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Abstract—Deep neural networks (DNNs) have been used for
dereverberation and separation in the monaural source sepa-
ration problem. However, the performance of current state-of-
the-art methods is limited, particularly when applied in highly
reverberant room environments. In this paper, we propose a two-
stage approach with two DNN-based methods to address this
problem. In the first stage, the dereverberation of the speech
mixture is achieved with the proposed dereverberation mask
(DM). In the second stage, the dereverberant speech mixture
is separated with the ideal ratio mask (IRM). To realize this
two-stage approach, in the first DNN-based method, the DM is
integrated with the IRM to generate the enhanced time-frequency
(T-F) mask, namely the ideal enhanced mask (IEM), as the
training target for the single DNN. In the second DNN-based
method, the DM and the IRM are predicted with two individual
DNNs. The IEEE and the TIMIT corpora with real room impulse
responses (RIRs) and noise from the NOISEX dataset are used to
generate speech mixtures for evaluations. The proposed methods
outperform the state-of-the-art specifically in highly reverberant
room environments.

Index Terms—Deep neural networks, monaural source sepa-
ration, dereverberation mask, highly reverberant room environ-
ments

I. INTRODUCTION

S
OURCE separation aims to separate the desired speech

signals from the mixture, which consists of the speech

sources, the background interference and their reflections.

Nowadays, due to applications such as automatic speech

recognition (ASR), assisted living systems and hearing aids

[1]–[6], source separation in real-world scenarios has attracted

considerable research attention. The source separation problem

is categorized into multichannel, stereo-channel (binaural) and

single-channel (monaural). In monaural source separation,

only one recording is available, and the spatial information

cannot generally be extracted. Moreover, in real-world room

environments, the reverberations are challenging, which distort

the received mixture and degrade the separation performance

[7].
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Many approaches have been used to solve the monaural

source separation problem in reverberant environments. Firstly,

Delcroix et al. exploit the weighted prediction error (WPE)

algorithm to achieve dereverberation in both single and multi-

microphone cases [8]. Then, non-negative matrix factorization

(NMF) is exploited to separate signals, which is a well

established method for single channel speech separation [9].

Grais and Erdogan model the noisy observations based on

weighted sums of non-negative sources [10]. However, when

these methods are applied in real room environments, their

performance and robustness are limited [11].

In the last decade, DNNs have been exploited for the

monaural source separation problem and their performance has

notable improvements. In the DNN-based techniques, the T-F

masks or clean spectra are estimated by using the trained DNN

model and applied to reconstruct the desired speech signal.

According to the training objectives, DNN-based supervised

monaural speech separation methods can be divided into two

categories, namely mapping and masking techniques [12].

In the mapping-based DNN technique, the DNN is trained

to generate the clean spectrum of the desired speech signal by

using the spectrum of the mixture [12]. Han et al. train a DNN

to learn a spectral mapping function between the reverberant

noisy spectrum and the desired clean spectrum [13]. Huang et

al. refine the mapping-based technique by introducing a deep

recurrent neural network (DRNN) and discriminative criterion

in the cost function [1]. In [14], Sun et al. further improve

the mapping-based technique with the adaptive discriminative

criterion. Compared with the masking-based technique, the

mapping-based technique requires large memory and compu-

tational cost [15]. However, in real acoustic environments, it is

difficult to obtain the desired speech signal consistently with

high quality by using the above mapping-based methods [12].

In addition, in the traditional mapping-based techniques, the

DNN is trained to obtain the desired speech signal directly

from the mixture. The spectrum of the reverberant mixture is

often more noisy than that of the dereverberated one due to the

presence of reverberations and as a result, the DNN is much

more difficult to train with a reverberant mixture in mapping-

based approaches. Therefore, in this study, we focus on the

masking-based technique.

In the masking-based DNN technique, the T-F mask is given

and the estimated desired speech signal is obtained by using

the predicted T-F mask. Jin and Wang exploit the DNN to

generate an ideal binary mask (IBM) to separate the speech
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mixture. But the IBM is a binary mask, and the associated

hard decision causes loss in the separation performance [16].

Then, Wang et al. propose a soft mask, also known as the

IRM, for which the T-F unit is assigned as the ratio of desired

source energy to mixture energy [17] and the IRM-based

method outperforms the IBM-based method. However, the

above mentioned methods do not utilize the phase information

of the desired signal when synthesizing the clean signal. Wang

and Lim consider phase information to be unimportant in

speech enhancement [18], but Erdogan et al. have shown

that the phase information is beneficial to predict an accurate

mask and the estimated source [19]. Consequently, in [11],

[20], Williamson et al. employ both the magnitude and phase

spectra to estimate the complex IRM (cIRM) by operating in

the complex domain.

In the state-of-the-art methods, the ideal T-F mask is

computed for dereverberated and reverberant mixtures in a

slightly different way. In the dereverberant case, the ideal T-

F mask is calculated by using the clean speech signal and

the dereverberated mixture, while in reverberant environments,

the T-F mask is calculated by using the direct sound and the

reverberant mixture [11], [17]. Because the direct sound is a

delayed and attenuated version of the original speech, it has

negative influence on the accuracy of the corresponding T-F

mask. Hence, the separation performance of these methods is

degraded due to the influence of reverberations and the direct

sound impulse response.

To address these issues, we propose a two-stage approach

where one stage is exploited to attenuate the reflections,

followed by another stage to separate the processed mixture.

In summary, the contributions of this paper are:

(1) A novel DM is proposed for dereverberation of the

reverberant speech mixture. Different from the previous T-

F masking-based method in reverberant environments, the

DM we propose is used to eliminate the room reflections in

the reverberant mixture, which allows a separation mask to

be used for estimating the original speech sources from the

dereverberated mixture.

(2) Two DNN-based methods are proposed with different

training targets. The single training target in the first method

is an enhanced T-F mask i.e. the IEM. In the second method,

the DM and the IRM are trained separately.

The rest of the paper is organized as follows. In Section II,
the background knowledge related to the proposed two-stage

approach is described. Section III introduces the proposed

DM and the two-stage approach. Section IV presents the

experimental settings and results with the IEEE [21] and the

TIMIT [22] corpora. The conclusions and future work are

given in Section V.

II. MASKING-BASED DNN FOR MONAURAL SOURCE

SEPARATION

Recently, neural networks have been adopted as a regression

model to solve the source separation problem, including the

monaural case. In this section, the existing state-of-the-art

masking-based methods will be described.

In the masking-based DNN, the training target is an ideal T-

F mask, which is calculated by using the desired signal and the

mixture. Assume that s(m), i(m) and y(m) are the desired

speech signal, the interference and the acquired mixture at

discrete time m, respectively. The terms hs(m) and hi(m) are

the RIRs for reverberant speech and interference, respectively.

