 

   0.5 0.6471 -0.0774 -0.0766 0.0421 0.6443 -0.0803 NA 0.0427 

   1.0 0.5549 -0.1696 -0.1704 0.0598 0.5541 -0.1705 NA 0.0600 

   1.5 0.4575 -0.2671 -0.2683 0.0971 0.4389 -0.2857 NA 0.1073 

      2.0 0.3686 -0.3560 -0.3586 0.1472 0.2962 -0.4284 NA 0.2042 
 
Note: The probability of always-takers ρA=0.2, the probability of compliers ρC=0.5 and the probability of 
never-takers ρN=0.3. 

 


