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Abstract :   
 
Global climate shifted to markedly warmer interglacial conditions across the “mid-Brunhes transition” 
(MBT, ~400 ka). However, a global MBT synthesis that spans marine and terrestrial evidence remains 
elusive, which limits our understanding of the role of the MBT in mid-Pleistocene human evolution. We 
synthesize Asian precipitation reconstructions within a context of global palaeoclimatic records and find 
that the MBT occurred in two stages. First, stronger warming of northern hemisphere continents, weaker 
southern hemisphere warming, and related more extensive northward displacement of the intertropical 
convergence zone (ITCZ) during interglacial marine isotope stage (MIS) 13 intensified and expanded 
precipitation in Asian monsoon regions and in other widespread northern hemisphere regions, with 
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accompanying carbon reservoir changes featuring globally high marine benthic δ13C values because of 
vegetation expansion at ~500 ka. Subdued southern hemisphere warming and northward ITCZ 
displacement decreased southern hemisphere precipitation simultaneously during MIS 13. Second, a shift 
to globally warmer interglacials at ~400 ka, with elevated atmospheric CO2 concentrations, smaller ice 
volume, and higher sea level resulted in sustained high interglacial precipitation in East Asia from MIS 11 
onward and sustained high marine benthic δ13C values during MIS 11. We also synthesize 
palaeoanthropological data and find that the climate and ecosystem changes across the MBT coincided 
with the timing of human lineage diversification, including the emergence of Neanderthals and Denisovans 
in Eurasia and Homo sapiens in Africa, and their potential coexistence with H. heidelbergensis, H. erectus, 
H. floresiensis, H. naledi, and other Homo archaics. The timing of the MBT also coincided with novel 
hominin behavioural developments, including fire control and the transition from handaxe industries to 
more versatile Levallois techniques. Combined with environmental theories of human evolution, this 
chronological coincidence suggests a potential link between mid-Pleistocene environmental and human 
evolution. 
 

Keywords : mid-Brunhes transition, middle Pleistocene climate variability, interglacial climates, 
precipitation, monsoon, human evolution, Chinese Loess Plateau 
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1. Introduction 

Marine benthic δ18O, deep-sea temperature, and Antarctic ice core temperature records suggest a 

notable transition from “lukewarm” to warmer “super” interglacials during the middle Brunhes 

geomagnetic polarity chron, starting with interglacial marine isotope stage (MIS) 11 (Augustin et al., 

2004; Lisiecki and Raymo, 2005; Jouzel et al., 2007; Lang and Wolff, 2011; Elderfield et al., 2012; 

Hodell et al., 2013; Berger et al., 2016). This transition has become known as the mid-Brunhes 

transition (MBT) or mid-Brunhes event (MBE) (e.g., Jansen et al., 1986; Candy et al., 2010; Blain et 

al., 2012; Hodell et al., 2013; Yin, 2013; Wang et al., 2014). Climate variations across the MBT 

provide a backdrop to mid-Pleistocene human evolution and dispersal, including the origination of 

Neanderthals in western Eurasia, Denisovans in eastern Eurasia, and Homo sapiens in Africa, the 

transition from flake- and handaxe-dominated assemblages to the more versatile Levallois technique, 

and permanent habitation of many high-latitude Eurasian regions by H. heidelbergensis and/or other 

Homo archaics with handaxe and/or Levallois technologies (Rightmire, 1998; Hublin, 2009; Stringer, 

2012a, b; Hublin et al., 2017; Richter et al., 2017; Owen et al., 2018; Potts et al., 2018). 

Environmental theories of human evolution suggest that key evolutionary changes were mediated 

by shifts in climate and ecosystem variability (e.g., deMenocal, 1995, 2004; Potts, 1996; Potts et al., 

2018). However, how orbitally-induced climate and habitat changes across the MBT may have 
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impacted mid-Pleistocene human evolution, adaptive context, dispersal, and technological 

development remains largely unexplored (Hublin, 2009; Owen et al., 2018; Potts et al., 2018). East 

Asia is a critical region for these developments. For example, the earliest human occupation of the 

Chinese Loess Plateau, central China, is dated to ~2.1 Ma (Zhu et al., 2018), which is similar to a 

claimed first H. erectus appearance in southern Africa at ~2 Ma (Herries et al., 2020). Abundant 

Palaeolithic sites spanning the early and middle Pleistocene have been found in East Asia, many with 

accompanying H. erectus or other Homo archaic fossils (An and Ho, 1989; Zhu et al., 2001, 2003, 

2004, 2008, 2015, 2018; Dennell, 2009; Ao et al., 2013a, 2013b, 2017). 

We here reconstruct terrestrial Asian summer monsoon precipitation (hydroclimate) changes over 

the past 800 kyr using new high-resolution environmental magnetic records from a loess section on 

the Chinese Loess Plateau and existing wider regional records. We then consider these Asian 

monsoonal records within a global context of worldwide hydroclimate records, marine sediment 

records, and Antarctic ice-core records, to evaluate Asian monsoon dynamics in relation to global 

climate changes across the MBT. Finally, we synthesize mid-Pleistocene palaeoclimatic and 

palaeoanthropological records to infer potential human evolutionary responses associated with marked 

global and regional climate shifts across the MBT. 

 

2. Mid-Brunhes Asian summer monsoon transition on the Chinese Loess Plateau 

Like monsoonal Africa, the Chinese Loess Plateau climate is dominated by seasonally alternating 

summer and winter monsoon changes (Figs. 1 and 2). Warm/humid southeasterly summer monsoon 

penetration inland from tropical oceans produces rains from May to September that contribute 60–75% 

of annual precipitation. In contrast, the northwesterly winter monsoon transports high-latitude cold 
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and dry air masses and dust from arid regions located to the west and north to the downwind Chinese 

Loess Plateau (Guo et al., 2009; Hao et al., 2012; Sun et al., 2020). With thicknesses of up to ∼600 m, 

aeolian dust accumulations on the Chinese Loess Plateau provide a unique high-resolution archive of 

climate variations from the latest Oligocene through the Quaternary (Guo et al., 2002; Qiang et al., 

2011; An, 2014; Sun et al., 2020). High Quaternary summer monsoon precipitation during 

interglacials drove accelerated pedogenesis and in situ red soil development within yellow loess, while 

strong winter monsoons during glacials with substantially weakened summer monsoon intensity 

resulted in deposition of insignificantly altered loess (An et al., 1990; Guo et al., 2009; Hao et al., 

2012; Maher, 2016). Therefore, well-developed Quaternary loess-palaeosol sequences on the Chinese 

Loess Plateau preserve an outstanding terrestrial archive of past climate changes linked to both high- 

and low-latitude processes (Guo et al., 2009; Hao et al., 2012; An, 2014; Sun et al., 2020). 

Stronger in situ pedogenesis during periods of increased precipitation accelerates formation of 

fine magnetite/maghemite, the concentration of which can be measured by low-frequency magnetic 

susceptibility (χlf) or frequency-dependent magnetic susceptibility (χfd) (Zhou et al., 1990; Maher and 

Thompson, 1995; Maher, 1998, 2016). Stronger pedogenesis also results in formation of more 

hematite (Hm) than goethite (Gt), which translates to higher Hm/Gt ratios (Torrent et al., 2007). This 

is consistent with the red colour of palaeosol layers, which imprint significantly the red colour of 

hematite. Thus, loess χlf, χfd, and Hm/Gt are considered to be meaningful proxies for summer monsoon 

precipitation (e.g., An et al., 1990; Maher and Thompson, 1995; Torrent et al., 2007; Guo et al., 2009; 

Hao et al., 2012; Maher, 2016). 

