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Two-Stage Motion Correction for Super-Resolution

Ultrasound Imaging in Human Lower Limb
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Abstract— The structure of microvasculature cannot be
resolved using conventional ultrasound (US) imaging due to
the fundamental diffraction limit at clinical US frequencies.
It is possible to overcome this resolution limitation by localizing
individual microbubbles through multiple frames and forming a
superresolved image, which usually requires seconds to minutes
of acquisition. Over this time interval, motion is inevitable
and tissue movement is typically a combination of large- and
small-scale tissue translation and deformation. Therefore, super-
resolution (SR) imaging is prone to motion artifacts as other
imaging modalities based on multiple acquisitions are. This
paper investigates the feasibility of a two-stage motion estimation
method, which is a combination of affine and nonrigid estimation,
for SR US imaging. First, the motion correction accuracy of the
proposed method is evaluated using simulations with increasing
complexity of motion. A mean absolute error of 12.2 µm was
achieved in simulations for the worst-case scenario. The motion
correction algorithm was then applied to a clinical data set
to demonstrate its potential to enable in vivo SR US imaging
in the presence of patient motion. The size of the identified
microvessels from the clinical SR images was measured to
assess the feasibility of the two-stage motion correction method,
which reduced the width of the motion-blurred microvessels to
approximately 1.5-fold.

Index Terms— Motion correction, motion estimation, non-rigid
motion, super-localization, super-resolution imaging.

Manuscript received November 8, 2017; accepted March 28, 2018. Date
of publication April 9, 2018; date of current version May 7, 2018. This
work was supported in part by the EPSRC under Grant EP/N015487/1 and
Grant EP/N014855/1, in part by the King’s College London and Imperial
College London EPSRC Centre for Doctoral Training in Medical Imaging
under Grant EP/L015226/1, in part by the Wellcome EPSRC Centre for Med-
ical Engineering at King’s College London under Grant WT 203148/Z/16/Z,
in part by the Department of Health through the National Institute for Health
Research Comprehensive Biomedical Research Center Award to Guy’s and
St Thomas’ NHS Foundation Trust in partnership with the King’s College
London and King’s College Hospital NHS Foundation Trust, and in part by
the Graham–Dixon Foundation. (Robert J. Eckersley, Christopher Dunsby, and

Meng-Xing Tang contributed equally to this work.) (Corresponding author:

Sevan Harput.)

S. Harput, Y. Li, and M.-X. Tang are with the Ultrasound Laboratory
for Imaging and Sensing Group, Department of Bioengineering, Imperial
College London, London SW7 2AZ, U.K. (e-mail: s.harput.@.imperial.ac.uk;
yuanwei.li09.@.imperial.ac.uk; mengxing.tang.@.imperial.ac.uk).

K. Christensen-Jeffries, J. Brown, and R. J. Eckersley are with the
Division of Imaging Sciences, Biomedical Engineering Department, King’s
College London, London SE1 7EH, U.K. (e-mail: kirsten.christensen-
jeffries .@.kcl.ac.uk; jemma.brown.@.kcl.ac.uk; robert.eckersley .@.kcl.ac.uk).

K. J. Williams and A. H. Davies are with the Section of Surgery, Imperial
College London, Charing Cross Hospital, London W6 8RF, U.K. (e-mail:
k.williams.@.imperial.ac.uk, and a.h.davies .@.imperial.ac.uk).

C. Dunsby is with the Department of Physics and the Centre for
Pathology, Imperial College London, London SW7 2AZ, U.K. (e-mail:
christopher.dunsby.@.imperial.ac.uk).

Digital Object Identifier 10.1109/TUFFC.2018.2824846

I. INTRODUCTION

AMONG the many medical imaging modalities, ultra-

sound (US) imaging stands out in terms of accessibility

and cost. Using conventional B-mode or contrast-enhanced

US (CEUS) imaging at clinical frequencies, subwavelength

structures, such as the microvasculature, cannot be resolved

due to the fundamental diffraction limit. This limit can, how-

ever, be overcome by the method of US super-resolution (SR)

techniques, such as US localization microscopy [1], where

the final image is formed by localizing spatially isolated

microbubbles (MBs) through multiple acquired frames. Viess-

mann et al. [2] demonstrated that it is possible to spatially

resolve two touching 200-µm internal diameter tubes using

an unmodified clinical CEUS system operating 2 MHz. Since

then, several research groups have demonstrated the use of

SR imaging within microfluidic channels [3], a tissue phan-

tom with microvessels through an ex vivo human skull [4],

and in vivo in mouse and rat models [5]–[9]. A theoretical

localization precision as low as 1.8 µm was predicted for

ultrasonic localization microscopy for human breast imaging

at 7 MHz [10].

In vivo imaging introduces the additional com-

plexity of sample motion during image acquisition.

Christensen-Jeffries et al. [5] mapped the microvasculature

in vivo in a mouse ear where vessel features as fine as

19 µm, which is approximately 6× smaller than the receive

wavelength (∼λrx/6), were visualized in under 10 min of

US acquisition using an unmodified clinical system. In this

paper, a 2-D subpixel cross correlation was used for motion

correction and gating to avoid artifacts due to motion caused

by breathing. Errico et al. [6] imaged an in vivo rat brain that

was fixed within a stereotactic frame to minimize the motion.

