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Two-stage least squares (TSLS) is widely used in econometrics to estimate parameters in systems of linear simultaneous equations 
and to solve problems of omitted-var.ables bias in single-equation estimation. We show here that TSLS can also be used to estimate 
the average causal effect of variable treatments such as drug dosage, hours of exam preparation, cigarette smoking, and years of 
schooling. The average causal effect in which we are interested is a conditional expectation of the difference between the outcomes 
of the treated and what these outcomes would have been in the absence of treatment. Given mild regularity assumptions, the 
probability limit of TSLS is a weighted average of per-unit average causal effects along the length of an appropriately defined causal 
response function. The weighting function is illustrated in an empirical example based on the relationship between schooling and 
earnings. 
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1. INTRODUCTION 

Econometricians and statisticians have developed a variety 
of techniques for the estimation of systems of linear simul- 
taneous equations. The simplest and most commonly used 
of these techniques is the class of instrumental variables (IV) 
estimators, of which two-stage least squares (TSLS) is the 
most important special case. IV and TSLS were developed 
in early research on simultaneous equations estimation (by 
Wright [1928] and Theil [1958], among others), and both 
estimators are now described in every econometrics textbook 
(e.g., Theil 1971). These techniques are typically introduced 
as solutions to the problem of "simultaneous equations bias." 
More generally, however, IV provides a powerful and flexible 
estimation strategy that can be used to tackle the problem 
of omitted-variables bias in a wide range of single-equation 
regression applications, such as models with mismeasured 
regressors (Durbin 1954) and the estimation of treatment 
effects in manpower training programs (Heckman and Hotz 
1989; Heckman and Robb 1985). 

The use of IV and TSLS to estimate treatment effects is 
not limited to econometrics. Permutt and Hebel (1989) used 
TSLS to estimate the effect of maternal smoking on birth 
weight. Hearst, Newman, and Hulley's (1986) use of the 
draft lottery to estimate the effect of Vietnam-era military 
service on civilian mortality is another epidemiological ap- 
plication of IV. Angrist and Krueger (1992) used IV to es- 
timate the effect of children's age at school entry on their 
ultimate educational attainment. The Powers and Swinton 
(1984) "encouragement design" used to study the effect of 
test preparation on graduate record examination (GRE) 
scores, discussed by Holland (1988), also leads naturally to 
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IV and TSLS estimators. Finally, the analysis used by Robins 
(1989, sec. 18) and Robins and Tsiatis (1991) to correct for 
noncompliance in clinical trials is an application of instru- 
mental variables to experimental data. 

Evaluation research in econometrics and applications of 
IV and TSLS in other fields typically rely on regression mod- 
els with constant coefficients. The regression approach to 
evaluation postulates a hypothetical linear response function. 
In contrast, the statistical literature on evaluation has been 
strongly influenced by Rubin's (1974, 1977) model for causal 
inference using counterfactual outcomes. (The ideas behind 
this framework date back to Neyman and Fisher; see Rubin 
1990 for historical details.) In a methodological paper related 
to this one (Imbens and Angrist 1994), we discuss the use 
of IV to estimate average causal effects in Rubin's causal 
model for binary treatments, as well as how to estimate the 
sampling variance of IV estimates of treatment effects. In 
another recent paper (Angrist, Imbens, and Rubin 1995), 
we present a detailed analysis of the conceptual issues and 
problems that arise when IV is used to estimate the average 
causal effect of a binary treatment in the Rubin causal model, 
together with a survey of evaluation research in econometrics 
and statistics. 

In this article, we show how TSLS can be used to estimate 
average causal effects in a version of Rubin's causal model 
that allows for variable treatment intensity, multiple instru- 
ments, and covariates. In particular, we show that TSLS ap- 
plied to a causal model with variable treatment intensity and 
nonignorable treatment assignment identifies a weighted av- 
erage of per-unit treatment effects along the length of a causal 
response function. Our results do not hinge on linearity of 
the relationships between response variables, treatment in- 
tensities, and instruments. 

A second contribution of this article is to illustrate the 
causal response weighting function in an empirical example 
based on the work by Angrist and Krueger (1991), using IV 
and TSLS to estimate the effect of years of schooling on 
earnings. The weighting function in the application is of in- 
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terest because the relationship between schooling and earn- 
ings is one of the most important empirical regularities in 
economics. More generally, the weighting formula can help 
researchers understand which observations are contributing 
to a particular estimate, and the formula provides a causal 
interpretation for some of the simple estimators commonly 
used in applied research. 

2. APPLICATION: THE EFFECT OF COMPULSORY 
SCHOOL ATTENDANCE ON EARNINGS 

The theory of human capital (Becker 1964) says that years 
of schooling can be treated much the same way as an in- 
vestment in physical capital, yielding a rate of return some- 
thing like an interest rate. The empirical counterpart of this 
theory is the "human capital earnings function," a semilog- 
arithmic regression of earnings on schooling and other co- 
variates. An example is the following model for microdata: 

Y = o + Xy+pS+, (+1 ) 

where Y is the log of weekly earnings, yo is a constant, X1 is 
a row vector of covariates, yj a vector of coefficients, S is 
years of schooling, and the coefficient p is the approximate 
percentage return to a year of schooling. Equation ( 1 ) is 
sometimes augmented with an equation describing how 
schooling is related to the covariates, X1, and additional co- 
variates, X2: 

S= 60 +Xlbl +X262 +q7 (2) 

Econometricians typically assume that a semilogarithmic 
response function for earnings is a reasonably good approx- 
imation to the true earnings function. Ordinary least squares 
(OLS) applied to ( 1 ), however, may lead to biased estimates 
of p even if the true response function is linear. The reason 
is that schooling is determined by individual choices under 
constraints. For example, the literature on schooling and 
earnings has devoted considerable attention to the problem 
of "ability bias" in estimates of the economic return to 
schooling. This is a form of omitted-variables bias that would 
arise if more able individuals in the labor market get more 
schooling, perhaps because of better access to capital markets. 
The observed positive correlation between schooling and 
earnings would then partly reflect the fact that those with 
more schooling have higher earnings potential. In terms of 
Equations ( 1 ) and (2), ability is common to the error terms, 
e and q, and so these error terms are correlated. 