To reveal orbital-scale variability in summer monsoon precipitation during the last 800 kyr, χlf 

and Hm/Gt were measured for 3,264 samples from the Binxian loess section (352′N, 1085′E) on the 
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central Chinese Loess Plateau (Fig. 2). Measurements were made at 2-cm stratigraphic intervals (for 

details see Supplementary Methods), i.e. with a high temporal resolution of ~0.3 kyr, which exceeds 

that of most mid-Pleistocene loess palaeoclimate records. Comparison with previous records, notably 

the Xifeng loess χlf time series (Guo et al., 2009), reveals consistent χlf variability across the Chinese 

Loess Plateau (Fig. 3), which allows synchronization of records over glacial-interglacial time scales. 

Even before synchronization, major glacial-interglacial cycles are clearly evident in the different χlf 

records (Fig. 3), which were formulated with different approaches. All approaches identify similar 

chronologies for the sequence of palaeosol layers S0 to S7 over the last 800 kyr, and the same 

correlations of loess and palaeosol layers to glacial and interglacial periods defined by the marine 

benthic δ18O record (Lisiecki and Raymo, 2005) (Fig. 3). Chronological uncertainties do not result in 

major differences in loess-to-marine correlations across 100-kyr glacial-interglacial cycles (Fig. 3). 

Our age model was established by χlf correlation between the Binxian and Xifeng sections using 24 

age correlation points that have the same χlf features (black dots in Fig. 3). Synchronization with the 

Xifeng loess χlf time series, which is based on a pedostratigraphic loess-to-marine correlation (Guo et 

al., 2009), results in a relatively higher correlation coefficient (R = 0.8) between the Binxian χlf and 

marine benthic δ18O records than synchronization with other loess time scales. 

Temporal χlf variability in the Binxian section over the last 800 kyr matches not only that in other 

sections across the Chinese Loess Plateau, but also glacial-interglacial cycles in the marine benthic 

δ18O record (Lisiecki and Raymo, 2005) (Fig. 4). Throughout, elevated summer monsoon 

precipitation caused formation of interglacial red palaeosol layers, which have higher χlf and Hm/Gt 

values than glacial yellow loess layers that accumulated under strong winter monsoon and weak 

summer monsoon conditions (Figs. 4 and 5). Within this general interglacial-glacial pattern, palaeosol 
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layers S5-1, S4, S3, S2, S1, and S0 (≤ 500 ka) are more strongly developed with higher χlf and Hm/Gt 

values than palaeosol layers S7, S6, S5-3, and S5-2 that are older than 500 ka (Figs. 4 and 5). The 

interglacial amplitude increase across the MBT is larger in the χlf record than in the Hm/Gt record (Fig. 

5 A, B), which is likely due to different proxy sensitivities to monsoon changes. Regardless, both the 

χlf and Hm/Gt records indicate that MIS 13 was the first interglacial with enhanced pedogenesis and 

increased summer monsoon precipitation on the Chinese Loess Plateau. This is consistent with 

previous inferences from increased ratios between pedogenic free Fe2O3 and total Fe2O3 (a measure of 

iron liberated by chemical weathering; Guo et al. (2009)), redness (a measure of pedogenic 

development; Guo et al. (2009)), χlf, and χfd for other loess sections across the wider Chinese Loess 

Plateau (Hao et al., 2012; Zhang et al., 2016) (Fig. 4A, B). 

 

3. Two-stage mid-Brunhes climate transition 

3.1. Strong interhemispheric contrasts during MIS 13 and onset of super-interglacials at MIS 11 

The observed transition to higher precipitation on the Chinese Loess Plateau coincided with a 

positive marine benthic δ13C shift in MIS 13, but predated by ~100 kyr shifts during MIS 11 in the 

records of marine benthic δ18O, ice volume, sea level, and atmospheric CO2 concentration records 

(Wang et al. 2003; Augustin et al., 2004; Lisiecki and Raymo, 2005; Lüthi et al., 2008; Elderfield et 

al., 2012; Martínez-Botí et al., 2015; Spratt and Lisiecki, 2016) (Fig. 5). To assess Asian summer 

monsoon changes and dynamics across the MBT in a global perspective, we compare Chinese Loess 

Plateau records with globally more widespread precipitation and temperature records (Figs. 1 and 5–7; 

Tables 1–2). 

Global datasets that indicate precipitation changes across the MBT are summarized in Table 1. 
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Similar to the MIS 13 shift to higher precipitation on the Chinese Loess Plateau, such a shift is also 

evident in other regions of Asia, North Africa, Europe, the Middle East, northernmost South America, 

and the equatorial Pacific Ocean (Table 1; Fig. 1). For example, the Artemisia/Chenopodiaceae ratio 

increased during MIS 13 and especially during MIS 11 in the Yinchuan Basin, NW China, which is 

consistent with higher precipitation (Li et al., 2017a). Terrestrial sedimentary, soil 

micromorphological, mineralogical, and geochemical records from South China (Zhang et al., 2009; 

Lu et al., 2020) and marine geochemical records (e.g., n-alkane flux, sea-surface salinity, 

foraminiferal δ15N, and opal content) from the South China Sea (Shyu et al., 2001; Shiau et al., 2008; 

Li et al., 2013; Ren et al., 2017) also suggest a precipitation increase during MIS 13 relative to 

previous interglacials. Higher South Asian monsoon intensity has been inferred from MIS 13 onward 

from higher Arabian Sea productivity as indicated by enhanced Ca/K ratios (Kunkelova et al., 2018) 

(Fig. 5C) and Ba concentrations (Ziegler et al., 2010) (Fig. 6A), and from larger lithogenic grain sizes 

that reflect stronger detrital transportation by summer monsoon precipitation (Clemens et al., 1996). 

In North Africa, increased monsoon precipitation enhanced discharge into the Mediterranean Sea 

from rivers along the North African margin, including the Nile, which caused formation of a thick 

sapropel in Eastern Mediterranean sediments during MIS 13, with low Si/Al and K/Al ratios 

(Rossignol-Strick et al., 1998; Zhao et al., 2012). Further support for a shift to higher North African 

precipitation comes from the clay mineralogy of Nile deep-sea fan sediments (Zhao et al., 2012) (Fig. 

5D) and from the emergence of large ephemeral lakes in the present-day Sahara Desert (Geyh and 

Thiedig, 2008). Widespread formation of a well-developed palaeosol layer (S5) in the Danube River 

basin and increases in Pinus pollen and total organic carbon (TOC) contents and Ca/K from Lake Van, 

Turkey, suggest increased precipitation during MIS 13 in Europe and the Middle East, respectively 
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(Litt et al., 2014; Stockhecke et al., 2014; Marković et al., 2015). 

In northernmost South America (northern Colombia), lake records indicate that MIS 13 became 

prominently warmer and wetter than MIS 15 as suggested by decreased shallow water taxa and 

increased Alnus, arboreal, and aquatic cyperaceae pollen (Hooghiemstra and Ran, 1994; Torres et al., 

2013). Likewise, a shift to higher precipitation at MIS 13 enhanced regional vegetation cover that 

stabilized landscapes, which would have reduced terrigenous input into the western tropical Atlantic 

Ocean and easternmost equatorial Pacific Ocean from northern South America (Harris et al., 1997; 

Horikawa et al., 2010). Relatively high CaCO3 (Fig. 5E) and longer-chain n-alkanes concentrations 

are thus observed during MIS 13 in the western tropical Atlantic and easternmost equatorial Pacific 

Oceans, respectively (Harris et al., 1997; Horikawa et al., 2010). In addition, a shift to increased 

interglacial precipitation in the Pacific Ocean at MIS 13 is indicated by more negative shifts in 

surface-dwelling Globigerinoides ruber δ18O and seawater δ18O records at ODP Hole 806B 

(Medina-Elizalde and Lea, 2005), and increased biogenic opal flux in core PC72 (Murray et al., 2012) 

(Fig. 6B–D). 

