
 Open access Proceedings Article DOI:10.1145/564376.564387

Two-stage language models for information retrieval — Source link

ChengXiang Zhai, John Lafferty

Institutions: Carnegie Mellon University

Published on: 11 Aug 2002 - International ACM SIGIR Conference on Research and Development in Information Retrieval

Topics: Language model, Additive smoothing, Smoothing, Mixture model and Dirichlet distribution

Related papers:

 A language modeling approach to information retrieval

 A Study of Smoothing Methods for Language Models Applied to Ad Hoc Information Retrieval

 Relevance-Based Language Models

 Document Language Models, Query Models, and Risk Minimization for Information Retrieval

 Information retrieval as statistical translation

Share this paper:

View more about this paper here: https://typeset.io/papers/two-stage-language-models-for-information-retrieval-
27259yswxu

https://typeset.io/
https://www.doi.org/10.1145/564376.564387
https://typeset.io/papers/two-stage-language-models-for-information-retrieval-27259yswxu
https://typeset.io/authors/chengxiang-zhai-4u7jp58q6f
https://typeset.io/authors/john-lafferty-1iw3brm1db
https://typeset.io/institutions/carnegie-mellon-university-2nn2m0cz
https://typeset.io/conferences/international-acm-sigir-conference-on-research-and-pvmvrg7w
https://typeset.io/topics/language-model-2xoqhka8
https://typeset.io/topics/additive-smoothing-31wz8ugd
https://typeset.io/topics/smoothing-195nhdk3
https://typeset.io/topics/mixture-model-23vzt5yw
https://typeset.io/topics/dirichlet-distribution-1exvjogz
https://typeset.io/papers/a-language-modeling-approach-to-information-retrieval-4sgjii04y3
https://typeset.io/papers/a-study-of-smoothing-methods-for-language-models-applied-to-1d4kkxcs09
https://typeset.io/papers/relevance-based-language-models-493mnssg4n
https://typeset.io/papers/document-language-models-query-models-and-risk-minimization-59xq1nmvth
https://typeset.io/papers/information-retrieval-as-statistical-translation-1pvdkjzhnd
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/two-stage-language-models-for-information-retrieval-27259yswxu
https://twitter.com/intent/tweet?text=Two-stage%20language%20models%20for%20information%20retrieval&url=https://typeset.io/papers/two-stage-language-models-for-information-retrieval-27259yswxu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/two-stage-language-models-for-information-retrieval-27259yswxu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/two-stage-language-models-for-information-retrieval-27259yswxu
https://typeset.io/papers/two-stage-language-models-for-information-retrieval-27259yswxu

TwoStage Language Models for Information Retrieval

ChengXiang Zhai
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

John Lafferty
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

The optimal settings of retrieval parameters often depend on both
the document collection and the query, and are usually found through
empirical tuning. In this paper, we propose a family of two-stage

language models for information retrieval that explicitly captures
the different influences of the query and document collection on
the optimal settings of retrieval parameters. As a special case, we
present a two-stage smoothing method that allows us to estimate the
smoothing parameters completely automatically. In the first stage,
the document language model is smoothed using a Dirichlet prior
with the collection language model as the reference model. In the
second stage, the smoothed document language model is further in-
terpolated with a query background language model. We propose a
leave-one-out method for estimating the Dirichlet parameter of the
first stage, and the use of document mixture models for estimating
the interpolation parameter of the second stage. Evaluation on five
different databases and four types of queries indicates that the two-
stage smoothing method with the proposed parameter estimation
methods consistently gives retrieval performance that is close to—
or better than—the best results achieved using a single smoothing
method and exhaustive parameter search on the test data.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval Models—
language models, parameter setting

General Terms

Algorithms

Keywords

risk minimization, two-stage language models, two-stage smooth-
ing, Dirichlet prior, interpolation, parameter estimation, leave-one-
out, mixture model

1. INTRODUCTION
It is well-known that the optimal settings of retrieval parameters

generally depend on both the document collection and the query.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi t or commercial advantage and that copies
bear this notice and the full citation on the fi rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi c
permission and/or a fee.
SIGIR’02, August 1115, 2002, Tampere, Finland.
Copyright 2002 ACM 1581135610/02/0008 ...$5.00.

For example, specialized term weighting for short queries was stud-
ied in [3]. Salton and Buckley studied many different term weight-
ing methods used in the vector-space retrieval model; their recom-
mended methods strongly depend on the type of the query and the
characteristics of the document collection [13]. It has been a great
challenge to find the optimal settings of retrieval parameters auto-
matically and adaptively accordingly to the characteristics of the
collection and queries, and empirical parameter tuning seems to be
inevitable in order to achieve good retrieval performance. This is
evident in the large number of parameter-tuning experiments re-
ported in virtually every paper published in the TREC proceed-
ings [15].

The need for empirical parameter tuning is due in part from the
fact that most existing retrieval models are based on certain pre-

assumed representation of queries and documents, rather than on
a direct modeling of the queries and documents. As a result, the
“adaptability” of the model is restricted by the particular represen-
tation assumed, and reserving free parameters for tuning becomes a
way to accommodate any difference among queries and documents
that has not been captured well in the representation. In order to
be able to set parameters automatically, it is necessary to model
queries and documents directly. This goal has been explored re-
cently in the language modeling approach to information retrieval,
which has attracted significant attention since it was first proposed
in [9].