One infeasible solution to this problem is to conduct an 
experiment in which schooling is randomly assigned. Ran- 
dom assignment would eliminate the correlation between 
schooling and ability or unobserved earnings potential. Even 
in the absence of a true experiment, a "natural experiment" 
may generate instrumental variables that effectively do the 
same thing. 

Instrumental variables are variables related to the outcome 
of interest solely through the treatment of interest. For ex- 
ample, in two recent papers, Angrist and Krueger (1991, 
1992) showed that students' quarter of birth interacts with 
compulsory attendance laws and age at school entry to gen- 
erate variation in years of completed schooling. State com- 

pulsory attendance laws typically require students to enter 
school in the fall of the year in which they turn 6, but allow 
students to drop out of school when they reach age 16. This 
induces a relationship between quarter of birth and educa- 
tional attainment, because students born in the first quarter 
of the year enter school at an older age than do students 
born in later quarters. Students who enter school at an older 
age thus are allowed to drop out after having completed less 
schooling than students who enter school at a younger age. 
If students' quarter of birth is correlated with earnings solely 
because it is correlated with schooling, then it is an instru- 
ment for schooling in an earnings equation. 

One way to convert this idea into an estimation strategy 
is to compare the education and earnings of people born in 
the first quarter to the education and earnings of people born 
in a later quarter, say the fourth. This leads to the simplest 
possible IV estimator: Wald's method of fitting straight lines 
(Durbin 1954). As an example, calculations underlying Wald 
estimates based on a first quarter/fourth quarter comparison 
for men are laid out in Table 1. Panel A of the table shows 
results tabulated from data on the wages and earnings of 
men in the 1970 Census, and Panel B shows results tabulated 
using data from the 1980 Census. In both data sets, men 
born in the first quarter earn slightly less and have slightly 
less schooling than men born in the fourth quarter. The ratio 
of differences in earnings to differences in schooling generates 
a Wald estimate of the return to schooling of 5.3% using the 
1970 Census and 8.9% using the 1980 Census. 

Durbin (1954) showed that under the null hypothesis that 
the OLS estimate is consistent, the sampling variance of the 

Table 1. Compulsory School Attendance 

(1) (2) (3) 
Born in Born in Difference 

1st quarter 4th quarter (std. error) 
of year of year (1) - (2) 

Panel A: Wald Estimates for 1970 Census-Men Born 1920-1929a 

In (weekly wage) 5.1485 5.1578 -.00935 
(.00374) 

Education 11.3996 11.5754 -.1758 
(.0192) 

Wald est. of return .0531 
to education (.0196) 

OLS est. of return to .0797 
educationb (.0005) 
Panel B: Wald Estimates for 1980 Census-Men Born 1930-1939 

In (weekly wage) 5.8916 5.9051 -.01349 
(.00337) 

Education 12.6881 12.8394 -.1514 
(.0162) 

Wald est. of return .0891 
to education (.0210) 

OLS est. of return to .0703 
education (.0005) 

a The sample size is 122,223 in Panel A and 162,515 in Panel B. Each sample consists of men 
born in the first and fourth quarters of the year in the United States who had positive earnings in 
the year preceding the survey. The 1980 Census sample is drawn from the 5% sample, and the 
1970 Census sample is from the state, county, and neighborhoods 1% samples. A detailed de- 
scription of the data sets is provided in the Appendix to Angrist and Krueger (1991). 

bThe OLS return to education was estimated from a bivariate regression of log weekly earnings 
on years of education in a sample of men born in the first and fourth quarters. 
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difference between a Wald and OLS estimates is the differ- 
ence in their variances. Ignoring the small sampling error of 
the OLS estimates, the Wald estimates are within sampling 
error of the OLS estimates (8% and 7% in the two Census 
data sets). Thus the instrumental variables estimates seem 
to support a conclusion that the OLS estimates are not biased 
by unobserved ability in the error term. (A detailed case for 
this claim is made in Angrist and Krueger 1991, which also 
discusses strategies to control for age effects when using 
quarter of birth as an instrument for schooling.) 

The general formula for an IV estimate is (Z'W) -'Z 'y, 
where Z is a matrix of instruments conformable to the matrix 
of regressors, W, with rows including X1 and S, and y is a 
vector of observations on the dependent variable. Because 
X1 is assumed to be uncorrelated with e, Z typically includes 
X1 and a single variable not in X1, perhaps taken from X2 
in (2). For example, X2 might include quarter of birth. For 
IV to be consistent, Z must be asymptotically uncorrelated 
with the regression error and the probability limit of (Z 'W/ 
n) must be nonsingular (n is the sample size). 

An alternative estimation strategy based on the same idea 
is TSLS. There are potentially three different IV or Wald 
estimates that could be computed using quarter-of-birth 
dummies. A TSLS estimator using all the information avail- 
able on quarter of birth is calculated by first regressing S 
(the endogenous regressor) on all covariates included in the 
equation, X1, and on all the potential instruments excluded 
from the equation, X2-in this case three quarter-of-birth 
dummies. The second stage in the TSLS procedure is to es- 
timate 

Y=0 + X1Y p + PA+v, 

where 3' is the fitted value from the first-stage regression and 
v-{e + p[S -] 1}. In this case TSLS can be interpreted 
as an IV estimator where the instruments are XI and 3S (Theil 
1971 ), or as an efficient linear combination of alternative 
IV estimates using single quarter-of-birth dummies. 

Columns (1 )-( 2) and (5 )-( 6) of Table 2 report OLS and 
TSLS estimates of Equation ( 1 ) without covariates using 
both Census data sets. The excluded instruments used to 
construct the TSLS estimates in these columns are three 
quarter-of-birth dummies. That is, the estimates are regres- 
sions of the log weekly wage on fitted values from a "first- 

stage" regression of schooling on a constant and three 
quarter-of-birth dummies. 