The convolutive mixture is expressed as:

y(m) = s(m) ∗ hs(m) + i(m) ∗ hi(m) (1)

where ‘∗’ indicates the convolution operator. By using the

short time Fourier transform (STFT), the mixture is written

as:

Y (t, f) = S(t, f)Hs(t, f) + I(t, f)Hi(t, f) (2)

where S(t, f), I(t, f) and Y (t, f) are the spectra of speech,

interference and mixture, respectively. The qualities Hs(t, f)
and Hi(t, f) are the RIRs for speech and interference at time

frame t and frequency f , respectively.

By employing the ideal T-F mask M(t, f), the spectrum of

the clean speech can be reconstructed as:

S(t, f) = Y (t, f)M(t, f) (3)

Because the IRM and the cIRM are the two targets often

chosen in state-of-the-art masking-based DNN methods, in the

next subsections, the IRM and the cIRM are briefly described.

A. Ideal Ratio Mask

If there is no RIR, the IRM for time frame t and frequency

f can be expressed as [17]:

IRM(t, f) =

( |S(t, f)|2
|S(t, f)|2 + |I(t, f)|2

)β

(4)

where β is a tunable parameter to scale the mask, |S(t, f)|
and |I(t, f)| denote the target speech signal and the noise

interference magnitude spectra, respectively. Typically, the

tunable parameter is selected as 0.5.

When the environment is reverberant, the direct sound at

discrete time m is expressed as [11]:

d(m) = hd(m) ∗ s(m) (5)

where hd(m) is the impulse response for the direct sound.

Hence, the IRM for a reverberant environment in the time-

frequency domain is expressed as [11]:

IRMrev(t, f) =

( |D(t, f)|2
|Y (t, f)|2

)β

(6)

where |D(t, f)| and |Y (t, f)| denote the direct sound and

noisy reverberant mixture magnitude spectra, respectively.

The IRM is the soft mask, and it preserves the speech-

dominant parts and suppresses the interference-dominant parts

with soft decisions, which decreases the performance loss

in speech separation. However, the limitation of the IRM is

that the phase information of the clean speech signal is not

used in speech reconstruction. To overcome this drawback, the

cIRM is proposed, where the phase information of the speech

mixture is considered [11], [20].

B. Complex Ideal Ratio Mask

The cIRM is a complex T-F mask which is obtained by

using the real and imaginary components of the STFTs of the
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desired speech signal and mixture [20].

To calculate the cIRM, the STFTs of the reverberant mix-

ture, direct sound and cIRM are written as:

Y (t, f) = Yr(t, f) + jYc(t, f) (7)

D(t, f) = Dr(t, f) + jDc(t, f) (8)

cIRM(t, f) = cIRMr(t, f) + j·cIRMc(t, f) (9)

where j ,
√
−1 and the subscripts ‘r’ and ‘c’ indicate the

real and the imaginary components in the STFTs, respectively.

By using the ideal cIRM, the desired speech signal can

be separated from the mixture. The T-F unit of the cIRM is

defined as:

cIRM(t, f) =
Yr(t, f)Dr(t, f) + Yc(t, f)Dc(t, f)

Y 2
r (t, f) + Y 2

c (t, f)

+j
Yr(t, f)Dc(t, f)− Yc(t, f)Dr(t, f)

Y 2
r (t, f) + Y 2

c (t, f)
(10)

In highly reverberant room environments, the separation

performance of the above mentioned methods is limited and

also not robust [23]. There are two possible reasons: (1) Both

IRMrev and cIRM are calculated based on the direct sound

[11], which is the delayed and attenuated version of the clean

speech signal, and the corresponding T-F mask is used to

reconstruct the direct sound instead of the clean speech signal.

(2) The presence of reverberation in the mixture degrades the

estimation of the IRMrev and cIRM , however, no explicit

operation is considered to reduce the adverse effect of acoustic

reflections on the estimation of the IRMrev and cIRM .

Therefore, the DM and the two-stage approach are proposed

to address the limitation and refine the separation performance.

III. PROPOSED METHOD

In this section, we present a new dereverberation mask and

also develop two schemes for joint training of dereverberation

and separation masks for improving the separation results for

reverberant mixtures. Since the proposed DM is a real valued

mask, for the convenience of fusion with the separation mask,

we choose the IRM, which is also real-valued, instead of the

cIRM, despite the fact that using cIRM may further improve

the separation performance.

A. Dereverberation Mask

Estimating the separation mask directly from the reverberant

mixture is challenging and the mask obtained is often noisy

due to the presence of acoustic reflections. To address this

issue, a DM is used to eliminate reverberation, and then

the IRM is applied to separate the desired speech signal.

According to (13), we rewrite the reverberant mixture as:

Y (t, f) = [S(t, f) + I(t, f)]





Hs(t, f)

1 + I(t,f)
S(t,f)

+
Hn(t, f)

1 + S(t,f)
I(t,f)





(11)

Therefore, by using Y (t, f) and [S(t, f)+I(t, f)], the rela-

tionship between the reverberant and dereverberated mixtures

is obtained. In our proposed method, we defined the DM as:

DM(t, f) =





Hs(t, f)

1 + I(t,f)
S(t,f)

+
Hn(t, f)

1 + S(t,f)
I(t,f)





−1

(12)

In the training stage, the spectra of speech, noise and

mixture with reverberations are available, therefore, the DM

can be learned as:

DM(t, f) =
[

S(t, f)+I(t, f)
]

Y (t, f)
−1

(13)

From (13), it is clear that in the training stage, the training

target DM(t, f) can be calculated by using S(t, f), I(t, f)
and Y (t, f). Therefore, before the target signal is separated

from the mixture, the DM is applied to the reverberant mixture

to eliminate most of the reflections. In the training stage,

the DM is compressed, and its value range is limited to be

consistent with that of IRM, and thereby facilitate the fusion

with IRM. According to (13), when there are no RIRs, the

elements of the DM will all be ones and the proposed two-

stage approach will be reduced to one-stage using only the

estimated IRM.

According to (11) and (13), we see that the DM is a

dereverberation operation. Thus, we have

S(t, f) + I(t, f) = Y (t, f)DM(t, f) (14)

Because the DM can only dereverberate the speech mixture,

further processing is required for separating the mixture.

Compared with the cIRM, the IRM requires less computational

cost and both the DM and the IRM are soft masks which are

applied in the T-F domain, while the cIRM is applied in the

complex domain. In this work, the IRM is applied to separate

the desired signal from the mixture. The desired speech signal

is extracted from the dereverberant mixture by using the IRM:

S(t, f) =

(

S(t, f) + I(t, f)

)

IRM(t, f) (15)

In the proposed methods, according to the training targets

and number of DNNs, the methods are categorized in two

aspects, namely integrated training target and separate training

targets methods.