In contrast to a change to wetter conditions in widespread regions across the northern hemisphere, 

the climate became drier from MIS 15 to 13 in South Africa and South Australia. In subtropical 

southeastern Africa, decreased Fe/Ca ratios (Fig. 5F) in marine sediments offshore of the Limpopo 

River mouth, increased grassland pollen and decreased aquatic pollen in Lake Magadi, and shallowing 

or even the disappearance of some lakes in South Africa indicate a shift to drier conditions in MIS 13 

(Ivory et al., 2016; Caley et al., 2018; Owen et al., 2018). Likewise, South Australia became drier as 

suggested by transitions from freshwater lacustrine to aeolian and saline gypsiferous deposits in the 

Lefroy and Bungunnia lakes at ~500 ka (An et al., 1986; Zheng et al., 1998). 
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Global datasets that indicate temperature changes across the MBT are summarized in Table 2. 

Like precipitation, temperature appears to have changed asymmetrically between hemispheres during 

MIS 13 (Guo et al., 2009) (Fig. 1). Sub-Antarctic Pacific Ocean deep-sea temperature (Elderfield et al., 

2012) (Fig. 5J), Antarctic atmospheric temperature (Jouzel et al., 2007), South Atlantic and South 

Indian Ocean sea surface temperature (SST) (Etourneau et al., 2009; Martínez-Garcia et al., 2009), 

and stacked Southern Ocean SST all indicate that MIS 13 was the coolest among the last nine 

interglacials (Fig. 7A–E). Moreover, increased sea-salt sodium fluxes in the Dome C ice core suggest 

increased interglacial sea ice volume around Antarctica during MIS 13 (Wolff et al., 2010) (Fig. 7F). 

Ice sheet modelling (Pollard and Deconto, 2009) indicates an ice volume increase in Antarctica from 

MIS 15 to 13 (Fig. 7G). Southern Ocean Ba/Fe and Ca/Fe records generally have prominent peaks 

during interglacials, but they have a muted peak during MIS 13, which suggests substantially lower 

export production linked to a regionally cooler climate (Jaccard et al., 2013). 

In contrast to subdued southern hemisphere warming, northern hemisphere continents became 

notably warmer from MIS 15 to 13 (Fig. 1). Sharp increases in manganese, spermatophyte pollen, and 

pteridophyte spores in Arctic marine sediments (de Vernal and Hillaire-Marcel, 2008; Polyak et al., 

2013) suggest a significantly warmer Arctic climate during MIS 13 than MIS 15 (Fig. 7H–J). In Lake 

El‟gygytgyn (NE Russia), Mn/Fe and diatom concentration increased during MIS 13 and more 

significantly during MIS 11, which suggests elevated interglacial temperatures (Melles et al., 2012; 

Snyder et al., 2013) (Fig. 7K–L). Widespread and unusually warm MIS 13 conditions are also 

suggested by temperature reconstructions and pollen data from New Mexico (Fawcett et al., 2011; 

Contreras et al., 2016), palaeoecological records from Britain (Candy and McClymont, 2013), pollen 

data from Tenaghi Phillipon, Greece (Pross et al., 2015), terrestrial and marine pollen data from Italy 
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(Combourieu-Nebout et al., 2015; Margari et al., 2018), planktonic diatom assemblages from Lake 

Baikal, central Asia (Prokopenko et al., 2002), and lake carbonate and pollen records from the eastern 

Tibetan Plateau (Chen et al., 1999). Modern mammalian fauna and vegetation were also established in 

southern Europe at ~0.5 Ma, which is consistent with establishment of modern warm interglacials 

(Magri and Palombo, 2013). 

The above observations (Figs. 1 and 5–7; Tables 1–2) indicate asymmetrical changes between 

hemispheres in both precipitation and temperature across MIS 13, as noted by Guo et al. (2009). This 

suggests that the Chinese Loess Plateau precipitation increase during MIS 13 was related to a global 

mechanism rather than to regional factors only. Intense northern hemisphere warming tends to 

increase water vapour formation above the northern oceans and to enhance atmospheric ascent (Beck 

et al., 2018), which may have driven the widespread precipitation increase on the Chinese Loess 

Plateau and in other northern hemisphere regions during MIS 13, including Eurasia, North Africa, 

northernmost South America, and the equatorial Pacific Ocean (Fig. 1 and Table 1). In contrast, lower 

southern hemisphere temperatures promoted decreased precipitation in South Africa and Australia 

during MIS 13. In the same period, more intense northern hemisphere warming together with subdued 

southern hemisphere warming, possibly due to stronger obliquity-induced summer insolation in 

northern compared to southern hemisphere continents (Yin and Berger, 2012; Berger et al., 2016), 

may have resulted in intensification and more extensive northward swings of the intertropical 

convergence zone (ITCZ) relative to previous interglacials. This ITCZ displacement also facilitated a 

precipitation increase over Asia, North Africa, northernmost South America, and the equatorial 

Pacific Ocean, but resulted in precipitation decreases in South Africa and South Australia (An, 2000; 

Chiang and Bitz, 2005; Guo et al., 2009; An et al., 2011; Schneider et al., 2014; Shi et al., 2020) (Fig. 
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1). Recent climate model simulations provide crucial support for such responses during 

hemispherically asymmetric MIS 13 climate changes (Shi et al., 2020). 

After MIS 13, all interglacials were characterized by sustained high interglacial precipitation in 

East Asia. However, the marked hemispheric asymmetry typical of MIS 13 is absent in the later 

interglacials. Hence, the dynamics underpinning high monsoon intensity (and precipitation) from MIS 

11 onward require a separate explanation. Starting with MIS 11, interglacials transitioned from 

so-called “lukewarm” to warmer “super” interglacials, with reduced global ice volume (and, thus, 

higher sea level), and with elevated atmospheric CO2 concentrations (Augustin et al., 2004; Lisiecki 

and Raymo, 2005; Lüthi et al., 2008; Elderfield et al., 2012; Martínez-Botí et al., 2015; Spratt and 

Lisiecki, 2016) (Fig. 5). Carbon-cycle and ice-albedo feedbacks likely played critical roles in 

intensifying and sustaining interglacial warming, based on both model simulations and observed 

higher interglacial CO2 concentrations during MIS 11 and younger interglacials, with synchronous sea 

level increases (Lisiecki and Raymo, 2005; Rohling et al., 2009, 2014; Tzedakis et al., 2009; Yin and 

Berger, 2010; Lang and Wolff, 2011; Grant et al., 2014; Spratt and Lisiecki, 2016). These globally 

increased interglacial intensities were associated with increased lower-tropospheric water vapour 

loading in the Western Pacific and Indian Oceans, strengthened summer monsoon circulation, and 

shortened moisture transportation pathways to East Asia. Combined, they would have enhanced 

moisture transportation to East Asia (Ao et al., 2012; Beck et al., 2018) to lead to sustained high 

interglacial precipitation. 