The first uses of the language modeling approach focused on its
empirical effectiveness using simple models [9, 7, 2, 1]. Recent
work has begun to develop more sophisticated models and a sys-
tematic framework for this new family of retrieval methods. In [4],
a risk minimization retrieval framework is proposed that incorpo-
rates language modeling as natural components, and that unifies
several existing retrieval models in a framework based on Bayesian
decision theory. One important advantage of the risk minimization
retrieval framework over the traditional models is its capability of
modeling both queries and documents directly through statistical
language models, which provides a basis for exploiting statistical
estimation methods to set retrieval parameters automatically. Sev-
eral special language models are explored in [6, 4, 16], and in all
uses of language modeling in IR, smoothing plays a crucial role.
The empirical study in [17] reveals that not only is retrieval perfor-
mance generally sensitive to the setting of smoothing parameters,
but also that this sensitivity depends on the type of queries that are
input to the system.

In this paper, we propose a family of language models for infor-
mation retrieval that we refer to as two-stage models. The first stage
involves the estimation of a document language model independent
of the query, while the second stage involves the computation of
the likelihood of the query according to a query language model,

which is based on the estimated document language model. Thus,
the two-stage strategy explicitly captures the different influences of
the query and document collection on the optimal settings of re-
trieval parameters.

We derive the two-stage models within the general risk mini-
mization retrieval framework, and present a special case that leads
to a two-stage smoothing method. In the first stage of smoothing,
the document language model is smoothed using a Dirichlet prior
with the collection language model as the reference model. In the
second stage, the smoothed document language model is further
interpolated with a query background language model. we pro-
pose a leave-one-out method for estimating the first-stage Dirich-
let parameter and make use of a mixture model for estimating the
second-stage interpolation parameter. Evaluation on five different
databases and four types of queries indicates that the two-stage
smoothing method with the proposed parameter estimation method—
which is fully automatic—consistently gives retrieval performance
that is close to, or better than, the result of using a single smoothing
method and exhaustive parameter search on the test data.

The proposed two-stage smoothing method represents a step to-
ward the goal of setting database-specific and query-specific re-
trieval parameters fully automatically, without the need for tedious
experimentation. The effectiveness and robustness of the approach,
along with the fact that there is no ad hoc parameter tuning in-
volved, make it very useful as a solid baseline method for the eval-
uation of retrieval models.

The rest of the paper is organized as follows. We first derive the
two-stage language models in Section 2, and present the two-stage
smoothing method as a special case in Section 3. We then describe,
in Section 4, methods for estimating the two parameters involved
in the two-stage smoothing method. We report our experimental
results in Section 5. Section 6 presents conclusions and suggestions
for future work.

2. TWOSTAGE LANGUAGE MODELS

2.1 The risk minimization framework
The risk minimization retrieval framework is a general proba-

bilistic retrieval framework based on Bayesian decision theory [4].
In this framework, queries and documents are modeled using statis-
tical language models, user preferences are modeled through loss
functions, and retrieval is cast as a risk minimization problem. The
framework unifies several existing retrieval models within one gen-
eral probabilistic framework, and facilitates the development of
new principled approaches to text retrieval.

In traditional retrieval models, such as the vector-space model [12]
and the BM25 retrieval model [11], the retrieval parameters have
almost always been introduced heuristically. The lack of a direct
modeling of queries and documents makes it hard for these models
to incorporate, in a principled way, parameters that adequately ad-
dress special characteristics of queries and documents. For exam-
ple, the vector-space model assumes that a query and a document
are both represented by a term vector. However, the mapping from
a query or a document to such a vector can be somehow arbitrary.
Thus, because the model “sees” a document through its vector rep-
resentation, there is no principled way to model the length of a doc-
ument. As a result, heuristic parameters must be used (see, e.g., the
pivot length normalization method [14]). Similarly, in the BM25
retrieval formula, there is no direct modeling of queries, making
it necessary to introduce heuristic parameters to incorporate query
term frequencies [11].

One important advantage of the risk minimization retrieval frame-
work [4] over these traditional models is its capability of modeling

both queries and documents directly through statistical language
modeling. Although a query and a document are similar in the
sense that they are both text, they do have important differences.
For example, queries are much shorter and often contain just a few
keywords. Thus, from the viewpoint of language modeling, a query
and a document require different language models. Practically, sep-
arating a query model from a document model has the important
advantage of being able to introduce different retrieval parameters
for queries and documents when appropriate. In general, using sta-
tistical language models allows us to introduce all parameters in a
probabilistic way, and also makes it possible to set the parameters
automatically through statistical estimation methods.

2.2 Derivation of twostage language models
The original language modeling approach as proposed in [9] in-

volves a two-step scoring procedure: (1) Estimate a document lan-
guage model for each document; (2) Compute the query likelihood
using the estimated document language model (directly). The two-
stage language modeling approach is a generalization of this two-
step procedure, in which a query language model is introduced so
that the query likelihood is computed using a query model that is
based on the estimated document model, instead of using the esti-
mated document model directly. The use of an explicit and separate
query model makes it possible to factor out any influence of queries
on the smoothing parameters for document language models.

We now derive the family of two-stage language models for in-
formation retrieval formally using the risk minimization framework.