B. Integrated Training Target

In the proposed DNN-based method with the integrated

training target, only one DNN is trained and its training target

is the IEM, which is generated by integrating the DM and the

IRM as:

IEM(t, f) = DM(t, f)IRM(t, f) (16)

Comparing the proposed IEM with the IRMrev , the pro-

posed single DNN method is essentially different from the

one in [11]: the IRMrev is calculated based on the direct

sound, which is a delayed and attenuated version of the clean

speech signal. Hence, after using the T-F mask, the STFT

of the direct sound is obtained. However, in real scenarios,

hd(m) in (5) is not equal to 1 and as a result, IRMrev is not
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Fig. 1. Spectrogram plots of the clean speech signal (left), separated speech signal without compression module (middle) and separated speech signal with
compression module (right). The reverberant mixture is generated with factory noise and 0dB SNR level in the unseen RIR case for RT60 = 470ms.
The hyperparameters C = 1 and V = 10.

always effective in mitigating the reverberation effect. While

in our proposed IEM, the IRM is calculated by using the clean

speech signal and the dereverberant mixture, after using the T-

F mask, the STFT of the clean speech signal can be obtained.

Therefore, compared with the IRMrev, the IEM achieves

better separation performance. In addition, the compression

module is added to restrict the range of the values within the

IEM, which is conducive for training the DNN.

According to (14) and (15), we see that the DM is a dere-

verberation operator and the IRM is the separation operator.

Thus, the separated speech signal is obtained as:

S(t, f) = Y (t, f)IEM(t, f) (17)

The value range of the proposed DM is (0, +∞), when the

DM is integrated with the IRM as the training target, the value

range of the DM is not consistent with IRM, and hence the

mapping relationship is difficult to find. To address this issue,

we use (18) to compress the DM to restrict its value range

in order to make it consistent with the IRM and convert it

back to the original value range in the testing stage by using

(19). Empirically, in the training stage, the compressed IEM

is written as:

IEMc(t, f) = V
1− e−C·IEM(t,f)

1 + e−C·IEM(t,f)
(18)

where C is the steepness constraint and the value of

IEMc(t, f) is limited in the range [−V, V ]. Because the

magnitude information is used to calculate the IEM, the value

of IEMc(t, f) is restricted in the range (0, V ]. After the

validation tests in our experiments, the values of C and V

are chosen as 1 and 10, respectively. These values were found

based on the datasets described in the experimental section.

For other datasets, C and V could be choosen in a similar

way.

In the testing stage, the estimation of the compressed IEM

is recovered and the final predicted IEM is expressed as:

ˆIEM(t, f) = − 1

C
log

(V −O(t, f)

V +O(t, f)

)

(19)

where O(t, f) is the estimation of the compressed IEM.

As an example, the spectrograms of the clean speech signal,

the separated speech signal without compression module and

the separated speech signal with compression module are

shown in Figure 1. It can be seen that the compression module

is important for the DM, which can eliminate noise in the high

frequency component of the separated speech signal.

In the proposed two-stage approach, inspired by [11], [24],

the feature combination is given to train the DNNs to refine the

performance. The amplitude modulation spectrogram (AMS)

[25], relative spectral transform and perceptual linear predic-

tion (RASTA-PLP) [26], mel-frequency cepstral coefficients

(MFCC), cochleagram response and their deltas are extracted

by a 64-channel gammatone filterbank to obtain the compound

feature [15]. The feature combination is extracted in the feature

extraction module. To update the DNN weights, the backward

propagation algorithm is exploited and the mean-square error

(MSE) function is used in the cost function.

The cost function of the proposed single DNN-based

method is expressed as:

J1 =
1

2N

∑

t

∑

f

[O(t, f)− IEM c(t, f)]
2 (20)

where N represents the number of time frames for the in-

puts, O(t, f) is the estimation of the compressed IEM and

IEM c(t, f) is the compressed IEM at a T-F unit.

Figure 2 is the flow diagram of the proposed single DNN-

based method with integrated training target, where (18)

and (19) are achieved in the compression module and the

recovery module, respectively. In the training stage, the DM

and the corresponding IRM are calculated by using the target

calculation module and integrated as the IEM. The IEM is

compressed in the compression module to generate the training

target of the single DNN. In the training stage, (18) is used

to update the weights of the DNN. In the testing stage, once

the trained DNN is obtained, the feature combination of the

mixture is extracted and input to the trained DNN. The output

of the DNN is obtained in the recovery module and used to

separate the desired signal. Finally, the desired speech signal

is separated from the convolutive mixture with the predicted

IEM in the separation module.

It is clear to see the advantages of the proposed single DNN-

based method with integrated training target:

(1) Only one DNN is trained, the computational cost and
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Fig. 2. The block diagram of the proposed single-DNN based method. One
DNN is trained with the integrated training target i.e. IEM. The trained DNN is
given by the training stage and in the testing stage, the output of the separation
module is the desired speech signal.

the storage space requirement will be lower than the method

based on two training targets with two DNNs.

(2) The dereverberation and separation are achieved by the

IEM, in the training stage, the estimation error will be de-

creased by generating the integrated training target. Compared

with the traditional IRM, the IEM can achieve better separation

performance because the DM is used to eliminate the reflection

and the IRM is exploited to estimate the source from the

dereverberated mixture.

C. Separate Training Targets

In the proposed second method, two DNNs are trained to

model the relationships from the inputs to the DM and the

IRM, respectively. In this method, the two T-F masks are

predicted, the DM is applied for dereverberation, then the

dereverberated mixture is separated by using the IRM. The

compression and recovery processes are only applied to the

DM, which is similar to the first method.

Assume the predicted dereverberation mask is ˆDM(t, f)
and the predicted ideal ratio mask is ˆIRM(t, f), the separated

speech signal is expressed as:

Ŝ(t, f) = Y (t, f) ˆDM(t, f) ˆIRM(t, f) (21)

Figure 3 is the flow diagram of the proposed two DNN-

based method with separate training targets. Because the DM

is predicted by the trained DNN, the compression module and

the recovery module are essential. In the training stage, the

compound features (discussed in Subsection III−B) extracted

from the reverberant mixture are used as input to DNN2, where

IRM is used as the the training target. The same compound

features are used as input to DNN1, where DM (modified

by the compression module) is used as the training target. In

the testing stage, the reverberant mixture is used as input to

estimate the DM and IRM, respectively. Since the reverberant

mixture is used in the training stage for both DNN1 and

DNN2, the trained network is able to generalise to reverberant

mixtures in the testing stage.
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Fig. 3. The block diagram of the proposed two-DNN based method. Two
DNNs are trained with the separate training targets. Two trained DNNs are
found by the training stage. In the testing stage, the dereverberated speech
mixture is obtained by using the predicted DM in the dereverberation module
and the desired speech signal is obtained by using the predicted IRM in the
separation module, respectively.