A 10-min acquisition was required for each coronal plane of

the whole-brain scan to form the SR images that can resolve

two vessels located 16 µm (∼λrx/6) apart. In their later study,

Hingot et al. [11] used a cross correlation-based method

to correct the motion between frames, which was applied

within a block of 200 images acquired at 500 frames/s.

Ackermann and Schmitz [7] performed multiple MB tracking

in vivo in a tumor xenograft-bearing mouse and measured

capillary blood flow (<1 mm/s). Due to respiratory motion,

they discarded 1151 frames out of 6000 frames acquired over

4 min. Lin et al. [8] detected vessels in vivo in tumor-bearing

rats as small as 25 µm (∼λrx/7) by 3-D US localization

microscopy with a total acquisition time of 11.5 min (16 s for
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each 2-D slice). They excluded 20%–30% of the acquired

frames due to the breathing induced motion artifacts to avoid

the interference of bubble positions.

Rather than gating or stabilizing the sample, another

approach to reducing motion artifacts is to use a higher

concentration of MBs and shorter acquisition times to form SR

images; however, the final resolution of SR images obtained

via localization of spatially nonisolated MBs is currently

poorer than those obtained using the methods described earlier.

Bar-Zion et al. [9] imaged in vivo rabbit kidney and tumor

models using higher order statistics by acquiring less than

a second of high frame rate US data. They achieved an

improvement of 50% in spatial resolution with a significantly

shorter acquisition time as low as 0.1 s that makes the proposed

approach clinically applicable. However, even at this short

time scale, SR images will still be prone to motion artifacts at

the micrometer level and motion correction may be required,

especially for handheld clinical scans.

For SR US imaging to become useful clinically, motion

artifacts must be addressed first. During normal breathing,

the diaphragm moves 15 mm and the chest circumference

changes 7 mm, and respiration causes translation of organs in

the upper body [12]. Although respiratory motion is usually

considered to be rigid, human soft tissue is mostly anisotropic

and tissue deformation is only in the linear elastic region of

the stress–strain curve for tissue strains up to 5% [13]. Cardiac

motion is very complex and nonrigid, involving longitudinal

and radial contractions. Although it does not generate as much

motion as respiration, the region of the liver adjacent to the

heart is typically displaced by approximately 4 mm [12].

Moreover, there are many unpredictable and unavoidable

sources of motion in the body generating rigid and nonrigid

motion such as swallowing, coughing, peristalsis, bowel move-

ments, pulsations of arterioles and venules, and other local

muscle movements. Motion is an inherent part of diagnostic

imaging and, unless corrected, it sets the achievable resolution

limit in SR US imaging.

Doppler-based motion estimation is sensitive to small phase

delays in the RF data and it can compensate for the local

motion in the axial (or equivalently the radial) direction.

Poree et al. [14] achieved contrast and image quality improve-

ment by applying this technique to high frame rate echocar-

diography. Doppler-based motion estimation worked well for

this application since the lateral motion observed in their study

was smaller than half of the lateral (or equivalently the cross-

range) resolution. Gammelmark and Jensen [15] demonstrated

that the axial motion compensation alone is not sufficient when

the total motion in lateral direction is large in comparison to

the wavelength. They have performed the motion correction

by tracking the position of the pixels in each low-resolution

image acquired with the synthetic transmit aperture method,

which is similar to SR imaging in a way that a combination of

many low-resolution images is necessary to generate a high-

resolution image.

Ideally, the motion should be compensated with an accuracy

higher than the spatial resolution to be achieved in the SR

image. When the problem of motion correction is solved

for clinical US imaging, it will be possible to achieve a

resolution below 10 µm, which will enable the imaging of

human capillary vessels that may benefit many applications.

Imaging blood vessels at microscale can reveal the elements

that modulate endothelial barrier function, such as blood–brain

barrier opening [16]. Many features of the immune system’s

interactions with small blood vessels and microcirculatory

networks can be observed by using SR imaging. Vascular

abnormalities associated with tumor growth can be monitored

in detail, where the acoustic angiography using contrast agents

already revealed the potential of using high-resolution imag-

ing [17]. High-resolution and accurate imaging is the key

to success for the diagnosis and endovascular treatment of

peripheral arterial disease [18].

In this paper, a two-stage motion estimation algorithm

previously used in magnetic resonance imaging was applied

to SR US imaging [19], with the goal of correcting for

both rigid and nonrigid sample motion. The accuracy of the

motion estimation method was analyzed in silico and also

the application of this method to clinical SR imaging was

demonstrated in vivo.