In the risk minimization framework presented in [4], documents
are ranked based on the following risk function:

R(di;q) =
�

R∈{0,1}

✁
ΘQ

✁
ΘD

L(θQ, θD, R) ×

p(θQ |q,U) p(θD | di,S) p(R | θQ, θD) dθD dθQ

Let us now consider the following special loss function, indexed
by a small constant ǫ,

Lǫ(θQ, θD, R) = ✂ 0 if ∆(θQ, θD) ≤ ǫ
c otherwise

where ∆ : ΘQ ×ΘD → ✄ is a model distance function, and c is a
constant positive cost. Thus, the loss is zero when the query model
and the document model are close to each other, and is c otherwise.
Using this loss function, we obtain the following risk:

R(d; q) =

c − ☎
ΘD

☎
θQ∈Sǫ(θD)

p(θQ |q,U) p(θD |d,S)dθQ dθD

where Sǫ(θD) is the sphere of radius ǫ centered at θD in the param-
eter space.

Now, assuming that p(θD |d,S) is concentrated on an estimated

value θ̂D , we can approximate the value of the integral over ΘD by

the integrand’s value at θ̂D . Note that the constant c can be ignored
for the purpose of ranking. Thus, using A ∼ B to mean that A and
B have the same effect for ranking, we have that

R(d;q) ∼ −

✁
θQ∈Sǫ(θ̂D)

p(θQ |q,U) dθQ

When θQ and θD belong to the same parameter space (i.e., ΘQ =
ΘD) and ǫ is very small, the value of the integral can be approx-

imated by the value of the function at θ̂D times a constant (the

volume of Sǫ(θ̂D)), and the constant can again be ignored for the
purpose of ranking. That is,

R(d;q) ∼ −p(θ̂D |q,U)

Therefore, using this risk we will be actually ranking documents ac-

cording to p(θ̂D |q,U), i.e., the posterior probability that the user
used the estimated document model as the query model. Applying
Bayes’ formula, we can rewrite this as

p(θ̂D |q,U) ∝ p(q | θ̂D,U)p(θ̂D | U) (1)

Equation 1 is our basic two-stage language model retrieval for-
mula. Similar to the model discussed in [1], this formula has the
following interpretation: p(q | θ̂D,U) captures how well the esti-

mated document model θ̂D explains the query, whereas p(θ̂D | U)

encodes our prior belief that the user would use θ̂D as the query
model. While this prior could be exploited to model different doc-
ument sources or other document characteristics, in this paper we
assume a uniform prior.

The generic two-stage language model can be refined by specify-
ing a concrete model p(d | θD,S) for generating documents and a
concrete model p(q | θQ,U) for generating queries; different spec-
ifications lead to different retrieval formulas. If the query genera-
tion model is the simplest unigram language model, we have the
scoring procedure of the original language modeling approach pro-
posed in [9]; that is, we first estimate a document language model
and then compute the query likelihood using the estimated model.
In the next section, we present the generative models that lead to
the two-stage smoothing method suggested in [17].

3. THE TWOSTAGE SMOOTHING

METHOD
Let d = d1d2...dn denote a document, q = q1q2...qm denote a

query, and V = {w1, ..., w|V |} denote the words in the vocabulary.
We consider the case where both θQ and θD are parameters of un-
igram language models, i.e., multinomial distributions over words
in V .

The simplest generative model of a document is just the unigram
language model θD, a multinomial. That is, a document would be
generated by sampling words independently according to p(· | θD),
or

p(d | θD,S) =
n�

i=1

p(di | θD)

Each document is assumed to be generated from a potentially dif-
ferent model as assumed in the general risk minimization frame-
work. Given a particular document d, we want to estimate θD. We
use a Dirichlet prior on θD with parameters α = (α1, α2, . . . , α|V |),
given by

Dir (θ |α) =
Γ(✁ |V |

i=1 αi)✂ |V |
i=1 Γ(αi)

|V |�
i=1

θαi−1
i (2)

The parameters αi are chosen to be αi = µ p(wi | S) where µ is
a parameter and p(· | S) is the “collection language model,” which
can be estimated based on a set of documents from a source S . The
posterior distribution of θD is given by

p(θD |d,S) ∝
�

w∈V

p(w | θD)c(w,d)+µp(w | S)−1

and so is also Dirichlet, with parameters αi = c(wi,d)+µp(wi | S).
Using the fact that the Dirichlet mean is αj/ ✁ k αk , we have that

pµ(w | θ̂D) =

✁
θD

p(w | θD)p(θD |d,S)dθD

=
c(w, d) + µ p(w | S)

|d| + µ

where |d| = ✁
w∈V

c(w,d) is the length of d. This is the Dirichlet
prior smoothing method described in [17].

We now consider the query generation model. The simplest
model is again the unigram language model θQ, which will result
in a retrieval model with the Dirichlet prior as the single smooth-
ing method. However, as observed in [17], such a model will not
be able to explain the interactions between smoothing and the type
of queries. In order to capture the common and non-discriminative
words in a query, we assume that a query is generated by sampling
words from a two-component mixture of multinomials, with one
component being θQ and the other some query background lan-
guage model p(· | U). That is,

p(q | θQ, λ,U) =
m�

i=1

((1 − λ)p(qi | θQ) + λp(qi | U))

where λ is a parameter, roughly indicating the amount of “noise”
in q.