J2 =
1

2N

∑

t

∑

f

[O1(t, f)−DM c(t, f)]
2 (22)

where O1(t, f) is the output of the DNN1 at a T-F unit and

DM c(t, f) is the compressed DM at a T-F unit by using (18).

Similarly, for DNN2, its cost function is expressed as:

J3 =
1

2N

∑

t

∑

f

[O2(t, f)− IRM(t, f)]2 (23)

where O2(t, f) is the output of the DNN2 at a T-F unit and

IRM(t, f) is the ideal ratio mask at a T-F unit.

In the testing stage, after the trained DNNs are obtained,

the feature combination of the mixture is extracted and input

to the trained DNNs. The output of the trained DNN1 is

the predicted compressed DM and the output of the trained

DNN2 is the predicted IRM. Then, the output of the DNN1

is obtained in the recovery module and used to eliminate

the reflections. The mixture without reverberation is given

by using the dereverberation module and the desired speech

source is obtained from the separation module. Finally, the

desired speech signal is separated from the convolutive mixture

with the predicted DM and the predicted IRM.

As an example, we show some spectrogram plots in Figure

4 for the outputs from the different stages of the proposed

method. It can be observed that by using the proposed DM,

the reflections in the speech mixture can be eliminated. When

the compression module is added (comparing (e) and (f) with

(b)), the spectrogram of the separated signal with compression

module is more similar to that of the clean speech signal.

By adding the compression module, the noise in the high

frequency component can be better removed.

In the proposed two-stage approach, before speech sepa-

ration, the room reflections are better eliminated, therefore,
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Fig. 4. Spectrograms of different signals: (a) reverberant mixture; (b)
clean speech signal; (c) dereverberated mixture without compression; (d)
dereverberated mixture with compression; (e) separated speech signal without
compression and (f) separated speech signal with compression. The rever-
berant mixture is generated with factory noise and 0dB SNR level in the
unseen RIR case for RT60 = 470ms. The hyperparameters C = 1 and
V = 10.

the separation performance is improved. Therefore, in both

single DNN and two DNNs methods, all factors including

the training and testing datasets, the network architectures,

hyperparameters and the input feature combination to train the

DNNs are the same. It appears that only the training targets

and the number of trained DNNs are different between these

two proposed methods. Besides, because both the DM and

the IRM are estimated, these two masks are more accurate,

the performance is further improved with the trade-off of the

computational cost.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the proposed two-stage approach

with different training objectives, namely the integrated and

the separate training targets. The interferences are selected

as different types of noise and the undesired speech signals.

Various RIRs are applied to generate the reverberant speech

mixtures to show the performance in different reverberant

room environments. In addition, the generalization ability of

the proposed two-stage approach is evaluated with the unseen

RIRs.

A. Experimental Settings

The speech sources are selected randomly from the IEEE

[21] and the TIMIT corpora [22]. The IEEE corpus has 720

clean utterances spoken by a single male speaker and the

TIMIT database has 6300 utterances, 10 utterances spoken by

each of 630 speakers. Therefore, using both the IEEE and the

TIMIT corpora can demonstrate that the proposed method is

not speaker-dependent. The interferences are categorized into

two aspects, the noise interference and the speech interference.

For noise interference, the noise signals are selected from

the NOISEX database [27], in these noise signals, a speech-

shaped noise (SSN) is generated as the stationary noise [28]

and all others are the non-stationary noise, namely factory,

babble and cafe. The factory noise is a recording of industrial

activities and the babble noise is generated by different number

of the unseen speakers in an acoustic environment. The cafe

noise is more like a combination of babble and factory noise,

it contains the speakers and background noise. The SSN is

generated based on the clean speech corpus.

In our evaluation studies, in both training and testing stages,

the target speech signals are randomly selected from the

TIMIT dataset. Then, interfering speech signals are randomly

selected from the remaining signals in the dataset to ensure

the speakers of the target speech and the interfering speech

signals are different. At the testing stage, the desired speech

signals are unseen in the training stage, but the interfering

speech signals are seen in the training stage. Therefore, the

trained neural network is able to differentiate the target and

undesirable speech signals.

To generate the speech mixture, the speech utterances and

interferences are convolved with the real RIRs [29] which

are recorded in four types of room environments i.e. different

RT60s. The position of the desired speech signal is fixed and

the azimuth of the interfering source is selected from 0 ◦ to

75 ◦ with 15 ◦ increment. Hence, each room has six different

RIRs. In the evaluation with the seen RIRs, we use the RIRs

from the same room to generate the training and testing

datasets. In the evaluation with the unseen RIRs, for each

room, four RIRs are randomly selected and used to generate

the training data. The testing data are obtained by using the

remaining two RIRs. Therefore, in the testing data, the RIRs

are unseen and from different room environments. However,

direct signals need to be generated for the baseline systems

to enable comparisons with our proposed system. Firstly, the

impulse response of the direct path is cropped from the whole

impulse response. Then, the direct sounds are generated by

using the impulse response of the direct path and clean speech

signals in order to train the DNN models in [11]. Table I
illustrates the parameters in the real RIRs: [29].

TABLE I
THE PARAMETERS FOR REAL RIRS IN DIFFERENT ROOMS [29]

Room Size Dimension (m3) RT60 (s)

A Medium 5.7× 6.6× 2.3 0.32

B Small 4.7× 4.7× 2.7 0.47

C Large 23.5× 18.8× 4.6 0.68

D Medium 8.0× 8.7× 4.3 0.89

In the experiments, we randomly select 1000, 100 and 120

utterances from the IEEE and the TIMIT corpora to generate

the training, development and testing datasets. These clean

utterances are used to mix with interference at three different

signal-to-noise ratio (SNR) levels (-3 dB, 0 dB and 3 dB). In

the evaluations with seen RIRs, the numbers of mixtures in
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Fig. 5. The SNRfw (dB) in terms of different methods with various rooms. The X-axis is the SNR level, the Y-axis is the SNRfw (dB), each result is the
average value of 120 experiments. The noise types in the subfigures (a), (b), (c) and (d) are factory, babble, cafe and SSN, respectively.

training, development and testing data are 72,000, 7,200 and

8,640, respectively. In the evaluation with the unseen RIRs,

the numbers of mixtures in training, development and testing

data are 192,000, 19,200 and 9,600, respectively.