 

3.2. Oceanic carbon cycle changes and a two-stage climate transition across the MBT 

High interglacial marine benthic δ13C values during MIS 11 are consistent with the parallel low 
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marine benthic δ18O values, high atmospheric CO2 concentrations, low ice volume, and high sea level 

(Figs. 5 and 8). However, earlier high interglacial marine benthic δ13C values during MIS 13 are 

incompatible with the notably higher marine benthic δ18O values, lower atmospheric CO2 

concentrations, higher ice volume, and lower sea level, relative to MIS 11 (Figs. 5 and 8). Ocean 

carbon chemistry and deep-water circulation changes have often been used to explain abnormally high 

benthic δ13C values during MIS 13 (Raymo et al., 1997; Wang et al., 2003; Hoogakker et al., 2006; 

Holden et al., 2011). Although benthic δ13C can be influenced by ocean circulation changes, the fact 

that this positive δ13C shift is observed so widely in the global ocean, including the South China Sea 

(Wang et al., 2003, 2014), tropical eastern Pacific Ocean (Mix et al., 1995), North Atlantic Ocean 

(Tiedemann et al., 1994), South Pacific Ocean (Elderfield et al., 2012), and Southern Ocean (Venz 

and Hodell, 2002), as is evident from the global benthic δ13C stack (Fig. 8), reflect global carbon 

reservoir changes at MIS 13 (Wang et al., 2003). A growing number of studies (e.g., Gingele and 

Schmieder, 2001; Lear et al., 2016; Howe and Piotrowski, 2017; Sosdian et al., 2018; Farmer et al., 

2019) provide evidence that deep-water circulation was not anomalous, so that it was not responsible 

for the prominent benthic δ13C shift at MIS 13. For example, seawater εNd (Fig. 9A) in the equatorial 

western Atlantic Ocean (Howe and Piotrowski, 2017), benthic foraminiferal trace element B/Ca (Fig. 

9B), Cd/Ca, and planktonic foraminiferal U/Ca in the North Atlantic Ocean (Lear et al., 2016; Sosdian 

et al., 2018; Farmer et al., 2019), and kaolinite/chlorite ratios (Fig. 9C) in the South Atlantic Ocean 

(Gingele and Schmieder, 2001) all suggest that MIS 13 deep-water circulation was not different from 

other interglacials. Thus, we view the positive MIS 13 benthic δ13C shift to be due to global carbon 

reservoir changes, as originally suggested by Wang et al. (2003). Wang et al. (2014) suggested that the 

MIS 13 benthic δ13C shift may be (partly) attributed to potential Southern Ocean changes, via changes 
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in the ratio of oceanic particulate to dissolved organic carbon. However, based on concurrent and 

widespread increases in precipitation and forest/vegetation cover over northern hemisphere continents 

(Fig. 1 and Table 1), we suggest that increased 12C sequestration into continental (and continental 

shelf) biomass likely dominated the increase in dissolved inorganic carbon δ13C that is recorded in 

marine benthic foraminifera. 

Our synthesis of global middle to late Pleistocene palaeoclimate and benthic δ13C records 

indicates that markedly asymmetrical inter-hemispheric temperature and precipitation changes, 

prominent northward ITCZ swings, and profound global carbon cycle changes occurred as early as 

MIS 13 (Fig. 5). In contrast, atmospheric CO2 concentrations, global mean annual surface air 

temperature, South Atlantic Ocean deep-sea temperature, global sea level, and global benthic δ18O 

went through a major transition as late as MIS 11 (Lisiecki and Raymo, 2005; Lüthi et al., 2008; 

Elderfield et al., 2012; Martínez-Botí et al., 2015; Spratt and Lisiecki, 2016) (Fig. 5). Hence, we 

conclude that the mid-Brunhes climate transition occurred in two stages. The first stage (MBT-1) was 

marked by asymmetrical temperature and precipitation changes between hemispheres, northward 

ITCZ displacement, and global carbon cycle changes during MIS 13. The second stage (MBT-2) was 

marked by global “mean” climate changes in atmospheric CO2 concentrations, global atmospheric and 

deep-sea temperatures, and ice volume/sea level during MIS 11 (Fig. 5). Both the Greenland and West 

Antarctic ice sheets may have collapsed during the warm “super” interglacial MIS 11 (Raymo and 

Mitrovica, 2012; Reyes et al., 2014). 

Our proposed two-stage MBT development reconciles different MBT timings from 

palaeoclimate records (Fig. 5). Some regions responded predominantly to northern hemisphere 

continental warming and northward ITCZ displacement during MBT-1, such as mid- and low-latitude 
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Asian and North African precipitation, which featured maximum values during MIS 13. This induced 

intense palaeosol development on the Chinese Loess Plateau (Fig. 4) and formation of a thick Eastern 

Mediterranean sapropel (e.g., Rossignol-Strick et al., 1998). Some other regions, such as the Yinchuan 

Basin (NW China) and high-latitude NE Russia, responded only moderately to northern hemisphere 

continental warming and to a northward ITCZ displacement at MBT-1, but were more prominently 

affected by the transition to maximum interglacial warmth in both hemispheres at MBT-2 (Melles et 

al., 2012; Li et al., 2017a). Meanwhile, the Asian winter monsoon did not change as prominently 

across the MBT as the summer monsoon, as is indicated by limited responses in Chinese loess grain 

size records across MIS 13 and MIS 11 (e.g., Ding et al., 2002; Sun et al., 2006; Hao et al., 2012). 

Finally, stalagmite δ18O records from South China warrant specific discussion. These records are 

dominated by precession cycles with little evidence of 100-kyr glacial-interglacial cycles during the 

past 640 kyr, and without major shifts at MIS 11 or MIS 13 (Cheng et al., 2016). These stalagmite 

δ18O variations have been interpreted as a record of East Asian summer monsoonal rainfall variability, 

but are increasingly thought to be influenced not only by the monsoon, but also by other factors, 

including moisture transportation distance, evaporation and condensation processes along the vapour 

advection pathway, mixing of water vapour derived from different sources (Indian vs Pacific Ocean), 

temperature changes at the moisture sources, glacial-interglacial seawater δ18O variations, regional 

temperature gradients, changes in seasonality and frontal position, and additional local effects (e.g., 

Maher and Thompson, 2012; Liu et al., 2015; Wang et al., 2017; Beck et al., 2018; Clemens et al., 

2018; Zhang et al., 2018). Full interpretation of different orbital features between Chinese loess and 

South China stalagmite δ18O records remains a challenge that has been debated extensively, and needs 

further work. However, the apparent absence of MBT-1 and/or MBT-2 in some palaeoclimate records 
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(e.g., Ding et al., 2002; Tzedakis et al., 2006; Candy et al., 2010; An et al., 2011; Cheng et al., 2016) 

supports the concept that regionally differing climate imprints may be expected because of different 

regional response sensitivities to major climate rearrangements (Berger et al., 2016), and because 

individual records may record composite processes rather than a single process. This debate needs to 

be settled by further research using both observations and modelling. 

 

4. Potential links between mid-Pleistocene environmental and human evolution 

Integration of mid-Pleistocene palaeoclimatic and palaeoanthropological records provides an 

opportunity to obtain a global perspective on climate variability and human evolution across the MBT. 

Broadly, increased environmental extremes (cold/dry or warm/moist conditions) and resulting 

ecological and faunal changes have been suggested as likely drivers of hominin evolution over the 

past several million years (e.g., deMenocal, 1995, 2004; Potts, 1996; Potts et al., 2018). The shift to 

larger-amplitude glacial-interglacial variability across the two MBT stages between ~500 and 380 ka 

(MIS 13–11) corresponds to a critical time in human physical, behavioural, and genetic evolution, 

with the highest known diversification of human lineages/species occurring over this time interval 

(Galway-Witham et al., 2019) (Fig. 10). Starting from MBT-1 at ~500 ka, global archaeological 

records indicate prominent increases in new subsistence behaviour (e.g., fire control, large mammal 

butchery), technical innovations (e.g., improved core and Levallois technologies and increased 

light-duty tools), regionalization, and more intense social interactions (e.g., Roebroeks and Villa, 2011; 

Davis and Ashton, 2019; Galway-Witham et al., 2019; Biddittua et al., 2020; Moncel et al., 2020). We 

outline these major divergences below. 