Combining our estimate of θD with this query model, we have
the following retrieval scoring formula for document d and query
q.

p(q | θ̂D, λ,U) =

=

m�
i=1

✄
(1 − λ)p(qi | θ̂D) + λ p(qi | U) ☎

=
m�

i=1

✆
(1 − λ)

c(qi, d) + µ p(qi | S)

|d| + µ
+ λ p(qi | U) ✝

In this formula, the document language model is effectively smoothed
in two steps. First, it is smoothed with a Dirichlet prior, and second,
it is interpolated with a query background model. Thus, we refer to
this as two-stage smoothing.

The above model has been empirically motivated by the observa-
tion that smoothing plays two different roles in the query likelihood
retrieval method. One role is to improve the maximum likelihood
estimate of the document language model, at the very least assign-
ing non-zero probabilities to words that are not observed in the
document. The other role is to “explain away” the common/non-
discriminative words in the query, so that the documents will be
discriminated primarily based on their predictions of the “topical”
words in the query. The two-stage smoothing method explicitly de-
couples these two roles. The first stage uses Dirichlet prior smooth-
ing method to improve the estimate of a document language model;
this method normalizes documents of different lengths appropri-
ately with a prior sample size parameter, and performs well empir-
ically [17]. The second stage is intended to bring in a query back-
ground language model to explicitly accommodate the generation
of common words in queries.

The query background model p(· | U) is in general different from
the collection language model p(· | S). With insufficient data to es-
timate p(· | U), however, we can assume that p(· | S) would be a
reasonable approximation of p(· | U). In this form, the two-stage
smoothing method is essentially a combination of Dirichlet prior
smoothing with Jelinek-Mercer smoothing [17]. Indeed, it is very
easy to verify that when λ = 0, we end up with just the Dirich-
let prior smoothing, whereas when µ = 0, we will have Jelinek-
Mercer smoothing. Since the combined smoothing formula still
follows the general smoothing scheme discussed in [17], it can be
implemented very efficiently. In the next section, we present meth-
ods for estimating µ and λ from data.

Collection avg. doc length max. doc length vocab. size µ̂
AP88-89 446 2678 254872 640.643

WSJ87-92 435 8980 260259 792.001

ZF1-2 455 53753 447066 719.637

Table 1: Estimated values of µ along with database characteristics.

4. PARAMETER ESTIMATION

4.1 Estimating µ

The purpose of the Dirichlet prior smoothing at the first stage is
to address the estimation bias due to the fact that a document is an
extremely small amount of data with which to estimate a unigram
language model. More specifically, it is to discount the maximum
likelihood estimate appropriately and assign non-zero probabilities
to words not observed in a document; this is the usual role of lan-
guage model smoothing. A useful objective function for estimating
smoothing parameters is the “leave-one-out” likelihood, that is, the
sum of the log-likelihoods of each word in the observed data com-
puted in terms of a model constructed based on the data with the
target word excluded (“left out”). This criterion is essentially based
on cross-validation, and has been used to derive several well-known
smoothing methods including the Good-Turing method [8].

Formally, let C = {d1, d2, ..., dN} be the collection of docu-
ments. Using our Dirichlet smoothing formula, the leave-one-out
log-likelihood can be written as

ℓ−1(µ | C) =

N�
i=1

�
w∈V

c(w, di) log

✆
c(w, di) − 1 + µp(w|C)

|di| − 1 + µ
✝

Thus, our estimate of µ is

µ̂ = arg max
µ

ℓ−1(µ|C)

which can be easily computed using Newton’s method. The update
formula is

µ(k+1) = µ(k) − g(µ(k))/g′(µ(k))

where the first and second derivatives of ℓ−1 are given by

g(µ) = ℓ ′
−1(µ) =

N�
i=1

�
w∈V

c(w, di)((|di| − 1)p(w | C) − c(w, di) + 1)

(|di| − 1 + µ)(c(w, di) − 1 + µp(w | C))

and

g′(µ) = ℓ ′′
−1(µ) =

−

N�
i=1

�
w∈V

c(w, di)((|di| − 1)p(w | C) − c(w, di) + 1)2

(|di| − 1 + µ)2(c(w, di) − 1 + µp(w | C))2

Since g′ ≤ 0, as long as g′ 6= 0, the solution will be a global max-
imum. In our experiments, starting from value 1.0 the algorithm
always converges.

The estimated values of µ for three databases are shown in Ta-
ble 1. There is no clear correlation between the database character-
istics shown in the table and the estimated value of µ.

4.2 Estimating λ

With the query model hidden, the query likelihood is

p(q |λ,U) =✁
ΘQ

m�
i=1

((1 − λ)p(qi | θQ) + λp(qi | U)) p(θQ | U) dθQ

In order to estimate λ, we approximate the query model space by
the set of all N estimated document language models in our col-
lection. That is, we will approximate the integral with a sum over
all the possible document language models estimated on the collec-
tion, or

p(q |λ,U) =
N�

i=1

πi

m�
j=1

((1 − λ)p(qj | θ̂di
) + λp(qj | U))

where πi = p(θ̂di
| U), and p(· | θ̂di

) is the smoothed unigram lan-
guage model estimated based on document di using the Dirichlet
prior approach.