In our proposed two-stage approach, the DNNs in the inte-

grated training target and the separate training targets methods

have the same architecture. All of the DNNs have three hidden

layers and each hidden layer has 1024 units. The activation

function for each hidden unit is selected as the rectified linear

unit (ReLU) to avoid the gradient vanishing problem and the

output layer has linear units [11]. The DNNs are trained by

using the AdaGrad algorithm [30] with a momentum term for

100 epochs. The learning rate is linearly decreased from 1

to 0.01, while the momentum is fixed as 0.9 in the first ten

epochs and changed to 0.5 till the end. Auto-regressive moving

average (ARMA) filtering is applied to reduce the interference

from the background noise, as in [31].

B. Comparisons and Performance Measures

We compare the proposed method with two state-of-the-

art T-F masks: the IRM [17] and the cIRM [11]. Using

different types of interferences, SNR levels and the RIRs in

simulations show the performance of the proposed method is

consistent. Moreover, when the training target is applied in the

complex domain (cIRM), the corresponding DNN outputs the

estimates of real and imaginary components of the predicted

cIRM. The DNN needs to be Y-shaped, which has dual

outputs with one input. The performance evaluation measures

are the frequency-weighted segmental SNR (SNRfw) [32],

the source to distortion ratio (SDR) [33] and the short-time

objective intelligibility (STOI) [34]. The SNRfw computes

a weighted signal-to-noise ratio aggregated across each time

frame and critical band, it is highly correlated to human speech

intelligibility scores [11]. The SDR is exploited to evaluate

the overall separation performance. The values of the STOI

are in the range of [0, 1], which indicate the human speech

intelligibility scores. The higher values of these metrics means

that the desired speech signal is better reconstructed. In terms

of the STOI, the t-test is also provided to show the significant

difference. If the value of the t-test is smaller than 0.05, it

indicates significant difference exists between two result sets.

Besides, the IRMrev and cIRM in [11] are trained with
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Fig. 6. The SDR improvement (dB) in terms of different methods with various rooms. The X-axis is the SNR level, the Y-axis is the ∆SDR (dB), the
improvements of the SDR. Each result is the average value of 120 experiments. The noise types in the subfigures (a), (b), (c) and (d) are factory, babble, cafe
and SSN, respectively.

direct sound, however, in real applications, the direct sound

is difficult to obtain and the clean speech signal is used as

reference in all performance measures.

C. Experimental Results and Analysis

The experimental results are shown in this subsection with

noise and speech interferences. The proposed method is evalu-

ated with the seen RIRs and the unseen RIRs under these two

different interferences. Because in the first DNN-based method

with integrated training target, only one DNN is trained,

we use single DNN to represent this method. Similarly, two

DNNs represents the second DNN-based method with separate

training targets.

1) Experimental Results with Noise Interference: In this

subsection, the noise is selected as the interference, and we use

seen RIRs and unseen RIRs to generate the testing mixtures

to further evaluate the generalization ability of the proposed

methods.

a) Evaluations with the Seen RIRs: In these experiments,

the proposed methods are evaluated with the seen RIRs in four

rooms. The SNRfw and the SDR performance of the proposed

methods and the comparison groups are given in Figures 5 &
6, respectively. The STOI performance is shown in Tables II

- V.

From Figures 5 & 6, it is clear that when the type of

noise interference varies, the performance of the IRM and

the cIRM-based methods is not consistent and robust. In the

noise interference case, compared with the proposed two-

stage approach with single DNN, the proposed two-stage

approach with two DNNs produces better results for source

separation from the convolutive mixture. In the high SNR

level and low RT60, the proposed two-stage approach achieves

high separation performance. Compared with the IRM- and

the cIRM-based DNN methods, both our proposed methods

provide improved performance in terms of the SNRfw and

SDR consistently.

To further analyze the proposed two-stage approach, the

STOI performance is evaluated. The STOI performance of

different methods using the IEEE and the TIMIT corpora with

different noise and room environments are shown in Tables II

- V.

It can be further confirmed that the proposed two-stage

approach outperforms the state-of-the-art masking-based meth-

ods in different noise interference and reverberant environ-

ments from Tables II - V. With the increase of the RT60,

the proposed methods give more STOI improvements. In

some cases, the cIRM-based method gives the same STOI

performance as or does slightly better than the proposed

methods, e.g. SSN is used as interference with 0 SNR level in

Room C. In terms of the average result, however, the proposed

two-stage approach achieves the highest value. The trend of

the STOI is the same as that of the SNRfw and the SDR.

To show the difference of the STOI performance between

the cIRM-based method and the proposed method with two

DNNs, the t-test is used. For example, in Room D, the value

of the t-test with cafe noise and SSN noise is 0.01 and 0.02,

respectively. It means in Room D, when the noise type is cafe

and SSN, the STOI performance of the proposed method with

two DNNs and the cIRM-based are significantly different from

each other.
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TABLE II
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, SNR LEVELS AND RT60S. THE NOISE IN THE

EXPERIMENTS IS factory NOISE. EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

Factory Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

Noise -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Mixture 0.54 0.59 0.64 0.52 0.56 0.61 0.54 0.60 0.64 0.46 0.49 0.51

IRM [11] 0.66 0.71 0.76 0.64 0.69 0.73 0.67 0.71 0.77 0.60 0.63 0.66

cIRM [11] 0.66 0.72 0.77 0.65 0.69 0.74 0.67 0.73 0.77 0.61 0.64 0.68

Single DNN 0.68 0.72 0.77 0.66 0.72 0.76 0.67 0.74 0.78 0.63 0.69 0.73

Two DNNs 0.68 0.73 0.78 0.66 0.73 0.77 0.68 0.74 0.78 0.63 0.69 0.74

TABLE III
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, SNR LEVELS AND RT60S. THE NOISE IN THE

EXPERIMENTS IS babble NOISE. EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

Babble Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

Noise -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Mixture 0.54 0.59 0.65 0.53 0.58 0.62 0.55 0.61 0.66 0.47 0.49 0.51

IRM [11] 0.69 0.73 0.77 0.68 0.70 0.73 0.71 0.74 0.78 0.63 0.65 0.66

cIRM [11] 0.70 0.73 0.77 0.67 0.72 0.74 0.71 0.74 0.76 0.65 0.66 0.72

Single DNN 0.70 0.75 0.77 0.68 0.74 0.74 0.73 0.76 0.79 0.67 0.70 0.74

Two DNNs 0.71 0.75 0.79 0.69 0.74 0.77 0.73 0.76 0.79 0.67 0.71 0.75

TABLE IV
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, SNR LEVELS AND RT60S. THE NOISE IN THE