H. erectus, which is one of the first species of the Homo genus, expanded to low- and 
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mid-latitude Eurasia as early as ~1.8–1.6 Ma (Zhu et al., 2004, 2008, 2015; Dennell, 2009; Ferring et 

al., 2011; Ao et al., 2013b). It survived changing East Asian environments for more than one million 

years but seems to have disappeared in China after ~400 ka (Ao et al., 2017; Galway-Witham et al., 

2019), close to MBT-2. Remaining H. erectus populations may then have been restricted to Southeast 

Asia, surviving in Java, where the tropical climate remained warm and wet. They persisted there 

despite increased climate variability across the MBT until ~100 ka (Galway-Witham et al., 2019; 

Rizal et al., 2019). It can be inferred that the ancestors of H. floresiensis were already present on the 

Indonesian island of Flores before MBT-1 because a related population is known there at ~700 ka 

(van den Bergh et al., 2016). Thus, it appears that H. floresiensis also survived increased Southeast 

Asian tropical climate variability across the MBT (van den Bergh et al., 2016) (Fig. 10). It can be 

inferred that the mid-Pleistocene species H. heidelbergensis was present at ~0.6 Ma in Europe and 

Africa from the German type fossil (Mauer) and key Ethiopian materials (Bodo) (Rightmire, 2009; 

Galway-Witham et al., 2019) (Fig. 10). It has often been considered as the likely last common 

ancestor of H. neanderthalensis and H. sapiens (Stringer, 2012a), but its evolutionary role is 

questionable now on both chronological and morphological grounds, and its extinction date is 

unknown (Gómez-Robles et al., 2013; Galway-Witham et al., 2019; Gómez-Robles, 2019; Grün et al., 

2020). 

The timespan across the two MBT stages encompasses the extinction of older lineages/species 

and the origination of new species and early divergences of old species in Europe, Asia, and Africa. 

This suggests a potential link between environmental change and human evolution (Fig. 10). Genetic 

calibrations using estimates of the autosomal human mutation rate suggest that the divergence date of 

the H. neanderthalensis and H. sapiens lineages could lie between ~550 and 765 ka or, alternatively, 
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between ~503 and 565 ka (Meyer et al., 2016; Hajdinjak et al., 2018). Given that genetic divergence 

precedes speciation, these lineages would have been differentiating during the MBT (Galway-Witham 

et al., 2019), between MIS 13 and 11. Another hominin group must have also begun its evolution by 

this time – the Denisovans, a sister group of Neanderthals. Denisovans are only known from Asian 

fossil evidence from the late mid-Pleistocene onward, but both genetic calibration and primitive 

morphological aspects compared with the Sima de los Huesos fossils from Atapuerca, Spain, place 

their divergence from the Neanderthal lineage earlier in the mid-Pleistocene, before ~430 ka (Reich et 

al., 2010; Jacobs et al., 2019). Although there is as yet no physical evidence, the origin of Denisovans 

from a common ancestor with Neanderthals probably occurred in East Asia during MIS 13–12. In the 

later mid-Pleistocene, China had a high morphological diversity of human populations, but apart from 

the Denisovan-related Xiahe mandible (~160 ka) in central China (Chen et al., 2019) and possible 

Denisovan fossils excavated from sites like Xujiayao (260–370 ka), North China (Ao et al., 2017), the 

affinities of “China archaics” like Chaoxian, Dali, and Jinniushan to other lineages, including the 

Denisovans, are also currently unclear (Ao et al., 2017; Galway-Witham et al., 2019). However, the 

suggested timing of the appearance of “China archaics” at ~400 ka (Ao et al., 2017) coincides with 

MBT-2. In addition, we can reasonably infer that the H. naledi lineage appeared in South Africa 

around or before the MBT (Galway-Witham et al., 2019). Although known fossil specimens are dated 

between 236 and 414 ka using a combination of optically stimulated luminescence (OSL) dating of 

sediments, U-Th and palaeomagnetic dating of flowstones, and U-series and electron spin resonance 

(US-ESR) dating of teeth (Dirks et al., 2017), the persistence of primitive traits suggests a much more 

ancient origin (Galway-Witham et al., 2019). 

In both Europe and Africa, the period between ~500 and 400 ka is notable in terms of hominin 
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diversity, with brain sizes coming fully into the modern range for the first time. In Europe, this was a 

critical phase in the development of human evolution, technology, and societies (Davis and Ashton, 

2019), and there was a range of fossil morphologies, with some attributed to early Neanderthals and 

others to the continuing H. heidelbergensis lineage (Stringer, 2012a; Manzi, 2016; Galway-Witham et 

al., 2019). For example, the extensive Sima de los Huesos sample can be placed on the Neanderthal 

lineage through numerous morphological traits, which is also supported by DNA analysis (Arsuaga et 

al., 2014; Meyer et al., 2016), while the penecontemporaneous braincase from Ceprano, Italy, has 

preponderantly primitive, rather than Neanderthal, traits (Manzi, 2016). Other fossils such as the 

calvaria from Gruta da Aureira, Portugal, have mixed features characteristic of European earlier 

middle Pleistocene crania (Daura et al., 2017). Experts differ in opinion on the most appropriate 

taxonomic and evolutionary allocation for these samples (e.g., Bermúdez De Castro et al., 2019; 

Rosas et al., 2019). 

By ~600 ka, H. heidelbergensis was present in Africa as far apart as Ethiopia and South Africa, 

but subsequent climatic changes across the MBT could have produced niche contraction in a relatively 

drier southern Africa (Caley et al., 2018), while a more humid northern Africa (Rossignol-Strick et al., 

1998; Geyh and Thiedig, 2008; Zhao et al., 2012) (Figs. 1 and 5) would have opened new niches for H. 

heidelbergensis population expansions with handaxe industries. In particular, northward expansion 

and intensification of the African monsoon (Rossignol-Strick et al., 1998; Zhao et al., 2012) may have 

transformed large parts of the Sahara Desert into a vegetated “green Sahara” savannah with large 

lakes (Geyh and Thiedig, 2008; Larrasoaña et al., 2013), which connected central Africa with the 

North African coast and with west Asia. It is not known whether H. heidelbergensis persisted in 

increasingly arid southern Africa (Fig. 5F), but it seemingly did so in Central and East Africa based on 
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evidence from Eyasi and Broken Hill (Dominguez-Rodrigo et al., 2008; Galway-Witham et al., 2019; 

Grün et al., 2020). It is possible that H. naledi differentiated in southern Africa as a more arid-adapted 

species with a lower quality diet following enhanced regional aridity across the MBT (Fig. 5F), but its 

evolutionary history and adaptations remain essentially unknown. H. sapiens may have emerged in 

Africa during the MBT at ~500–400 ka (Galway-Witham et al., 2019), which overlaps with the 

larger-amplitude MBT glacial-interglacial oscillations. The oldest recognized H. sapiens fossils are 

associated with Levallois artefacts (Middle Palaeolithic) from Jebel Irhoud, Morocco, dating between 

~378 and 295 ka (Hublin et al., 2017; Richter et al., 2017) within the second full glacial to interglacial 

cycle of MIS 10–9. This date is younger than that of the MIS 12 early Neanderthals in Spain but is 

still within the larger-amplitude glacial-interglacial oscillations that followed MBT-2. 