Columns (3)-(4) and (7)-(8) report estimates based on 
equations where the set of covariates, X1 includes nine year- 
of-birth dummies. The excluded instruments used to con- 
struct the TSLS estimates in columns (4) and (8) include 
three quarter-of-birth dummies interacted with 10 year-of- 
birth dummies. This specification allows for year-of-birth 
effects in the outcome equation and allows the relationship 
between schooling and quarter of birth to differ for each year 
of birth. The OLS and TSLS estimates are similar and differ 
little across model specifications. 

3. THE AVERAGE CAUSAL EFFECT 
OF A VARIABLE TREATMENT 

Equation (1) is a structural relationship derived from as- 
sumptions about human behavior, but it is not necessarily 
a causal relationship in the Rubin (1974) sense. In this sec- 
tion we present results that give IV and TSLS estimates of 
Equation (1) a causal interpretation. Suppose that each in- 
dividual would earn Yj if he or she had j years of schooling 
for j = 0, 1, 2, . . ., J. It is useful to imagine that a full set 
of Yj exists for each person, even though only one is observed. 
The set of Yj for one person is assumed independent of the- 
outcomes and treatment status of other people. Rubin has 
called independence of these potential or counterfactual 
outcomes across individuals the stable unit treatment values 
(SUTVA) assumption. A full set of counterfactual outcomes 
and SUTVA are commonly assumed in the statistics liter- 
ature on causality (e.g., Holland 1986), although these are 
not trivial assumptions. Elsewhere (Angrist et al. 1995), we 
have discussed conceptual issues associated with these as- 
sumptions in an IV context. 

Provided that we are willing to entertain the notion of 
counterfactual outcomes, the objective of causal inference 
is to uncover information about the distribution of Yj -Y 15 
which is the causal effect ofthe jth year of schooling (Holland 
1986; Rubin 1974, 1977). We view estimates of p in Equation 
(1) as having a causal interpretation when they have prob- 
ability limit equal to a weighted average of E[ Yj -Yj- I ] for 
all j in some subpopulation or subpopulations of interest. In 
general, this will not be the case. (If the treatment level, S, 
is randomly assigned, then E[ Yj -Yj_ I ] can be consistently 

Table 2. TSLS Estimates of the Return to Schooling 

Born 1920-1929, 1970 census Born 1930-1939, 1980 census 

OLS TSLS OLS TSLS OLS TSLS OLS TSLS 

(1) (2) (3) (4) (5) (6) (7) (8) 

Education .080 .063 .080 .077 .071 .103 .071 .089 
(.0004) (.016) (.0004) (.015) (.0003) (.020) (.0003) (.016) 

YOB dummies no no yes yes no no yes yes 

x2(dof) 2.4 (2) 36.0 (29) 2.9 (2) 25.4 (29) 

Sample size 247,199 329,509 

NOTE: Each sample consists of men bom in any quarter in the United States who had positive eamings in the year preceding the survey. The table reports coefficients from OLS and TSLS 
regressions of the log weekly wage on years of completed schooling. The excluded instruments in columns 2 and 6 are three quarter-of-birth dummies. The excluded instruments in columns 4 and 
8 are three quarter-of-birth dummies times 10 year-of-birth dummies. The X2 statistic is an instrument-error orthogonality test statistic. 
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estimated by subtracting the average response for individuals 
with treatment level j - 1 from the average response for 
individuals with treatment level j.) 

We define Sz E {0, 1, 2, .. ., J} to be the number of 
years of schooling completed by a student conditional on 
the student's quarter of birth, Z. As with Yj, Sz is assumed 
to exist for each value of Z for each person, even though 
only one Sz is observed. This setup incorporates two in- 
novations to the original Rubin (1974) framework by al- 
lowing for both multivalued treatments and counterfactual 
treatment status. Rubin (1978) and Robins (1989a, b) 
also discussed causal inference with multivalued treat- 
ments, and Robins (1989a), Robins and Greenland 
(1992) and Holland (1988) used the notion of counter- 
factual treatment status. As far as we know, however, these 
ideas have not been used previously in an IV or TSLS 
framework. 

Initially we assume that Z is coded to take on only two 
values, 0 and 1, indicating first or later quarters of birth. So 
is the years of schooling that would be attained by an indi- 
vidual born in the first quarter, and S1 is the years of schooling 
that would be attained by the same individual if he or she 
were to be born in later quarters. For each person in the 
Census sample, we observe the triple (Z, S, Y), where Z is 
the quarter of birth, S = Sz = Z * S1 + (1 - Z) S0 is years 
of completed schooling, and Y = Ys is earnings. Our principal 
identifying assumption (apart from assuming the existence 
of Yj) is that Z is independent of all potential outcomes and 
potential treatment intensities. As a practical matter, this 
assumption may be true only after conditioning on covari- 
ates. (In fact, the need to control for covariates sometimes 
motivates the use of TSLS instead of IV.) Formally, we have 
the following assumption. 

Assumption I (Independence). The random variables S0, 
S1, Yo, Y1, . . ., Yj are jointly independent of Z. 

In the compulsory schooling example, Assumption 1 re- 
quires that quarter of birth has no effect on earnings other 
than through its effect on schooling. This is the meaning of 
the notion that quarter of birth provides a natural experiment 
that can be used to estimate the effect of schooling on earn- 
ings. Assumption 1 can also be viewed as a nonparametric 
version of the assumptions that the instruments, X2, are un- 
correlated with e and i, the error terms in Equations (1) and 
(2). Angrist et al. (1995) discussed the impact of deviations 
from Assumption 1 on IV estimates in the binary treatment 
case. 