EXPERIMENTS IS cafe NOISE. EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

Cafe Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

Noise -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Mixture 0.59 0.65 0.69 0.57 0.62 0.67 0.61 0.66 0.72 0.48 0.51 0.57

IRM [11] 0.67 0.73 0.76 0.65 0.70 0.74 0.68 0.74 0.79 0.58 0.62 0.65

cIRM [11] 0.68 0.76 0.79 0.66 0.71 0.75 0.68 0.75 0.80 0.58 0.63 0.65

Single DNN 0.68 0.76 0.79 0.67 0.75 0.78 0.69 0.76 0.81 0.60 0.70 0.73

Two DNNs 0.68 0.77 0.80 0.67 0.75 0.78 0.69 0.76 0.81 0.65 0.71 0.76

TABLE V
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, SNR LEVELS AND RT60S. THE NOISE IN THE

EXPERIMENTS IS SSN NOISE. EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

SSN Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

Noise -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Mixture 0.60 0.65 0.70 0.59 0.64 0.68 0.62 0.67 0.73 0.51 0.53 0.56

IRM [11] 0.78 0.80 0.81 0.76 0.78 0.79 0.78 0.82 0.84 0.70 0.72 0.73

cIRM [11] 0.72 0.77 0.80 0.76 0.79 0.80 0.79 0.81 0.85 0.71 0.74 0.75

Single DNN 0.78 0.81 0.82 0.77 0.80 0.81 0.79 0.82 0.86 0.74 0.76 0.77

Two DNNs 0.79 0.82 0.84 0.78 0.80 0.81 0.79 0.82 0.86 0.75 0.77 0.80

From Figures 5 & 6 and Tables II - V, it is clear that with

the same amount of training data and DNN configurations,

the separation performance of the current state-of-the-art is

not consistent and robust when the SNR levels and noise

types are varied. The two-stage approach, we proposed, can

yield effective performance. Thanks to the DM applied to

the mixture, when the RT60 is increased, the relative STOI

improvements becomes more prominant at higher RT60s.

Compared the masking-based techniques with the proposed

two-stage approach, the experimental results demonstrate that

using two DNNs in the proposed two-stage approach can

further improve the separation performance.

b) Evaluations with the Unseen RIRs: In these exper-

iments, the proposed two-stage approach is evaluated with

unseen RIRs. The SNRfw and the SDR performance of the

proposed methods and the compared methods are given in

Figures 7 & 8, respectively. The STOI performance of different

methods using the IEEE and the TIMIT corpora with different

noise and the unseen RIRs are shown in Table VI. In the

experiments with the unseen RIRs, the RIRs used in the testing

stage are different from those in the training stage.

Figure 7 shows the SNRfw performance in terms of dif-

ferent methods with the unseen RIRs. It can be observed that

compared with the IRM and the cIRM, the proposed methods,

both single DNN and two DNNs, yield better performance.

When the value of SNR level is increased, the performance of

SNRfw is refined. Besides, it is observed from the figure that

when two DNNs are trained, the values of the SNRfw become

higher. For example, according to Figure 7, when the noise

type is SSN and the SNR level is 3 dB, the SNRfw value of

the IRM-based method is 2.99 dB and the cIRM-based method

is 3.32 dB, but the proposed approach with single DNN and
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two DNNs achieve 3.66 dB and 4.78 dB, respectively.

Fig. 7. The SNRfw (dB) in terms of different methods with the unseen RIRs.
The X-axis is the SNR level, the Y-axis is the SNRfw (dB), each result is the
average value of 120 experiments. The experimental results with four different
types of noise are shown.

Figure 8 shows the SDR improvements over all types of

noise with the unseen RIRs. It is observed that the pro-

posed two-stage approach further refines the SDR perfor-

mance (∆SDR) when compared with the current state-of-

the-art methods. In the situation where the RIRs are unseen,

with increasing the SNR level, the improvement of the SDR

becomes larger and the proposed two-stage approach provides

the best performance. It is clear that by training two DNNs

in the proposed two-stage approach, the value of the SDR

improvement is increased significantly.

Fig. 8. The SDR improvement (dB) in terms of different methods with the
unseen RIRs. The X-axis is the SNR level, the Y-axis is the SDR improvement
(dB), each result is the average value of 120 experiments. The experimental
results with four different types of noise are shown.

The experimental results in terms of the STOI are shown in

three different SNR levels in Table VI. As the value of SNR

level is increased, the performance of the STOI is improved.

From Table VI, it is clear that with the same amount of

training data and DNN configurations, when the RIRs are

unseen, in terms of the STOI, the separation performance of

the current state-of-the-art is not consistent and robust when

the SNR levels and noise types are varied. For all types of

the noise, the value of the t-test in the STOI results with

the unseen RIRs between the cIRM-based method and the

proposed method with single DNN and two DNNs is 0.02 and

0.0004, respectively. It confirms that the proposed two-stage

approach outperforms the current state-of-the-art methods in

terms of the STOI.

From Figures 7 & 8 and Table VI, it can be observed that the

proposed two-stage approach can yield effective performance

and using two DNNs in the proposed two-stage approach

provides the best separation results. Using the noise and

unseen RIRs, the proposed methods show better generalization

ability. In the testing stage, since the RIR is unseen, compared

with the seen RIRs case, the values of the corresponding

SNRfw, SDR and STOI are smaller.

2) Experimental Results with Speech Interference: After

the evaluations of the proposed two-stage approach with noise

interference, the undesired speech signal is exploited as the

interference to generate the convolutive mixture.

a) Evaluations with the Seen RIRs: The interfering

speech signal is chosen from the above mentioned corpora

and both male and female speakers are used. The SNRfw

and the SDR performance of the proposed methods and the

comparison groups are given in Figures 9 & 10, respectively.

The STOI performance of different methods are shown in

Table VII.

Fig. 9. The SNRfw (dB) in terms of different methods with various rooms
i.e. different RT60s. The X-axis is the SNR level, the Y-axis is the SNRfw

(dB), each result is the average value of 120 experiments. The interference is
the undesired speech signal, respectively.

For the SNRfw, shown in Figure 9, the proposed two DNN-

based method further improves the performance relative to the

separated desired speech signal. The largest SNRfw gains in

all room environments are achieved by the proposed two DNN-

based method. For example, at 3 dB SNR level, from Rooms

A to D, the proposed method with two DNNs gives 16.1%,

21.8%, 22.3% and 13.7% more gain, respectively.