Thus, we assume that the query is generated from a mixture of N
document models with unknown mixing weights {πi}

N
i=1. Leaving

{πi}
N
i=1 free is important, because what we really want is not to

maximize the likelihood of generating the query from every docu-
ment in the collection, instead, we want to find a λ that can max-
imize the likelihood of the query given relevant documents. With
{πi}

N
i=1 free to estimate, we would indeed allocate higher weights

on documents that predict the query well in our likelihood function;
presumably, these documents are also more likely to be relevant.

With this likelihood function, the parameters λ and {πi}
N
i=1 can

be estimated using the EM algorithm. The update formulas are

π
(k+1)
i =

π
(k)
i

✂ m

j=1((1 − λ(k)) p(qj | θ̂di
) + λ(k)p(qj | U))✁ N

i′=1 π
(k)

i′

✂ m

j=1((1 − λ(k))p(qj | θ̂di′
) + λ(k)p(qj | U))

and

λ(k+1) =

1

m

N�
i=1

π
(k+1)
i

m�
j=1

λ(k)
p(qj | U)

(1 − λ(k))p(qj | θ̂di
) + λ(k)p(qj | U)

5. EXPERIMENTS
In this section we first present experimental results that con-

firm the dual-role of smoothing, which provides an empirical jus-
tification for using the two-stage smoothing method for retrieval.
We then present results of the two-stage smoothing method using
the estimated parameters, comparing it to the optimal performance
from using single smoothing methods and an exhaustive parameter
search.

5.1 Influence of Query Length and
Verbosity on Smoothing

In [17], strong interactions between smoothing and the type of
queries have been observed. However, it is unclear whether the

high sensitivity observed on long queries is due to a higher den-
sity of common words in such queries, or to just the length. The
two-stage smoothing method assumes that it is the former. In or-
der to clarify this, we design experiments to examine two query
factors—length and “verbosity.” Specifically, we consider four dif-
ferent types of queries, i.e., short keyword, long keyword, short ver-
bose, and long verbose queries, and compare how they each behave
with respect to smoothing. As we will show, the high sensitivity is
indeed caused by the presence of common words in the query, and
this provides an empirical justification for the two-stage smoothing
method.

We generate the four types of queries from TREC topics 1-150.
These 150 topics are special because, unlike other TREC topics,
they all have a “concept” field, which contains a list of keywords
related to the topic; these keywords serve well as the “long key-
word” version of our queries. Figure 1 shows an example of such a
topic (topic 52).

Title: South African Sanctions

Description: Document discusses sanctions against

South Africa.

Narrative:

A relevant document will discuss any aspect of

South African sanctions, such as: sanctions

declared/proposed by a country against the South

African government in response to its apartheid

policy, or in response to pressure by an individual,

organization or another country; international

sanctions against Pretoria imposed by the United

Nations; the effects of sanctions against S. Africa;

opposition to sanctions; or, compliance with

sanctions by a company. The document will identify

the sanctions instituted or being considered, e.g.,

corporate disinvestment, trade ban, academic boycott,

arms embargo.

Concepts:

1. sanctions, international sanctions,

economic sanctions

2. corporate exodus, corporate disinvestment, stock

divestiture, ban on new investment, trade ban,

import ban on South African diamonds, U.N. arms

embargo, curtailment of defense contracts,

cutoff of nonmilitary goods, academic boycott,

reduction of cultural ties

3. apartheid, white domination, racism

4. antiapartheid, black majority rule

5. Pretoria

Figure 1: Example topic, number 52. The keywords are used

as the “long keyword” version of our queries.

We use all of the 150 topics, and generate the four versions of
queries in the following way:

1. short keyword: Using only the title of the topic description
(usually a noun phrase)1

2. short verbose: Using only the description field (usually one
sentence).

3. long keyword: Using the concept field (about 28 keywords
on average).

4. long verbose: Using the title, description and the narrative
field (more than 50 words on average).

1
Occasionally, a few function words were manually excluded, in order to

make the queries purely keyword-based.

The relevance judgments available for these 150 topics are mostly
on the documents in TREC disk 1 and disk 2. In order to observe
any possible difference in smoothing caused by the types of docu-
ments, we partition the documents in disks 1 and 2 and use the three
largest subsets of documents, accounting for a majority of the rele-
vant documents for our queries. The three databases are AP88-89,
WSJ87-92, and ZIFF1-2, each about 400MB–500MB in size. The
queries without relevance judgments for a particular database were
ignored for all of the experiments on that database. Four queries do
not have judgments on AP88-89, and 49 queries do not have judg-
ments on ZIFF1-2. Preprocessing of the documents is minimized;
only a Porter stemmer is used, and no stop words are removed.
Combining the four types of queries with the three databases gives
us a total of 12 different testing collections.

To understand the interaction between different query factors and
smoothing, we examine the sensitivity of retrieval performance to
smoothing on each of the four different types of queries. For both
Jelinek-Mercer and Dirichlet smoothing, on each of our 12 test-
ing collections we vary the value of the smoothing parameter and
record the retrieval performance at each parameter value. The re-
sults are plotted in Figure 2. In each case, we show how the average
precision varies according to different values of the smoothing pa-
rameter.