Along with increased amplitude of climate variability across the MBT, greater variation in lithic 

industries and hominin behaviour developed across Eurasia and Africa (Fig. 10). The two MBT stages 

coincided with behavioural changes leading toward the early Middle Palaeolithic, such as changes in 

cultures and land use patterns, and more versatile and standardized core technologies (Davis and 

Ashton, 2019; Biddittua et al., 2020). In Europe, handaxes were a major focus of stone tool 

manufacture before and during MIS 11 but became a more marginal technology or were absent after 

this time (Davis and Ashton, 2019). In East Asia, abundant handaxes appeared in central China from 

~500 ka (Li et al., 2014), which might indicate that similar morphological and technological diversity 

was developing there. Levallois-like artefacts developed within MIS 12–9 in both Africa and Europe 

(Monnier, 2006; Hublin, 2009; Porat et al., 2010; Adler et al., 2014; Hublin et al., 2017; Richter et al., 

2017; Potts et al., 2018; Moncel et al., 2020), which are markedly more technologically complex 

relative to the previous Lower Palaeolithic tools (including handaxes) and were probably more 
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efficient for hunting (Ambrose, 2010). The control and use of fire also becomes clearer in 

archaeological records from ∼400 ka onward (Preece et al., 2006; Roebroeks and Villa, 2011; Ravon 

et al., 2016; Daura et al., 2017; Davis and Ashton, 2019), while the processing of hides for clothing 

and shelter may also have become widespread (Voormolen, 2008; Ashton, 2015). More persistent use 

of caves could also have facilitated the first regular construction of shelters (Olle et al., 2016; Ravon, 

2018), leading to a growing recognition of place, space, and perhaps territories, which is critical for 

the structuring and operation of societies (Ashton, 2018; Ravon, 2018; Scott and Shaw, 2018). These 

lithic and behavioural developments may have potentially helped populations to adapt to the 

larger-amplitude climate variability. 

It is apparent that many of these notable developments in human speciation, morphology, and 

behaviour coincided with the MBT. According to environmental theories of human evolution (e.g., 

deMenocal, 1995, 2004; Potts, 1996; Potts et al., 2018), this chronological match implies that the 

larger-amplitude climate variability across the MBT could have provided a driving force for the 

mid-Pleistocene high diversification of human lineages and behavioural changes. Generally, more 

extreme variability in precipitation (particularly in Africa) and temperature (particularly in Europe) 

had a global influence on human habitats, selection gradients, and biota, which may have impacted 

human survival, reproduction, and population sizes (Owen et al., 2018; Potts et al., 2018). Under 

favourable warm/humid conditions, resources were relatively abundant, and human populations 

probably increased in size, colonizing new regions (Dennell, 2009; Caley et al., 2018; Potts et al., 

2018). Under less favourable cold/dry conditions, populations would have been prone to contraction, 

regional isolation or fragmentation, and even local extinction due to insufficient resource acquisition 

(e.g., food, water, and shelter), increased competition, and enhanced selective pressures (Dennell, 
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2009; Caley et al., 2018; Potts et al., 2018). Increased amplitudes of glacial-interglacial oscillations 

were also associated with prominent vegetation and mammalian community shifts across the MBT 

(e.g., Magri and Palombo, 2013; Head and Gibbard, 2015; Potts et al., 2018), which induced higher 

regional climate and ecosystem variability, and potentially increased foraging unpredictability (Hublin, 

2009; Hublin and Roebroeks, 2009). Smaller numbers of human species, lower population density, 

and weaker social networks before MBT-1 at ~500 ka (Biddittua et al., 2020) would also have 

increased the likelihood of more isolated local populations becoming extinct under larger-amplitude 

climate variability and larger environmental stress after this time, particularly during the following 

“super” glacial MIS 12, when ice sheets first expanded south of 50°N in eastern and central Europe 

(Lauer and Weiss, 2018). For coeval human hunter-gatherers, the combined action of increased 

environmental and habitat variability, and unpredictable resource availability may have induced 

demographic crashes of some older human linages (i.e., H. erectus and H. heidelbergensis) (Fig. 10). 

In addition to enhanced climatic adaptations, many surviving human populations could have been 

forced to widen their mobility, to increase planning depth and hunting proficiency, to share more 

information and resources, to extend regional social interaction and resource exchange networks with 

increased trust and cooperation, and to develop enhanced constructive memory, which would have 

enhanced adaptations to unpredicted selective pressures (Ambrose, 2010; Potts et al., 2018). These 

combinations may have improved fitness, increased encephalization, promoted novel hominin 

behaviour (e.g., fire control), pushed organized hunting to higher levels, enhanced foraging efficiency, 

and driven genetic drift or exchange (Hublin, 2009; Potts et al., 2018; Galway-Witham et al., 2019). 

Through these pressures and opportunities, some groups could have differentiated into distinct 

populations and then into new species. These possibilities and the evidence provided above of a 
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chronological correlation between environmental change and human evolution suggest that increased 

climate variability across the MBT may have provided a catalyst or appropriate conditions for 

evolution that induced the high diversification of human lineages (with coexisting distinct human 

groups) during the middle interval of the middle Pleistocene, including origination of Neanderthals, 

Denisovans, and H. sapiens (Fig. 10). This inference is consistent with environmental theories of 

human evolution (e.g., deMenocal, 1995, 2004; Potts, 1996; Potts et al., 2018) and provides a basis to 

elaborate on environmental and human co-evolution, although causal links between coeval climatic 

and evolutionary changes cross the MBT cannot yet be established. 

The evolved new and surviving old species, coupled with technical and behavioural 

developments (e.g., Levallois tools and fire control), may have become more adaptable to increased 

environmental extremes (cold/dry or warm/moist conditions) across the MBT. In turn, this may have 

laid the foundation for subsequent episodic human expansions across Africa and Eurasia (Moncel et 

al., 2016; Davis and Ashton, 2019), including previously abandoned high-latitude Europe (subject to 

favourable conditions). More or less permanent occupation occurred in at least some of these regions, 

probably from “super” interglacial MIS 11 onward or even from the comparably regionally warm and 

wet European interglacial MIS 13 (Biddittua et al., 2020). Although occupation was punctuated by 

severe cold periods, particularly during the first “super” glacial MIS 12 between MBT-1 and MBT-2, 

which probably resulted in population decreases and niche contraction, there may have been 

near-continuous colonization in parts of southern Europe. The more maritime climates of 

northwestern Europe allowed occupation of northern latitudes for parts of this time, and it has been 

argued that this was a critical time for development of abilities to cope with long, cold winters 

(Ashton and Lewis, 2012; Cohen et al., 2012; Hosfield, 2016), although some earlier adaptations had 
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occurred – as indicated by human persistence in an Early Pleistocene boreal environment at 

Happisburgh 3 (Norfolk, UK; Parfitt et al., 2010). Shorter growing seasons would have demanded an 

obligate dependence on procuring meat, and several sites at this time provide greater evidence of the 

requisite technology (Roberts and Parfitt, 1999; Schoch et al., 2015). 

 

5. Conclusions 

Our palaeoclimatic synthesis suggests that the complete mid-Brunhes climate transition was a 

two-stage process. The first stage (MBT-1) at ~500 ka was marked by increased temperature and 

precipitation over northern hemisphere continents during interglacial MIS 13, with accompanying 

global carbon cycle changes because of vegetation expansion. In the southern hemisphere, opposite 

temperature and precipitation changes are found during MBT-1. We relate the opposite precipitation 

changes between hemispheres to enhanced warming of northern hemisphere continents, limited 

southern hemisphere warming, and associated intensification and more extensive northward ITCZ 

swings. The second stage of the mid-Brunhes climate transition (MBT-2) at ~400 ka was marked by a 

more global shift to greater interglacial warmth linked to increased atmospheric CO2 concentrations, 

with reduced ice volume starting at MIS 11. The global shift to intensified interglacial conditions at 

MBT-2 was associated with sustained high interglacial precipitation in Asia from MIS 11 onward and 

with sustained high marine benthic δ13C values during MIS 11. 