It is important to note that outside a linear regression 
framework, the independence assumption alone is not usu- 
ally sufficient to identify a meaningful average treatment ef- 
fect. This point is easiest to see in a simple example where 
S is binary (perhaps indicating high school graduates versus 
nongraduates). A comparison of outcomes by different val- 
ues of the instrument gives 

E[YI Z = 1I-E[YI Z = OI 

= E[Yo - (Y o-)S1IlZ = 11 

- E[Yo + (Y1 -Yo)SoIlZ = 0].* (3) 

By Assumption 1, this simplifies to 

E[Yo + (Y1 - Yo)S] -E[Yo + (Y1 - Yo)So] 

= E[ (Y-YO) (S1 - SO)]. (4) 

Without imposing additional restrictions, S1 - So can be 
equal to 1, 0, or -1. A value of 1 indicates individuals who 
are induced to graduate high school by the instrument (i.e., 
being born in a late quarter), a value of 0 indicates those 
whose schooling status is unchanged, and a value of -1 in- 
dicates those who are induced to drop out of high school 
before graduating. Therefore, 

E[(Y - YO) -(S1 - So)] 

= E[Y1 -Yo S- So = 1] Pr[SI - So = 1] 

-E[ Y1-Yo I S1-SO =-1I Pr[S-SO =-1]I 

(5) 

Individuals whose schooling status is unaffected by the in- 
strument clearly do not contribute anything to comparisons 
of average outcomes by instrument status. But the group 
that does contribute includes both "switchers-in" and 
"switchers-out." It is clear that it is theoretically possible to 
have a situation where the treatment effect, Y1 - Yo, is pos- 
itive for everyone but the sizes of the group of switchers-in 
and switchers-out is such that the average difference in out- 
comes is zero or even negative. Suppose, for example, that 
the treatment effect (effect of graduating high school) equals 
a for those induced to graduate and 2a for those induced to 
drop out. If Pr[ S1 -So = 1] = 2 and Pr[ S1 -So = -1] = 3 
then the average difference in Y conditional on Z is zero, 
even though Y1 - YO > 0 for everyone. 

The most common way to get around this problem is 
simply to assume a constant unit treatment effect, Yj - Yj_ 
= a, for all j and all individuals. This is the assumption 
underlying econometric applications using linear regression 
models, as well as the application of instrumental variables 
techniques by Permutt and Hebel (1989). In his comment 
on Holland's ( 1988) discussion of causality, Leamer ( 1988) 
pointed out that in linear models with constant treatment 
effects, the problem of using instrumental variables for causal 
inference is straightforward. 

Instead of restricting treatment effect heterogeneity, in this 
article we impose a nonparametric restriction on the process 
determining S as a function of Z. This restriction is that 
either SI - So 2 0 or SI - So < 0 for everyone. If in the 
binary treatment example, S1 - So 2 0, then (5) becomes 

E [(Y - YO) (SI - SO)] 

= E[Y1-Yo I11-So = 1] * Pr[S1-So = 1]. (6) 

The conditional expectation, E[ Y1 - Yo I S - So = 1], is 
what we have called a local average treatment effect (LATE; 
Imbens and Angrist 1994). LATE is the average causal effect 
of treatment for those whose treatment status is affected by 
the instrument ( i.e., for those for whom 51 = 1 and SO = 0) . 
Formally, the following monotonicity condition is sufficient 
(given independence) for LATE to be identified. 
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Assumption 2 (Monotonicity). With probability 1, either 
SI- So 0 or SI - So < 0 for each person. 
This assumption has been discussed previously by Robins 
(1989a), who showed that it does not sharpen bounds for 
population-average treatment effects, and by Permutt and 
Hebel (1989) in the context of a regression model for the 
effect of maternal smoking on birth weight. In the smoking 
example, monotonicity means that a randomized antismok- 
ing intervention never increases smoking. In the schooling 
example, monotonicity means that, because of compulsory 
attendance laws, people born in quarters 2-4 complete at 
least as much schooling as they would have completed had 
they been born in the first quarter. 

Assumption 2 is not verifiable, because it involves unob- 
served variables (i.e., only one of S1 or SO is observed). Nev- 
ertheless, for multivalued treatments (J > 1), Assumption 
2 has the testable implication that the cumulative distribution 
function (CDF) of S given Z = 1 and the CDF of S given 
Z = 0 should not cross, because if SI ? SO with probability 
1, then Pr(SI ?1j) Pr(So ?j) for allj. This implies Pr(S 
jlZ = 1) ? Pr(S jlZ = 0) or Fs(jlZ = 0) ? Fs(jIl Z 

= 1), where Fs is the CDF of S. We investigate this impli- 
cation in the schooling example that follows. If J = 1 and 
the treatment is binary, then the CDF's cannot cross. 

The main theoretical result of the article is now given for 
the case where S, - So ? 0. 

Theorem 1. Suppose that Assumptions 1 and 2 hold and 
that Pr(SI 1 j > SO) > 0 for at least one j. Then 

E[YI Z = 1]-E[YI Z =0] 
E[SI Z = 1] - E[SI Z = 0] 

J 

wj , E[Yj -Yj-l I S, > j > SO] 9 ,(7) 
j=I 

where 

Pr(SI j > SO) 
zJ=1 Pr(SI > i > SO) 

This implies that 0 < wj 1 and IJ=11 = 1, so that is a 
weighted average per-unit treatment effect. 

Proof of the theorem is given in the Appendix. The proof 
follows the same lines as the development from Equations 
(3)-(6) and generalizes our earlier result (Imbens and 
Angrist 1994) to models with variable treatment intensity. 
A simplified example with three treatment intensities helps 
to understand the more general result. Suppose that S can 
be equal to 0, 1, or 2. We can write 

Y = YO + (Y1 - YO)I[S 2 1] + (Y2- Y1)I[S 2 2], 
where I[A ] is the indicator function for event A. A version 
of Equation (4) for this case is' 

E[YIZ= 1]-E[YIZ=0] 

= E[(Y1 - YO) (I[S1 11 - [So 2 1D)] 

+ E[(Y2 -Y1)>(I[51 ?2] 2-I[So ? 2])]. 