From these figures, we see that the two types of keyword queries
behave similarly, as do the two types of verbose queries. The re-
trieval performance is generally much less sensitive to smoothing
in the case of the keyword queries than for the verbose queries,
whether long or short. Therefore, the sensitivity is much more cor-
related with the verbosity of the query than with the length of the
query. Indeed, the short verbose queries are clearly more sensitive
than the long keyword queries. In all cases, insufficient smooth-
ing is much more harmful for verbose queries than for keyword
queries. This confirms that smoothing is indeed responsible for
“explaining” the common words in a query, and provides an empir-
ical justification for the two-stage smoothing approach.

We also see a consistent order of performance among the four
types of queries. As expected, long keyword queries are the best
and short verbose queries are the worst. Long verbose queries
are worse than long keyword queries, but better than short key-
word queries, which are better than the short verbose queries. This
appears to suggest that queries with only (presumably good) key-
words tend to perform better than more verbose queries. Also,
longer queries are generally better than short queries.

5.2 Effectiveness of the Twostage
Smoothing Method

To evaluate the two-stage smoothing method, we first test it on
the same 12 testing collections as described earlier. These collec-
tions represent a very good diversity in the types of queries, but
the databases are all homogeneous and relatively small. In order to
further test the robustness of the two-stage smoothing method, we
then test it on three much bigger and more heterogeneous TREC
collections. These are the official ad hoc retrieval collections used
in TREC-7, TREC-8, and the TREC-8 small web track. The official
TREC-7 and TREC-8 ad hoc tasks have used the same document
database (i.e., TREC disk4 and disk5 excluding the Congressional
Record data), but different topics (topics 351-400 for TREC-7 and
401-450 for TREC-8). The TREC-8 web track and the TREC-8
official ad hoc task share the same 50 topics. Since these topics do
not have a concept field, we have only three types of queries: short-
keyword, short-verbose, and long-verbose. The size of these large
collections is about 2GB in the original source. Again, we perform
minimum pre-processing – only a Porter stemmer was used, and no

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

lambda

Sensitivity of Precision (Jelinek-Mercer, AP88-89)

short-keyword

long-keyword

short-verbose

long-verbose
0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

lambda

Sensitivity of Precision (Jelinek-Mercer, WSJ87-92)

short-keyword

long-keyword

short-verbose

long-verbose
0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

p
re

c
is

io
n

lambda

Sensitivity of Precision (Jelinek-Mercer, ZF1-2)

short-keyword

long-keyword

short-verbose

long-verbose

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 10000

p
re

c
is

io
n

prior (mu)

Sensitivity of Precision (Dirichlet, AP88-89)

short-Keyword

long-Keyword

short-Verbose

long-Verbose
0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 10000

p
re

c
is

io
n

prior (mu)

Sensitivity of Precision (Dirichlet, WSJ87-92)

short-keyword

long-keyword

short-verbose

long-verbose
0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 10000

p
re

c
is

io
n

prior (mu)

Sensitivity of Precision (Dirichlet, ZF1-2)

short-keyword

long-keyword

short-verbose

long-verbose

Figure 2: Sensitivity of Precision for Jelinek-Mercer smoothing (top) and Dirichlet prior smoothing (bottom) on AP88-89 (left),

WSJ87-92 (center), and Ziff1-2 (right).

stop words were removed.
For each testing collection, we compare the retrieval performance

of the estimated two-stage smoothing parameters with the best re-
sults achievable using a single smoothing method. The best results
of a single smoothing method are obtained through an exhaustive
search on its parameter space, so are the ideal performance of the
smoothing method. In all our experiments, we use the collection
language model to approximate the query background model.

The results are shown in Table 2. The four types of queries are
abbreviated with the two initial letters (e.g., SK for Short-Keyword).
The standard TREC evaluation procedure for ad hoc retrieval is
followed, and we have considered three performance measures –
non-interpolated average precision, initial precision (i.e., precision
at 0.0 recall), and precision at five documents. In all the results,
we see that, the performance of two-stage smoothing with the esti-
mated parameter values is consistently very close to, or better than
the best performance of a single method by all the three measures.
Only in a few cases, the difference is statistically significant (indi-
cated with a star).

To quantify the sensitivity of the retrieval performance to the
smoothing parameter for single smoothing methods, we also show
(in parentheses) the median average precision at all the parameter
values that are tried2. We see that, for Jelinek-Mercer, the sensitiv-
ity is clearly higher on verbose queries than on keyword queries;
the median is usually much lower than the best performance for
verbose queries. This means that, it is much harder to tune the
λ in Jelinek-Mercer for verbose queries than for keyword queries.
Interestingly, for Dirichlet prior, the median is often just slightly
below the best, even when the queries are verbose. (The worst
cases are significantly lower, though.) From the sensitivity curves
in Figure 2, we see that as long as we set a relatively large value

2
For Jelinek-Mercer, we tried 13 values {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6,0.7,0.8,0.9,0.95, 0.99}; for Dirichlet prior, we tried 10 values {100, 500,
800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}.

for µ in Dirichlet prior, the performance will not be much worse
than the best performance, and there is a great chance that the me-
dian is at a large value for µ. This immediately suggests that we
can expect to perform reasonably well if we simply set µ to some
“safe” large value. However, it is clear, from the results in Ta-
ble 2, that such a simple approach would not perform so well as
our parameter estimation methods. Indeed, the two-stage perfor-
mance is always better than the median, except for three cases of
short-keyword queries when it is slightly worse. Since the Dirich-
let prior smoothing dominates the two-stage smoothing effect for
these short-keyword queries (due to “little noise”), this somehow
suggests that the leave-one-out method might have under-estimated
µ.