Besides, according to Figure 9, it confirms that the higher

SNR level helps the two-stage approach to better separate the

desired speech signal from the mixture with speech interfer-

ence. Compared the performance with different SNR levels in

terms of the SNRfw, when the SNR levels increases (from -3

dB to 3 dB), the separation performance is improved, which

is the same as the situations with noise interferences. For

different RT60s, when the RT60 increases, e.g. Room A and

Room D, the value of the SNRfw is decreased.
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TABLE VI
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH THE UNSEEN RIRS. DIFFERENT TRAINING TARGETS, SNR LEVELS AND RT60S

WITH ALL TYPES OF NOISE ARE EVALUATED. EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

Noise Type Factory Babble Cafe SSN

SNR Levels -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Mixture 0.46 0.48 0.50 0.47 0.49 0.52 0.49 0.51 0.54 0.50 0.53 0.55

IRM [11] 0.52 0.55 0.56 0.52 0.54 0.55 0.51 0.53 0.57 0.51 0.55 0.59

cIRM [11] 0.57 0.59 0.63 0.54 0.57 0.58 0.52 0.55 0.59 0.53 0.57 0.63

Single DNN 0.62 0.64 0.65 0.58 0.61 0.64 0.57 0.61 0.64 0.57 0.61 0.67

Two DNNs 0.68 0.71 0.74 0.64 0.69 0.73 0.64 0.70 0.75 0.64 0.67 0.72

TABLE VII
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH DIFFERENT TRAINING TARGETS, SNR LEVELS AND RT60S. THE INTERFERENCE IN

THE EXPERIMENTS IS the undesired speech signal. EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD INDICATES THE BEST RESULT.

Speech Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

Interference -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB -3 dB 0 dB 3 dB

Mixture 0.58 0.63 0.67 0.54 0.59 0.63 0.58 0.64 0.66 0.48 0.50 0.51

IRM [11] 0.76 0.78 0.79 0.72 0.73 0.75 0.78 0.79 0.81 0.60 0.61 0.62

cIRM [11] 0.77 0.78 0.80 0.74 0.75 0.76 0.79 0.80 0.81 0.63 0.64 0.64

Single DNN 0.78 0.80 0.82 0.76 0.80 0.81 0.79 0.81 0.83 0.71 0.73 0.75

Two DNNs 0.80 0.82 0.84 0.79 0.81 0.82 0.81 0.82 0.84 0.74 0.75 0.78

Fig. 10. The SDR improvement (dB) in terms of different methods with
various rooms i.e. different RT60s. The X-axis is the SNR level, the Y-axis
is the ∆SDR (dB), the improvements of the SDR. Each result is the average
value of 120 experiments. The interference is the undesired speech signal,
respectively.

Figure 10 displays the SDR improvements over all room

environments. It is observed that the proposed two-stage ap-

proach significantly improves the SDR performance (∆SDR),

especially in the highly reverberant room environments such

as Room C and Room D. With increasing the SNR level, the

improvement of the SDR becomes smaller, but the proposed

two DNN-based method still provides better results. In Room

C, with 0.68 s RT60, compared with the cIRM, the proposed

method with single DNN has 1.01 dB, 1.71 dB and 0.49 dB

more improvements and the proposed method with two DNNs

has 1.81 dB, 3.27 dB and 3.67 dB from -3 dB to 3 dB SNR

levels, respectively.

From Table VII, it is clear that the two DNN-based method

always gives the best performance in the case where the

interference is a speech signal. For example, in Room D, the

proposed method with two DNNs achieves 13.1%, 8.7% and

12.5% STOI improvements over the proposed method with

single DNN (integrated training objective) at -3, 0 and 3 dB

SNR levels, respectively. The two DNN-based method pro-

vides around 13.9% more STOI improvement in all scenarios.

When the undesired speech signal is the interference, the value

of the t-test in the STOI results with the seen RIRs between the

cIRM-based method and the proposed method with two DNNs

is 0.008. It proves that the proposed method with two DNNs

yields better separation performance in terms of the STOI than

the current state-of-the-art methods, e.g. cIRM-based method.

b) Evaluations with the Unseen RIRs: The interfering

speech signal is chosen from the IEEE and the TIMIT corpora

and both male and female speakers are used. The SNRfw

and the SDR performance of the proposed methods and the

comparison groups are given in Figures 11 & 12, respectively.

The STOI performance of different methods using the above

mentioned corpora with different undesired speech signal and

the unseen RIRs are shown in Table VIII.

Fig. 11. The SNRfw (dB) in terms of different methods with the unseen RIRs.
The X-axis is the SNR level, the Y-axis is the SNRfw (dB), each result is the
average value of 120 experiments. The interference is the undesired speech
signal, respectively.

For the SNRfw, shown in Figure 11, the proposed two-stage
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approach provides the largest performance improvements with

the unseen RIRs scenarios. The largest SNRfw gains in all

SNR levels are achieved by the proposed two-stage approach

with separate training targets. According to Figure 11, the

proposed two-stage approach with integrate training target can

achieve higher value of the SNRfw and by training two DNNs

in the proposed method, the separation performance is further

improved.

Figure 12 shows the SDR improvements (∆SDR) over all

SNR levels with the unseen RIRs. It is observed that the

proposed two-stage approach significantly improves the SDR

performance, especially with higher SNR levels. With increas-

ing the SNR level, the improvement of the SDR becomes

larger and the proposed two DNN-based method achieves

better separation results. For instance, when the SNR level

is 3 dB, the value of ∆SDR of the proposed method with

separate training objectives is 5.05 dB, while the value of the

cIRM-based and the IRM-based method is 3.06 dB and 2.41

dB, respectively. It is clear that by training two DNNs in the

proposed two-stage approach, the separation performance is

increased significantly. In contrast to the evaluations with the

seen RIRs, when the RIRs are unseen and the RT60 increases,

the value of the SDR improvement increases, which are the

same as the situations with noise interferences.

Fig. 12. The SDR improvement (dB) in terms of different methods with the
unseen RIRs. The X-axis is the SNR level, the Y-axis is the ∆SDR (dB), the
improvements of the SDR. Each result is the average value of 120 experiments.
The interference is the undesired speech signal, respectively.

TABLE VIII
SEPARATION PERFORMANCE COMPARISON IN TERMS OF STOI WITH

DIFFERENT TRAINING TARGETS, SNR LEVELS AND THE UNSEEN RIRS.
THE INTERFERENCE IN THE EXPERIMENTS IS the undesired speech signal.

EACH RESULT IS THE AVERAGE VALUE OF 120 EXPERIMENTS. BOLD

INDICATES THE BEST RESULT.