By virtue of Assumption 2, I[S1 2 1] - [So 2 1] and I[S1 
2 2] - [So 2 2] must both be either 1 or 0. Therefore, 

Pr{I[SI 2 1] - I[So 2 1] = 1} = Pr(S 2 1 > So) and 
Pr{I[SI ? 2] - I[SO ?2] = 1} = Pr(S 2 2 > SO). 

The requirement that Pr(SI 2 j > So) > 0 for some j 
means that the instrument must affect the level of treatment, 
S. Also, note that in the proof of Theorem 1, S is assumed 
to take on only integer values between 0 and J. It is enough, 
however, that S be bounded and take on a finite number of 
rational values. Then one can always use a linear transfor- 
mation to ensure that Stakes on integer values only between 
0 and J. A linear transformation of S does not have any 
effect on the numerator of (7) and multiplies the denomi- 
nator by a constant. Thus the linear transformation amounts 
to changing the units in which treatment intensity is mea- 
sured. 

Theorem 1 is important because it shows that in a wide 
variety of models and circumstances, it is possible to identify 
features of the distribution of Yj - Yj_ . For example, the 
monotonicity assumption appears plausible in research de- 
signs based on the draft lottery (e.g., Angrist 1990) and in 
designs based on randomly assigned encouragement or 
intention-to-treat such as discussed by Powers and Swinton 
(1984) and Holland (1988). This assumption is also me- 
chanically satisfied in the latent index models commonly 
used in econometrics (Imbens and Angrist 1994). 

We refer to the parameter f as the average causal response 
(ACR). This parameter captures a weighted average of causal 
responses to a unit change in treatment, for those whose 
treatment status is affected by the instrument. The weight 
attached to the average of Yj - Yj_ is proportional to the 
number of people who, because of the instrument, change 
their treatment from less than j units to j or more units. This 
proportion is Pr(SI 2j > So). In the schooling example, this 
is the proportion of people who, by accident of birth, are 
induced to complete additional years or fractional years of 
schooling. Note that this group need not be representative 
of the population, and that the members of this group cannot 
be identified from the data because membership involves 
unobserved counterfactual treatment status. 

A referee made the point that although the ACR is a 
weighted average, it averages together components that are 
potentially overlapping. For example, someone who is in- 
duced to graduate high school by having been born in a late 
quarter, but would have completed only 11th grade had he 
or she been born in the first quarter, contributes to the pop- 
ulation of individuals for whom Pr(SI 2 12 > SO). But any- 
one who is induced to graduate high school, but would have 
otherwise completed only 10th grade, will be in the popu- 
lation of individuals for whom Pr(S 2 12 > SO) and for 
whom Pr(SI ? 11 > So). 

Similarly, suppose that the instrument induces some frac- 
tion of the sample to go from 10 to 12 units of treatment 
but has no effect otherwise. Then the ACR can be written 
as the sum of two single-unit average effects, 

I 
E[Y12 Y1 11S1 2 12 > SO] 

+- EY Y1- oIlS1 2 1 1 > So] , 
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although what really is identified is E[Y12 -Y1o I SI ? 12, 
11 > S0]. In the schooling and other examples, however, 
most individuals would probably not be involved in an over- 
lap of this sort, because the instrument would typically be 
expected to cause no more than a one-unit increment in 
treatment intensity for any particular individual. 

3.1 Incorrectly Coded Binary Treatments 

Theorem 1 has a simple corollary that can be used to 
interpret parameter estimates in models where a variable 
treatment is incorrectly parameterized as a binary treatment. 
For example, Permutt and Hebel ( 1989) discussed conditions 
sufficient to identify the effect of smoking when it is assumed 
that all that matters for health is whether any cigarettes are 
smoked. Similarly, econometricians sometimes estimate the 
effect of college and/or high school graduation on earnings, 
ignoring the fact that dummy variables indicating graduation 
are nonlinear functions of an underlying years-of-schooling 
variable (e.g., Rosen and Willis 1979). 

Corollary (Misspecified binary treatment). Suppose that 
the treatment of interest is assumed to be an indicator func- 
tion of S, say b I(S 2 1), for some 1 < 1?< J. Then, given 
Assumptions 1 and 2, 

E[YIZ= 1]-E[YIZ=O] X d 
E[bI Z = 1]-E[b Z =O] 

where 

E[SI Z = 1]-E[SI Z =O] 
E[bj Z = 1]-E[b Z =O] 

= J= I Pr(SI j > SO),> 1. 
Pr(SI 2 1 > So) 

Note that the only situation where I = 1 is when the 
instrument has no effect other than to cause people to switch 
from S = / - 1 to S = 1. Thus when a variable treatment is 
incorrectly parameterized as binary, the resulting estimate 
tends to be too large relative to the average per-unit effect 
along the length of the response function. On the other hand, 
by virtue of monotonicity, the sign of the ACR is still con- 
sistently estimated. 

3.2 Estimation of the ACR and the Weighting 
Function 

A natural estimator of d is its sample analog. This esti- 
mator is an application of Wald's ( 1940) grouping method 
of fitting straight lines, where the data have been grouped 
by the instrument. Durbin ( 1954) appears to have been the 
first to point out that the Wald estimator is also an instru- 
mental variables estimator. 

The ACR weights in Theorem 1 can be estimated using 
a random sample of (Y, S, Z) because 

Pr(S1 j > S0) = Pr(S ) - j -Pr(S0 2 j) 

= Pr(S0 <j) -Pr(S1 <j) 

= Pr(SjIZ =0)-Pr(S<jIZ = 1). 

Thus the weighting function can be consistently estimated 
from the difference between the empirical CDF's of S 
given Z. 