Note that, in general, Jelinek-Mercer has not performed as well
as Dirichlet prior in all our experiments. But, in two cases of ver-
bose queries (Trec8-SV and Trec8-LV on the Trec7/8 database),
it does outperform Dirichlet prior. In these two cases, the two-
stage smoothing method performs either as well as or better than
the Jelinek-Mercer. Thus, the two-stage smoothing performance
appears to always track the best performing single method at its
optimal parameter setting.

The performance of two-stage smoothing does not reflect the
performance of a “full-fledged” language modeling approach, which
would involve more sophisticated feedback models [4, 6, 16]. Thus,
it is really not comparable with the performance of other TREC sys-
tems. Yet some of the performance figures shown here are actually
competitive when compared with the performance of the official
TREC submissions (e.g., the performance on the TREC-8 ad hoc
task and the TREC-8 web track).

These results of the two-stage smoothing method are very en-
couraging, especially because there is no ad hoc parameter tuning
involved in the retrieval process with the approach. Both µ and λ
are automatically estimated based on a specific database and query;
µ is completely determined by the given database, and λ is deter-

Database Query Best Jelinek-Mercer Best Dirichlet Two-Stage

AvgPr (med) InitPr Pr@5d AvgPr (med) InitPr Pr@5d AvgPr Initpr Pr@5d

AP88-89 SK 0.203 (0.194) 0.573 0.341 0.230 (0.224) 0.623 0.381 0.222* 0.611 0.375
LK 0.368 (0.362) 0.767 0.530 0.376 (0.368) 0.755 0.533 0.374 0.754 0.533

SV 0.188 (0.158) 0.569 0.342 0.209 (0.195) 0.609 0.379 0.204 0.598 0.368
LV 0.288 (0.263) 0.711 0.463 0.298 (0.285) 0.704 0.490 0.292 0.689 0.473

WSJ87-92 SK 0.194 (0.188) 0.629 0.392 0.223 (0.218) 0.660 0.438 0.218* 0.662 0.450

LK 0.348 (0.341) 0.814 0.597 0.353 (0.343) 0.834 0.608 0.358 0.850* 0.607
SV 0.172 (0.158) 0.615 0.377 0.196 (0.188) 0.638 0.413 0.199 0.660 0.425

LV 0.277 (0.252) 0.768 0.533 0.282 (0.270) 0.750 0.504 0.288* 0.762 0.520

ZF1-2 SK 0.179 (0.170) 0.455 0.248 0.215 (0.210) 0.514 0.301 0.200 0.494 0.299
LK 0.306 (0.290) 0.675 0.404 0.326 (0.316) 0.681 0.438 0.322 0.696 0.434
SV 0.156 (0.139) 0.450 0.224 0.185 (0.170) 0.456 0.255 0.181 0.487 0.271*

LV 0.267 (0.242) 0.593 0.339 0.279 (0.273) 0.606 0.378 0.279* 0.618 0.384

Database Query Best Jelinek-Mercer Best Dirichlet Two-Stage

AvgPr (med) InitPr Pr@5d AvgPr (med) InitPr Pr@5d AvgPr Initpr Pr@5d

Trec7-SK 0.167 (0.165) 0.632 0.400 0.186 (0.182) 0.688 0.432 0.182 0.673 0.420
Trec7-SV 0.173 (0.138) 0.646 0.416 0.182 (0.168) 0.656 0.436 0.181 0.655 0.416
Trec7-LV 0.222 (0.195) 0.723 0.496 0.224 (0.212) 0.763 0.524 0.230 0.760 0.516

Trec7/8 Trec8-SK 0.239 (0.237) 0.621 0.44 0.256 (0.244) 0.717 0.488 0.257 0.719 0.496

Trec8-SV 0.231 (0.192) 0.687 0.456 0.228 (0.222) 0.670 0.432 0.231 0.719 0.484

Trec8-LV 0.265 (0.234) 0.789 0.556 0.260 (0.252) 0.753 0.492 0.268 0.787 0.524

Trec8-SK 0.243 (0.212) 0.607 0.368 0.294 (0.281) 0.756 0.484 0.278* 0.730 0.488

Web Trec8-SV 0.203 (0.191) 0.611 0.392 0.267 (0.249) 0.699 0.492 0.253 0.680 0.436
Trec8-LV 0.259 (0.234) 0.790 0.464 0.275 (0.248) 0.752 0.508 0.284 0.781 0.508

Table 2: Comparison of the estimated two-stage smoothing with the best single stage smoothing methods on small collections (top)

and large collections (bottom). The best number for each measure is shown in boldface. An asterisk (*) indicates that the difference

between the two-stage smoothing performance and the best single smoothing performance is statistically significant according to the

Wilcoxin signed rank test at the level of 0.05.

mined by the database and the query together. The method appears
to be quite robust according to our experiments with all the differ-
ent types of queries and different databases.