Based on the observed temporal co-occurrence of environmental and human species changes, we 

infer that prominent climate changes across the MBT may have provided a catalyst or the appropriate 

conditions to promote mid-Pleistocene hominin and behavioural diversity. Relevant changes include 

human expansions across wider areas of Africa and Eurasia, longevity or extinction of older 
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lineages/species, origination of new species (e.g., emergence of Neanderthals in Europe, Denisovans 

in eastern and southeastern Eurasia, H. sapiens in Africa, and “China archaics” in East Asia), and the 

transition to Levallois technology in many regions. These observations are consistent with previous 

proposals of environmental influence on human evolution. Our hypothesis is testable with future 

development of a more complete understanding of mid-Pleistocene environmental changes, human 

lineage diversification, and behavioural developments. In particular, new palaeoanthropological data 

are needed from regions such as Africa and China, and from critical areas like the Indian subcontinent 

and much of southeastern Asia, which are marked by a near-complete lack of relevant materials. 
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Figure captions 

Figure 1. Boreal summer and winter patterns of precipitation and surface winds worldwide. 

High precipitation and convergence of surface winds (850 hPa) generally occurs at the ITCZ. 

Precipitation and wind data are from the Climate Prediction Centre Merged Analysis of Precipitation 

and from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis 

between 1980 and 2005, respectively. Red and black solid circles represent sites that shifted to wetter 

and drier conditions from MIS 15 to 13, respectively. Red and black stars represent sites that shifted to 

more-warmed and less-warmed interglacial conditions from MIS 15 to 13, respectively. 

 

Figure 2. Site location map and field photograph. (A) Map of the Chinese Loess Plateau (region 

with red solid dots) with mean annual precipitation contours (black dashed lines, numbers indicate 

annual rainfall in mm) and location of loess records discussed in the text (black solid circles), 

including Binxian, Luochuan, Jingchuan, Yimaguan, Sanmenxia, Duanjiapo, Xifeng, Lingtai, and 

Xijin. The Yellow River is the major river system in North China. (B) Field photograph of the Binxian 
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loess sequence. L and S indicates loess and palaeosol layers, respectively. 

 

Figure 3. Comparison of various loess χlf time scales and age model construction for the Binxian 

loess section. (A) Binxian lithology and χlf plotted against depth. (B) Comparison between Binxian 

and Xifeng χlf records on the age model of Guo et al. (2009) established by loess-to-marine 

correlations. (C) Comparison of the established Binxian χlf time series with the LR04 marine benthic 

δ18O stack (Lisiecki and Raymo, 2005). (D–F) Astronomical time scales for the Jingchuan (Ding et al., 

2002), Lingtai (Sun et al., 2006), and Luochuan (Heslop et al., 2000) loess χlf records. (G) Yimaguan 

loess χlf placed on a time scale (Hao et al., 2012) established by a combination of loess-to-marine 

correlations and a weighted grain-size age model proposed by Porter and An (1995). Black dots on the 

Binxian χlf record represent tie points used to establish the age model. Blue bars indicate the 

correlation of thick marker palaeosol (S5 and S4) layers to interglacial stages. 

 

Figure 4. Chinese loess Asian summer monsoon proxies over the past 800 kyr. (A–J) East Asian 

summer monsoon precipitation variability on the Chinese Loess Plateau indicated by loess χfd from 

the Luochuan section (Hao et al., 2012) and Xijing core (Zhang et al., 2016), and by χlf from loess 

sections at Luochuan (Hao et al., 2012), Lingtian (Sun et al., 2006), Jingchuan (Ding et al., 2002), 

Yimaguan (Hao et al., 2012), Sanmenxia (Li et al., 2017b), Duanjiapo (An et al., 2005), Xifeng (Sun 

et al., 2006), and Binxian (this study). All loess proxy records refer to the age model of Guo et al. 

(2009). (K) LR04 benthic δ18O stack (Lisiecki and Raymo, 2005). Temporal χlf and χfd variability 

during the last 800 kyr is similar across the Chinese Loess Plateau, with all records suggesting 

prominently higher interglacial East Asian summer monsoon precipitation from MIS 13 onward. 
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Glacial-interglacial cycles are clearly evident in all records, although details differ slightly in different 

records, which is consistent with their respective resolutions and regionally variable pedogenic 

development related to monsoon palaeoprecipitation variations. 

 

Figure 5. Monsoon precipitation, global ocean carbon chemistry, and global climate variability 

over the past 800 kyr. (A, B) East Asian summer monsoon precipitation variability on the Chinese 

Loess Plateau indicated by the Binxian (BX) loess χlf and Hm/Gt records (this study). (C) South Asian 

monsoon precipitation indicated by the Arabian Sea Ca/K record (Kunkelova et al., 2018). (D) North 

African monsoon precipitation variability inferred from the clay-mineralogical illite-chemistry index 

(ratio of the 5 Å and 10 Å peak areas, which correlates positively with precipitation) of Nile deep-sea 

fan sediments in the Levantine Basin (Zhao et al., 2012). (E) Amazon precipitation inferred from 

CaCO3 concentration at Ceara Rise (Harris et al., 1997). (F) South African monsoon precipitation 

variability inferred from ln(Fe/Ca) ratios in marine core MD96-2048, offshore southeastern Africa 

(Caley et al., 2018). (G) Ocean carbon chemistry variability inferred from a benthic δ13C stack from 

ODP Sites 1143, 849, 659, 1123, and 1090 δ13C records (see Fig. 8 for details). (H) Atmospheric CO2 

concentration reconstructed from the Antarctic Dome C ice core (Lüthi et al., 2008). (I) Global mean 

annual surface air temperature (ΔMAT) changes (Martínez-Botí et al., 2015). (J) ODP Site 1123 

(South Pacific Ocean) deep-sea temperature (5-point running average of original data) based on 

Mg/Ca ratios from benthic foraminifera (Elderfield et al., 2012). (K) Global sea level (Spratt and 

Lisiecki, 2016). (L) LR04 benthic δ18O stack (Lisiecki and Raymo, 2005). The first stage (MBT-1) 

was associated with monsoon precipitation and carbon reservoir changes during MIS 13, while the 

second stage (MBT-2) was marked by global temperature and ice volume/sea level shifts during MIS 
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11, which were linked to increased atmospheric CO2 concentrations. 

 

Figure 6. Hydroclimate variability in South Asia and the tropical Pacific Ocean over the past 

800 kyr. (A) Precipitation variability in South Asia inferred from X-ray fluorescence (XRF) scanning 

Ba counts of marine sediment core MD04-2881 from the Arabian Sea (Ziegler et al., 2010). (B–D) 

Precipitation variability in the tropical Pacific Ocean inferred from ODP Hole 806B planktonic 

foraminiferal (Globigerinoides ruber) δ18O and seawater δ18O records (Medina-Elizalde and Lea, 

2005), and core PC72 sedimentary biogenic opal flux (Murray et al., 2012). (E) LR04 benthic δ18O 

stack (Lisiecki and Raymo, 2005). MIS 13 has higher precipitation in South Asia and tropical Pacific 

Ocean than previous interglacials. 

 

Figure 7. High-latitude northern hemisphere continental and southern hemisphere climate 

variability across the MBT. (A) δD temperature from the Antarctic Dome C ice core (Jouzel et al., 

2007). (B, C) Alkenone-based SST records from ODP Sites 1090 and 1082, South Atlantic Ocean 

(Etourneau et al., 2009; Martínez-Garcia et al., 2009). (D) SST record based on tetraether index 

(TEX86) from core MD96-2048, offshore southeastern Africa (Caley et al., 2011). (E) Southern 

hemisphere SST stack based on the ODP Sites 1082 and 1090 and core MD96-2048 records. (F) 

Sea-salt sodium flux from the Antarctic Dome C ice core (Wolff et al., 2010) (note the inverse axis). 