4. MULTIPLE INSTRUMENTS AND MODELS 
WITH COVARIATES 

Because different instruments are associated with different 
weighting schemes in the definition of the ACR, the discus- 
sion in the previous section provides an explanation of why 
estimates of f constructed using different instruments might 
differ. The typical econometric application of TSLS, how- 
ever, imposes a constant-treatment-effect model in which 
Yi - Yj_I = a for all j and all individuals. In this case, alter- 
native instrumental variables estimates of the same a can be 
combined into a single, more efficient estimate using TSLS. 
What does the TSLS estimator-which combines alternative 
instrumental variables estimates-produce when it is applied 
to the heterogeneous-treatment-effects model outlined in 
Section 3? 

We explore this question for the case where K mutually 
orthogonal binary instruments are combined to form a single 
TSLS estimate. This is a fairly general example, because any 
set of discrete instruments can be recoded into a set of mu- 
tually orthogonal indicator variables. TSLS using K orthog- 
onal indicators can be thought of as a means of exploiting 
a single K + 1-valued instrument, Z (e.g., quarter of birth 
takes on four possible values). Moreover, a saturated model 
for the first stage consistently estimates the conditional ex- 
pectation of the endogenous regressors given the instrument. 
This leads to the most efficient TSLS estimator in homo- 
scedastic regression models with constant treatment effects 
(Newey 1990). 

Theorem 2 shows that the TSLS estimator constructed by 
using a constant plus K linearly independent dummy vari- 
ables, dk = I(Z = k), as instruments has probability limit 
equal to a weighted average of K linearly independent ACR's, 
1k,k-l, where 

= E[YIZ = k]I-E[YIZ = k- 1] 
Pick-i - E[SIZ = k]-E[SIZ= k-1] 

Because each fklk-I is a weighted average of points on the 
causal response function, the TSLS estimate also converges 
to a weighted average of points on the causal response func- 
tion. 

Let the points of support of Z be ordered such that / < m 
implies E[SI Z = I] < E[SI Z = mi]. Note that using K 
dummies, dk = I( Z = k), plus a constant in TSLS estimation 
is the same as instrumental variables estimation using 
E[S I Z] plus a constant as instruments. We then have the 
following theorem. 

Theorem 2. Suppose that E[S I Z] and a constant are 
used to construct instrumental variables estimates of 1, in 
the equation 

Y= -Y + fZS+ e. 

The resulting estimate has probability limit 

E{E[IZ(E[SiZ]-E[S])} - 
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where 
Wc = (E[SIZ = k] - E[SIZ = k - 1]) 

zJ=o ir,E[SIZ = I](E[SIZ = 1] - E[S]) 
and -rl = Pr[Z = 1]. Moreover, 0 < Lk < 1 and k= KI 
= 1. 

This result modifies and generalizes a previous result of 
ours (Imbens and Angrist 1994) for binary treatments. Again, 
details of the proof are in the Appendix. The theorem follows 
partly from standard formulas interpreting TSLS using mu- 
tually orthogonal instruments as a weighted average of each 
of the instrumental variables estimates obtained taking the 
instruments one by one. Moreover, when the instruments 
are mutually exclusive dummy variables, TSLS can be writ- 
ten as a linear combination of linearly independent Wald 
estimates (Angrist 1991). The proof essentially combines 
these two results. 

Theorem 2 provides a useful interpretation for conven- 
tional TSLS estimates. Just as the simple Wald estimator 
converges to a weighted average effect along the length of 
the causal response function, TSLS estimates provide one 
way of combining a set of different weighted average effects 
into a new weighted average. The weights used to construct 
TSLS estimates from Wald estimates are proportional to 
(E[SI Z = k] - E[SI Z = k- 1]). Thus the better the Wald 
estimate, in the sense of being based on an instrument with 
a bigger impact on the regressor, the more weight it receives 
in the TSLS linear combination. The second component of 
the weighting function, Jf=k k,r,(E[SI Z = /1] - E[S]), sim- 
plifies to [E(SI Z 2 k) - E(SI Z < k)]P(Z 2 k)[ 1 - P(Z 
? k)]. Thus TSLS gives more weight to Wald estimates that 
are closer to the center of the distribution of Z. 
4.1 TSLS Estimates of Models with Covariates 

Conditional on discrete covariates such as year of birth, 
the problem of identifying and estimating the ACR is exactly 
the same as outlined previously. Therefore, analysis of models 
with discrete covariates can proceed in subsamples where 
the covariates are fixed. A more parsimonious approach ex- 
ploits the fact that instrumental variables estimates of average 
treatment effects have a useful averaging property in pooled 
subsamples. In particular, ignoring the fact that the ACR 
may vary with the covariates leads to a variance-weighted 
average treatment effect. 

The following result formally describes the probability 
limit of the instrumental variables estimator when we allow 
for a changing intercept but fix the treatment effect across 
covariates. 

Theorem 3. Let g[X] be a design matrix constructed 
from indicator variables for each value of X. Consider the 
TSLS estimate computed using g(X) and a full set of inter- 
actions between g(X) and Z as instruments for a regression 
of Y on rows of g[X] and S. The resulting estimate is 

_E{Y * (E[SI X, Z] -E[Sj X])} 8 
x- Et 

-I 
(S X, Z]-[S X]) }__ 

-Et{f3(X)0)(X) }9 
E[0)(X)] X(9) 

where @(X) = E{E[SI X, Z] .(E[SI X, Z] -E[SI X]) I X} 
and 

3(X) = E{Y (E[SI X, Z] - E[SI X])I X} (10) 
E{S.(E[SIX,Z]-E[SIXI)IX}. 1 

Proof: Equation (8) is immediate from the definition of 
TSLS using dummy variable instruments. The weighting 
formulas (9) and (10) can be established by iterating expec- 
tations and using the definition of 3, from Theorem 2. 

Note that d(X) is the TSLS estimate, O., constructed using 
Z as an instrument in a population where X is fixed. Thus 
Theorem 3 says that the TSLS estimates of a single treat- 
ment effect in a model with dummy variable covariates 
is a weighted average of the TSLS estimates conditional 
on the covariates. The weights consist of the variance of 
E[SI X, Z] conditional on the covariates. 