6. CONCLUSIONS
In this paper we derive general two-stage language models for

information retrieval using the risk minimization retrieval frame-
work, and present a concrete two-stage smoothing method as a
special case. The two-stage smoothing strategy explicitly cap-
tures the different influences of the query and document collection
on the optimal settings of smoothing parameters. In the first stage,
the document language model is smoothed using a Dirichlet prior
with the collection model as the reference model. In the second
stage, the smoothed document language model is further interpo-
lated with a query background model.

We propose a leave-one-out method for estimating the first-stage
Dirichlet prior parameter and a mixture model for estimating the
second-stage interpolation parameter. These methods allow us to
set the retrieval parameters automatically, yet adaptively accord-
ing to different databases and queries. Evaluation on five differ-
ent databases and four types of queries indicates that the two-stage
smoothing method with the proposed parameter estimation scheme
consistently gives retrieval performance that is close to, or better
than, the best results attainable using a single smoothing method,
achievable only through an exhaustive parameter search. The ef-
fectiveness and robustness of the two-stage smoothing approach,
along with the fact that there is no ad hoc parameter tuning in-
volved, make it a solid baseline approach for evaluating retrieval
models.

While we have shown that the automatic two-stage smoothing
gives retrieval performance close to the best results attainable using
a single smoothing method, we have not yet analyzed the optimality
of the estimated parameter values in the two-stage parameter space.
For example, it would be important to see the relative optimality of
the estimated µ and λ when fixing one of them. It would also be
interesting to explore other estimation methods. For example, µ
might be regarded as a hyperparameter in a hierarchical Bayesian
approach. For the estimation of the query model parameter λ, it
would be interesting to try different query background models. One
possibility is to estimate the background model based on resources
such as past queries, in addition to the collection of documents. An-
other interesting future direction is to exploit the query background
model to address the issue of redundancy in the retrieval results.
Specifically, a biased query background model may be used to rep-
resent/explain the sub-topics that a user has already encountered
(e.g., through reading previously retrieved results), in order to fo-
cus ranking on the new sub-topics in a relevant set of documents.

ACKNOWLEDGEMENTS

We thank Rong Jin, Jamie Callan, and the anonymous reviewers for
helpful comments on this work. This research was sponsored in full
by the Advanced Research and Development Activity in Informa-
tion Technology (ARDA) under its Statistical Language Modeling
for Information Retrieval Research Program, contract MDA904-
00-C-2106.

REFERENCES

[1] Berger, A. and Lafferty, J. (1999). Information retrieval as
statistical translation. In Proceedings of the 1999 ACM SIGIR

Conference on Research and Development in Information

Retrieval, pages 222–229.

[2] Hiemstra, D. and Kraaij, W. (1998). Twenty-one at TREC-7:
Ad-hoc and cross-language track. In Proc. of Seventh Text

REtrieval Conference (TREC-7).

[3] Kwok, K. and Chan, M. (98). Improving two-stage ad-hoc
retrieval for short queries. In Proceedings of SIGIR’98, pages
250–256.

[4] Lafferty, J. and Zhai, C. (2001a). Document language models,
query models, and risk minimization for information retrieval.
In Proceedings of SIGIR’2001.

[5] Lafferty, J. and Zhai, C. (2001b). Probabilistic IR models
based on query and document generation. In Proceedings of the

Language Modeling and IR workshop. Extended abstract.

[6] Lavrenko, V. and Croft, B. (2001). Relevance-based language
models. In Proceedings of SIGIR’2001.

[7] Miller, D. H., Leek, T., and Schwartz, R. (1999). A hidden
Markov model information retrieval system. In Proceedings of

the 1999 ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 214–221.

[8] Ney, H., Essen, U., and Kneser, R. (1995). On the estimation
of ‘small’ probabilities by leaving-one-out. IEEE Transactions

on Pattern Analysis and Machine Intelligence, (12):1202–1212.

[9] Ponte, J. and Croft, W. B. (1998). A language modeling
approach to information retrieval. In Proceedings of the ACM

SIGIR, pages 275–281.

[10] Robertson, S. and Sparck Jones, K. (1976). Relevance
weighting of search terms. Journal of the American Society for

Information Science, 27:129–146.

[11] Robertson, S. E., Walker, S., Jones, S., M.Hancock-Beaulieu,
M., and Gatford, M. (1995). Okapi at TREC-3. In Harman,
D. K., editor, The Third Text REtrieval Conference (TREC-3).

[12] Salton, G., Wong, A., and Yang, C. S. (1975a). A vector
space model for automatic indexing. Communications of the

ACM, (11):613–620.

[13] Salton, G. and Buckley, C. (1988). Term-weighting
approaches in automatic text retrieval. Information Processing

and Management, 24:513–523.

[14] Singhal, A., Buckley, C., and Mitra, M. (1996). Pivoted
document length normalization. In Proceedings of the 1996

ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 21–29.

[15] Voorhees, E. and Harman, D., editors (2001). Proceedings of

Text REtrieval Conference (TREC1-9). NIST Special
Publications. http://trec.nist.gov/pubs.html.

[16] Zhai, C. and Lafferty, J. (2001a). Model-based feedback in
the KL-divergence retrieval model. In Tenth International

Conference on Information and Knowledge Management

(CIKM 2001).

[17] Zhai, C. and Lafferty, J. (2001b). A study of smoothing
methods for language models applied to ad hoc information
retrieval. In Proceedings of SIGIR’2001.