Higher sodium flux reflects larger Antarctic ice extents. (G) Simulated West Antarctic ice sheet 

variability (Pollard and Deconto, 2009). (H) XRF scanning Mn content in piston core 92AR-P39, 

western Arctic Ocean (Polyak et al., 2013). High-Mn units represent interglacial interstadial intervals, 

which are linked to higher continental margin input due to lower Arctic sea-ice extent. (I, J) 
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Abundance of spermatophyte and pteridophyte pollen at ODP Site 646, Labrador Sea (de Vernal and 

Hillaire-Marcel, 2008). (K, L) Mn/Fe and diatom concentrations at Lake El‟gygytgyn, NE Russia 

(Melles et al., 2012; Snyder et al., 2013). Lower southern than northern hemisphere continent 

interglacial warming displaced the ITCZ northward from MIS 15 to 13 and caused monsoon 

precipitation and carbon reservoir changes during MBT-1 at 500 ka. 

 

Figure 8. Comparison of Ocean carbon chemistry variability with benthic δ18
O over the past 800 

kyr. (A–E) Ocean carbon chemistry variability inferred from benthic δ13C records from ODP Sites 

1143 (South China Sea) (Wang et al., 2003), 849 (tropical eastern Pacific Ocean) (Mix et al., 1995), 

659 (North Atlantic Ocean) (Tiedemann et al., 1994), 1123 (South Pacific Ocean) (Elderfield et al., 

2012), and 1090 (Southern Ocean) (Venz and Hodell, 2002). (F) Stacked benthic δ13C based on ODP 

Sites 1143, 849, 659, 1123, and 1090. (G) LR04 benthic δ18O stack (Lisiecki and Raymo, 2005). 

Maximum positive benthic δ13C values during MIS 13 suggest carbon reservoir changes. 

 

Figure 9. Deep-water circulation (DWC) variability over the past 800 kyr. (A–B) DWC 

variability inferred from ODP Site 929 seawater εNd, equatorial western Atlantic Ocean (Howe and 

Piotrowski, 2017), benthic foraminiferal trace element B/Ca record compiled from DSDP Site 607 and 

a nearby piston core, North Atlantic Ocean (Sosdian et al., 2018), and South Atlantic Core GeoB 

3813-3 kaolinite/chlorite (Gingele and Schmieder, 2001). (C) LR04 benthic δ18O stack (Lisiecki and 

Raymo, 2005). The onset of unusually high interglacial Asian summer monsoon precipitation (Fig. 4) 

and carbon reservoir changes (Fig. 8) occurred during MIS 13, during which deep-water circulation 

did not change markedly during MIS 13 when benthic δ13C has maximum positive values relative to 

previous interglacials. 
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Figure 10. Global climatic variability and development of mid-Pleistocene hominins and 

technology over the last 800,000 years. Increased global climate variability across the MBT inferred 

from the LR04 benthic δ18O stack (Lisiecki and Raymo, 2005) is correlated with increased hominin 

diversity and (in many regions) Levallois development from handaxe technology. Inferred age ranges 

of hominin lineages are shown, with colours reflecting commonly accepted species designations 

(Galway-Witham et al., 2019). Dotted lines indicate possible phylogenetic associations of lineages. 
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Table 1 

Palaeoclimate records used to document the shift to higher precipitation in Asia, North Africa, Europe, northern 

South America, and the equatorial Pacific Ocean, and to lower precipitation in South Africa and Australia during 

MIS 13. The respective site locations are indicated in Figure 1. 

Regions Sites Records Proxies References 

Asia 

Chinese Loess 

Plateau, central 

China 

Loess χlf; χfd; Hm/Gt; Fed/Fet This study; Ding et al. 

(2002); An et al. (2005); 

Sun et al. (2006); Guo et 

al. (2009); Hao et al. 

(2012); Zhang et al. 

(2016); Li et al. (2017b); 

Lu et al. (2020) 

Yinchuan Basin, 

northwest China 

Fluvial-lacustrine Pollen Li et al. (2017a) 

South China Loess and soil Soil micromorphology; 

chemical weathering 

proxies; environmental 

magnetic proxies 

Zhang et al. (2009); Lu et 

al. (2020) 

South China Sea Marine n-alkane flux; 

sea-surface salinity; 

δ15N; opal content 

Shyu et al. (2001); Shiau 

et al. (2008); Li et al. 

(2013); Ren et al. (2017) 

Arabian Sea Marine Ca/K; Ba concentration; 

grain size 

Clemens et al. (1996); 

Ziegler et al. (2010) 

North Africa 

Mediterranean Sea Marine Sapropel development, 

Si/Al; K/Al; clay 

mineralogy 

Rossignol-Strick et al. 

(1998); Zhao et al. (2012) 

Sahara Desert Fluvial-lacustrine 

and aeolian 

Ephemeral lake growth Geyh and Thiedig (2008) 

Middle East Lake Van Lacustrine Pollen; TOC; Ca/K Litt et al. (2014); 

Stockhecke et al. (2014) 

Europe Danube River basin Loess χlf Marković et al. (2015) 
Northernmost 

South 

America 

Ceara Rise Marine CaCO3 concentration Harris et al. (1997) 

Northern Colombia Lacustrine Pollen Hooghiemstra and Ran 

(1994); Torres et al. (2013) 

Equatorial 

Pacific 

Ocean 

ODP Hole 806B Marine Globigerinoides ruber 

δ18O; seawater δ18O 

Medina-Elizalde and Lea 

(2005);  

Core HY04 Marine n-alkane C31/(C29 + C31) Horikawa et al. (2010) 

Core PC72 Marine Opal flux Murray et al. (2012) 

South Africa 
Core MD96-2048 Marine Fe/Ca Caley et al. (2018); 

Lake Magadi Lacustrine Pollen Owen et al. (2018) 

Australia 
Lake Bungunnia Lacustrine  Sedimentology An et al. (1986) 

Lake Lefroy Lacustrine  Sedimentology Zheng et al. (1998) 
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Table 2 

Palaeoclimate records used to document less-warmed southern hemisphere and more-warmed northern hemisphere 

continents during MIS 13. The respective site locations are indicated in Figure 1. 

Regions Sites Records Proxies References 

Southern 

hemisphere 

ODP Site 1123, 

sub-Antarctic 

Pacific Ocean 

Marine Mg/Ca deep-sea 

temperature 

Elderfield et al. (2012) 

Antarctic Ice core δD temperature; sea-salt 

sodium flux 

Jouzel et al. (2007); Wolff et al. 

(2010) 

ODP Sites 1090 and 

1082, South Atlantic 

Ocean 

Marine Alkenone-based SST Etourneau et al. (2009); 

Martínez-Garcia et al. (2009) 

Core MD96-2048, 

southeastern Africa 

Marine TEX86-based SST Caley et al. (2011) 

ODP Site 1094, 

South Atlantic 

Ocean 

Marine Ba/Fe; Ca/Fe Jaccard et al. (2013) 

Northern 

hemisphere 

Arctic Ocean Marine Pollen de Vernal and Hillaire-Marcel 

(2008); Polyak et al. (2013) 

New Mexico Lacustrine Pollen; temperature 

reconstruction 

Fawcett et al. (2011); Contreras 

et al. (2016) 

Britain Terrestrial Palaeoecology Candy and McClymont (2013) 

Zoige palaeolake, 

Eastern Tibetan 

Plateau 

Lacustrine Carbonate concentration; 

pollen 

Chen et al. (1999) 

Tenaghi Phillipon, 

Grecce 

Lacustrine Pollen Pross et al. (2015) 

Italy Terrestrial 

and marine 

Pollen Combourieu-Nebout et al. 

(2015); Margari et al. (2018) 

Lake Baikal Lacustrine Diatom Prokopenko et al. (2002) 

Lake El‟gygytgyn Lacustrine Mn/Fe; diatom Melles et al. (2012); Snyder et 

al. (2013) 
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