4.2 Inference 

In another paper (Imbens and Angrist 1994), we discussed 
results on the asymptotic variance of IV and TSLS estimates 
in models with binary treatments. These results apply to the 
case discussed here, and they imply that standard errors of 
the ACR can be calculated using formulas of Huber (1967) 
and White (1982). One reason for reporting TSLS estimates 
as well as Wald estimates is that in models with constant 
treatment effects, the TSLS estimates have asymptotically 
lower sampling variance than any single Wald estimate. In 
general, however, this need not be true if there is variation 
in the average causal response across instruments. Neverthe- 
less, TSLS provides a convenient way to combine alternative 
IV estimates in a single statistic. 

TSLS estimators are also associated with an overidentifi- 
cation test statistic that equals the objective function im- 
plicitly minimized by the estimates (Newey 1985). In a 
constant-treatment-effect model estimated by TSLS, the 
statistic provides an overidentification test for the null hy- 
pothesis that all the instruments are orthogonal to the regres- 
sion error term. The constant treatment effect is overiden- 
tified because any single instrument would be sufficient for 
identification. But in the model outlined here, each instru- 
ment can lead to a different estimate even though all the 
instruments satisfy the independence assumption. In fact, 
Theorems 1, 2, and 3 provide possible explanations for why 
estimates of causal effects such as the economic returns to 
schooling may differ in studies using different samples or in 
a single sample with different instruments and covariates. 
For example, a recent study using instrumental variables to 
estimate the returns to schooling in a sample of twins (Ash- 
enfelter and Krueger 1994) leads to estimated coefficients 
roughly double those reported here and by Angrist and 
Krueger (1991) . 

5. IV ESTIMATES OF THE RETURNS TO SCHOOLING: 
FOR WHOM? 

Angrist and Krueger (1991) used linear regression models 
with constant coefficients to interpret estimates of the return 
to schooling based on quarter of birth. In the context of the 
causal model outlined here, however, the Wald estimates in 
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Figure 1. Schooling CDF by Quarter of Birth (Men Born 1920-1929; Data From the 1970 Census). Quarter of birth: , first; -- -, fourth. 

Table 1 should be interpreted as the average effect of a 1- 
year increase in schooling, for people whose schooling is in- 
fluenced by quarter of birth. This is a small group, not nec- 
essarily representative of the entire population. To identify 
the ACR for this group, the monotonicity condition requires 
that men born in the fourth quarter get at least as much 
schooling as they would have if they had been born in the 
first quarter. If this condition is satisfied, then we can get 
some idea of the size and characteristics of the group con- 
tributing to the ACR through the ACR weighting function. 

The CDF's of schooling by quarter of birth for men in 
the 1970 and 1980 Censuses are graphed in Figures 1 and 

2. Both figures show that the CDF for men born in the fourth 
quarter lies below the CDF for men born in the first quarter. 
This is important evidence in favor of the monotonicity as- 
sumption in this example. The weighting function underlying 
estimates of the ACR in Table 2 is proportional to the dif- 
ference between the CDF of schooling for men born in the 
first quarter and the CDF of schooling for men born in the 
fourth quarter. For each level of schooling, j, this difference 
is the fraction of the population whose schooling is switched 
by quarter of birth from less than j years to at least j years. 

Figures 3 and 4 show differences in the CDF of schooling 
by quarter of birth. In each figure, differences between the 
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Figure 2. Schooling CDF by Quarter of Birth (Men Born 1930-1939; Data From the 1980 Census). Quarter of birth: , first; - -, fourth. 
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Figure 3. First-Fourth Quarter Difference in Schooling CDF (Men Born 1920-1929, Data From the 1970 Census). Dotted lines are 95% confidence 
intervals. 

CDF of schooling for men born in the first and fourth quar- 
ters are plotted, along with 95% pointwise confidence bands 
(calculated using the conventional formula for a difference 
in proportions). ACR weighting functions for estimates based 
on comparisons between first- and fourth-quarter births are 
the CDF differences plotted in the figures, normalized to 
sum to 1. 

The figures show that the groups contributing most to 
estimates of the ACR based on quarter of birth are those 

with 8-12 years of schooling. Both figures show declines in 
the weighting function at around 12 years of schooling. A 
maximum of around 2% of the sample was induced by being 
born in the fourth quarter to complete 1 1th grade, but much 
smaller fractions were induced to complete higher grades. 
This is not surprising, because compulsory attendance laws 
affect mainly high school students and cannot compel stu- 
dents to go to college. Note that some weight is contributed 
by college attenders, perhaps because some students forced 
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Figure 4. First-Fourth Quarter Difference in Schooling CDF (Men Born 1930-1939; Data From the 1980 Census). Dotted lines are 95% confidence 
intervals. 
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Figure 5. Differences in Schooling CDF by Quarter of Birth (Men Born 1920-1929; Data From the 1970 Census). Quarter of birth: 1st-4th; 
---; 2nd-4th; - -, 3rd-4th. 

by accident of birth to graduate high school decided later to 
go on to college after all. 

One interesting feature of Figures 3 and 4 is that Figure 
3, for men born in 1920-1929, shows a much sharper drop 
at 12 years of schooling than does Figure 4, for men born 
in 1930-1939. Therefore, men who ended up completing 
some college because they were forced to graduate high school 
contribute more to the estimates for men born in 1930-1939 
than to the estimates for men born in 1920-1929. This dif- 
ference may explain the higher Wald and TSLS estimates 
for men born in 1930-1939 (despite the fact that OLS es- 

timates for the more recent cohort are lower), because the 
returns to the last year of college tend to be substantially 
higher than those for any single year of high school (Card 
and Krueger 1992). 