Speech STOI

Interference -3 dB 0 dB 3 dB

Mixture 0.52 0.57 0.59

IRM [11] 0.56 0.59 0.64

cIRM [11] 0.59 0.61 0.66

Single DNN 0.65 0.69 0.73

Two DNNs 0.70 0.72 0.76

When the interference is the undesired speech signal, Table

VIII, it is clear to observe that in terms of the STOI, the pro-

posed two-stage approach outperforms current state-of-the-art.

For example, compared with the cIRM, the proposed method

with single DNN has 0.06, 0.08 and 0.07 improvements and

the proposed method with two DNNs has 0.11, 0.11 and 0.1

improvements from -3 dB to 3 dB SNR levels, respectively.

When the undesired speech signal is the interference, the

value of the t-test in the STOI results between the cIRM-

based method and the proposed method with two DNNs is

0.01. Hence, by using two DNNs in the proposed method, the

value of STOI is the highest over all of the SNR levels.

3) Processing Time: Since two system structures of the

proposed two-stage approach are exploited in this work, their

processing time is different. In Section IV-A, the experimental

settings in the proposed methods are the same, in order to

evaluate their processing time, all of the DNN-based methods

are executed ten times and their processing time is averaged.

The evaluation results are shown in Table IX.

TABLE IX
AVERAGED PROCESSING TIME OF THE DNN-BASED METHODS WITH

DIFFERENT TRAINING TARGETS. THE TIME OF TRAINING STAGE AND

TESTING STAGE ARE SHOWN IN SECONDS.

Training Target Processing Time (s)

in DNN-based Method Training Stage Testing Stage

IRM [11] 8,398.8 37.4

cIRM [11] 8,655.4 43.1

IEM 8,443.4 39.8

DM & IRM 16,651.9 48.5

The codes of the IRM, cIRM and the proposed methods

were written in MATLAB (R2015a version) without any

optimization. The experiments were implemented on a desktop

with an Intel i5 CPU with 3.5 GHz and 16 GB of memory

without parallel processing. In the training and testing stages,

no GPU was used.

It is observed from Table IX that in the training stage, the

processing time of the proposed method with single training

target (integrated objective) is half of the one with two

training targets (separate objectives). Because in the second

method, two DNNs are trained and these DNNs have the

same architectures as the DNN in the first proposed method.

While compared with the training stage, in the testing stage,

the difference of the processing time with these methods can

be ignored. The IRM-based method and the proposed IEM

almost have the same processing time. Moreover, because

the Y-shaped DNN was used in the cIRM-based method, its

processing time is slightly higher than the IRM- and the IEM-

based approaches. In the testing stage, all of these methods

have a relative lower processing time.

Hence, the proposed two DNN-based method needs longer

processing time and the computational cost is almost double

than the single training target based method.

In summary, according to Figures 5 - 12 and Tables II -

IX, the proposed two-stage approach outperforms state-of-

the-art IRM- and the cIRM-based methods, particularly in

reverberant room environments. When the RIRs are seen, the

noise and undesired speech signal are used as the interferences

in the mixture, all the experimental results further confirm that

our proposed two-stage approach is effective in separating

mixtures at various SNR levels and with different room

environments. When the RIRs are unseen, the generalization
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ability of the proposed method is evaluated, the results shown

in Figures 7, 8, 11 & 12 and Tables VI & VIII confirm that

the proposed method can better separate the desired speech

signal from mixture than the IRM- and cIRM-based methods.

There are two possible reasons that the proposed method has

better generalization ability: (1) The compression and recovery

modules are conducive for training the DNNs and thus leading

to better prediction of the DM from the mixtures. (2) The use

of DM can mitigate the adverse effect of acoustic reflections on

the estimation of the IRMrev and cIRM for separating target

speech from the mixture. As a result, the proposed method

has better ability in adapting to unseen RIRs and leading to

improved performance in such scenarios.

In addition, using the proposed two DNN-based method, the

mixture can be better separated than just utilizing the IEM as

integrated training target in the single DNN. From the results,

it can be seen that the cIRM had worse performance than IRM

in some cases. For example, in Table III, when the noise type

is babble and the SNR level is -3 dB in Room B, the STOI

performance of the cIRM is 0.67, while the IRM produces

0.68 STOI. It is our belief, this might be caused by the DNN

architecture and how it is trained. To estimate the real and

imaginary part of the cIRM jointly, the Y-shaped DNN was

used. In this architecture, the weights of the hidden layers are

shared by the real and imaginary parts of the cIRM and only

two sub-output layers are used to distinguish the estimations of

real and imaginary components of the cIRM. Hence, compared

with the IRM, the cIRM-based DNN is more difficult to train,

in order to provide balance for both the real and imaginary

part. This can lead to degradation in separation performance.

It is worth noting that although the RT60 of Room C (RT60

= 680 ms) is higher than Room B (RT60 = 470 ms), the

separation performance for Room C is better than that for

Room B. This is mainly due to the difference in the Direct

to Reverberant Ratio (DRR) where the DRR from Room C is

higher than that for Room B.

From Table IX, in the proposed method with different

training targets, when the DM and the IRM are trained indi-

vidually, the computational cost is increased almost two times.

Therefore, there is a trade-off between the computational cost

and the separation performance. If two-DNNs are trained in

the proposed two-stage approach, the separation performance

is further refined, but more computational cost and storage

space are required.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the two-stage approach with different training

targets (integrated and separate) were proposed to address

the monaural source separation problem. In the reverberant

room environments, the separation performance was refined

by adding the dereverberation stage before separating the

desired speech signal from the mixture. The proposed methods

were evaluated using the SNRfw, SDR and STOI, for speech

signals selected from the IEEE and the TIMIT databases

with different interferences (the undesired speech signal, the

stationary and the non-stationary noise). Besides, the RIRs

are categorized into the seen and the unseen to evaluate the

generalization ability of the proposed two-stage approach.

Results showed that the proposed two-stage approach out-

performed the IRM- and the cIRM-based approaches in all

of the tested scenarios and the generalization ability of the

proposed method was robust. Because the dereverberation

stage was used to eliminate the reflections in the mixture, when

the reverberant room environments had a higher RT60, the

performance improvement of the proposed methods were more

significant. In comparing the proposed methods with different

training targets, the method with two DNNs gave further

improvements, but the computational cost was almost doubled.

Therefore, there is a trade-off between the computational

requirement and the separation performance.

To further improve the performance, one direction is to

explore the use of the advanced architecture neural networks

such as the recurrent neural network (RNN), long-short term

memory (LSTM) RNN and the DRNN to train the DM and the

IEM, which exploits more temporal information in the models.

Another direction is to apply the proposed DM in the complex

domain and use the cIRM to separate the mixture.
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