Figures 5 and 6 plot the contrast between schooling CDF's 
for birth quarters 1-3 relative to fourth-quarter births. The 
figures show that schooling CDF's are essentially ordered by 
quarter of birth. This is evidence that any adjacent pair of 
quarters can be used to define a binary instrumental variable 
that satisfies the monotonicity assumption. TSLS using three 
quarter-of-birth dummies is a weighted average of the three 
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Figure 6. Differences in Schooling CDF by Quarter of Birth (Men Born 1930-1939; Data From the 1980 Census). Quarter of birth: 1st-4th; 
-- -, 2nd-4th; - -, 3rd-4th. 
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possible Wald estimates based on adjacent quarters of birth. 
The TSLS estimates, reported in Table 2, are .063 in the 
1970 Census and .103 in the 1980 Census. These are esti- 
mated with slightly greater precision than the Wald estimates 
reported in Table 1. 

Estimates of models including year of birth dummies are 
reported in columns (3)-(4) and (7)-(8) of Table 2. The 
instrument list for these models includes a set of three 
quarter-of-birth dummies for each year of birth. In the con- 
text of Theorem 3, the TSLS estimates in columns (4) and 
(8) can be interpreted as a weighted average of separate TSLS 
estimates of the ACR for each year of birth. 

The TSLS overidentification test statistics for each of the 
models reported in Table 2 are far from critical values at 
conventional significance levels under the null hypothesis of 
constant treatment effects and instrument error orthogo- 
nality. Thus the test statistics cast little doubt on the constant- 
treatment-effect and independence assumptions. 

6. SUMMARY AND CONCLUSIONS 

This article defines the average causal response to variable 
treatments such as drug dosage, cigarettes smoked, hours of 
study, and years of schooling. We have shown here that a 
weighted average of per-unit causal responses to a change in 
treatment intensity is identified in a wide variety of models 
and circumstances. The average response that we can identify 
is for individuals whose treatment status is affected by an in- 
strumental variable that is independent of potential outcomes 
and potential treatment intensities. The monotonicity condition 
imposed when deriving this result requires only that the in- 
strumental variable affect treatment intensity in the same di- 
rection for each unit of observation. This condition has testable 
implications in models with variable treatment intensities. 

We have presented formulas for the weighting functions 
that underlie IV and TSLS estimates of average causal effects. 
These formulas can help empirical researchers understand 
which observations are contributing to a particular estimate 
and provide a causal interpretation for some of the simple 
estimators commonly used in applied research. The inter- 
pretation of TSLS and the example presented here serve to 
emphasize a point made earlier by Rubin (1986), that ob- 
servational data can only be informative about the causal 
effect of treatment for those whose treatment status can be 
thought of as having been manipulated in some way. This 
paper shows that the estimated treatment effect may change 
when the nature of this manipulation changes. 

APPENDIX: PROOFS 

Proof of Theorem I 
Let I(A) be the indicator function for the event A. Define the 

following indicators: Xzj = I(Sz 1 j) for Z = 0, 1 and j = 0, 1, 2, 
... . J + 1. Note that Xzo = 1 and Xzj+l = 0 for all Z. In terms of 
the Xzj, Y can be written as 

Y = Z * Ysl + ( I-+Z) + 1 

Using the independence assumption, E [ Y I Z = 1]E - Y E Z = 0] 
is, therefore, 

J 
E ' Yj -[-Olj- j+I-Xoj + XOj+I] 

J=O 

= E [(Yj - Yj_)(lj-XOj)] + Yo (Xo - XOO)} 

= E( (Yj - Yj - (Xlj _o1)} , 

because Xzo = 1 for Z = 0, 1. Note that Xlj 2 Xoj by Assumption 2 
and that X j and Xoj equal 0 or 1. Therefore, j - Xoj equals 0 or 
1, and we can write the previous expression as 
J 

2: E[Yj -Yj-lI lj i-Xoj = 1] -Pr(Xlj - xo= 1) 
j=l 

J 

= E[Yj-Yjil I S1I j > So] * Pr(SI > j > So). 
j=1 

Similarly, for the denominator, S = Z * SI + (1 - Z) * SO and, 
because j plays the role played by Yj in the numerator, 

E[SI Z= 1]-E[SI Z = O] 

= E ( j ( -lj -Xj+- Xoj + Xoj+l) 

J=J 

= E ( ( -ljXo) = jz1 Pr(SI 2 j > SO). 
'j=l j=I 

Proof of Theorem 2 

The denominator of the formula for Ak iS the same as the de- 
nominator of the expression for l.. To evaluate the numerator, we 
can write 

E[YI Z= l] 

=g1,11_(E[SIZ= 1]-E[SIZ= I-l])+E[YIZ= I-1] 

= E fk,k-l (E[SI Z = k] -E[SI Z = k-1]) + E[Y I Z = 0] 
k=1 

and 

E{Y . (E[SI Z -E[S]) } 

= E{E[YIZ = l].(E[SIZ = 1] - E[S])}- 

Using the first line to substitute for E[Y I Z = 1] in E{ Y * (E[SI Z] 
- E[S]) }, we have 

K I 

i7r,(E[SI Z = 1] - E[S])3k,k_I(E[SI Z = k]- E[SI Z = k - 1]) 
1=1 k=1 

K K 
= z ir,(E[SIZ = 1] - E[S])1k,k-l 

k=1 I=k 

X (E[SI Z = k] - E[SI Z = k -1]). 

This establishes the right side of formula for the weights, /k. The 
weights are nonnegative, because the points of support of Z are 
ordered so that E[SI Z = k] > E[SI Z = k - 1]. To show that the 
weights sum to 1, note that the sum of the numerator of each Ak iS 

K K 

yk= z iril(E[SI Z = 1] -E[S] )(E[S|IZ = k] 
k=l l=k 

-E[SIZ=k- 1]). 
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Reversing the order of summation as before, this equals 

K ! 

2: 2:7r,(E[SI Z = I] -E[S])(E[SI Z = k] -E[SI Z = k -1]). 
1=1 k=l 

Reversing the first two steps of the proof for the numerator, this is 
K 

z 7r,(E[SIZ = 1] - E[S])E[SIZ = 1]. 
1=0 

[Received August 1992. Revised March 1994.] 
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