II. MOTION ESTIMATION AND CORRECTION

Here, we refer to motion as the combination of US probe

motion and tissue motion such as respiratory motion, car-

diac motion, and other patient movements. It is not usually

possible to control these sources of motion, which can be

on the order of millimeters for an in vivo SR image that

requires seconds to minutes of data acquisition. In SR imaging,

motion can be as low as a micrometer for high frame rate

imaging (>1000 frames/s). However, the total acquisition time

is determined by the speed of the physiological processes, such

as the blood flow velocity in microvessels, not by the imaging

frame rate [5], [20]. Over such a long duration, the motion

between the first and the last frame will be a combination of

rigid motion and local nonrigid deformations with different

amplitudes.

A. Two-Stage Motion Estimation

The motion estimation is based on an image registration

approach, which was previously applied to the MRI and the

MATLAB (The MathWorks, Natick, MA, USA) codes is

currently available to download [21]. This approach is based

on the work of Rueckert et al. [22] and Lee et al. [23]

and it is capable of performing rigid, affine, nonrigid, and

two-stage motion estimation. The rigid registration is capable

of capturing the translation and rotation. The affine registration

can estimate translation, rotation, shearing, and resizing. The

nonrigid registration is a B-spline-based free-form deforma-

tion that can estimate the local compression and rarefaction of

tissue [22]. Nonrigid registration is achieved by minimizing a

cost function, which is a combination of the cost associated

with the smoothness of the transformation and the cost asso-

ciated with the image similarity. Smoothness of the transfor-

mation is crucial to mimic the local deformation of the soft

tissue, where adjacent points move cohesively. Smoothness is

achieved by introducing a penalty term Cregularization(T ), which

regularizes the transformation and ensures that the resultant
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transformation field is not noisy. In summary, a high value of

the regularization parameter ensures neighboring transforma-

tion points are similar and that they vary smoothly over space.

A low value allows greater freedom of changes in neighboring

transformation points. It is hard to relate this term to an actual

physical quantity or fit a model to predict the optimal value;

therefore, this paper used a grid search method to determine

an appropriate value of Cregularization(T ). When the registration

algorithm finishes optimizing the cost function for a given

Cregularization(T ) and converges, the transformation matrix T

saves the estimation result that can be used to correct the

motion in the registered frames. Two-stage image registration

is a combination of affine registration that estimates the global

motion, and nonrigid registration that can estimate the local

deformation of tissue.

For a small regularization penalty, motion estimation results

in a viscous fluidlike registration with long computational

time where pixels can move almost independently, which is

not realistic for human soft tissue. For a large regularization

penalty, registration finishes after a small number of iterations

and can result in large errors for complex motion fields,

such as combinations of large global movement and small

local deformations. The two-stage registration approach is

advantageous because the affine registration finds a rough

global estimate first and then the nonrigid registration refines

the final solution. The two-step approach effectively increases

the range over which the nonrigid registration will work and

improves the speed and the convergence of the optimization

process.

There is an obvious tradeoff between the resolution of the

mesh size used in the registration model and computational

complexity. In order to achieve the best compromise between

the resolution or the accuracy of the nonrigid deformation and

the computational cost, this model implements a hierarchical

multiresolution approach [23]. Resolution of the control grid

spacing is increased along with the image resolution from a

coarse to a fine level and several iterations are performed at

each stage until the cost function is minimized [22].

B. Application of Motion Correction to Super-Resolution

Fig. 1 shows the SR image processing chain. Motion

estimation was performed as the first step on the B-mode

image and the transformation matrix was used to correct the

motion in the CEUS images. Two-stage registration implicitly

performs affine and nonrigid registrations and outputs one

transformation matrix and the motion corrected image.

For the clinical study, the CEUS images were generated

by the clinical US system. After the motion correction stage,

a spatio-temporal filtering based on singular value decom-

position was applied to remove the residual tissue echoes

from the CEUS images [24]. Separation of MB and tissue

signals is crucial for SR imaging and it is not a straightfor-

ward procedure since nonlinear propagation of US through

MB contrast agents can lead to imaging artifacts including

subsequent erroneous localization of MBs [25], [26]. After

the filtering stage, a threshold was applied to remove the noise

Fig. 1. Processing chain of SR imaging. Affine and nonrigid motion
estimation are the first two steps of the process.

before MB detection. In the MB detection stage, an intensity

threshold was used to reject large signals, which might be

due to multiple MBs. Finally, the super-localization stage was

performed as explained in [27].

III. MATERIALS AND METHODS

A. Simulation Study

To verify the accuracy of the proposed motion estima-

tion method, Field II simulations were performed [28], [29].

Controlled motion patterns were simulated on a tissue

phantom with increasing complexity of motion as shown

in Figs. 2–4. In all simulations, white Gaussian noise was

added to the simulated data before the beamforming operation

and the SNR was calculated as a ratio between mean tissue

signal and standard deviation of the white Gaussian noise.

Probe motion was simulated by moving the location of

scatterers together in the axial or lateral direction as shown

in Fig. 2. Translation of scatterers in the axial or lateral direc-

tion creates a rigid tissue motion with uniform displacement.

These simulations were performed for 11 different exponen-

tially spaced motion amplitudes for a range of 1–1024 µm

and they were repeated 20 times with each repeat having a

different noise.

Tissue deformation was generated by displacing the scatter-

ing points as a function of depth or lateral distance using a

linear stress–strain relation to mimic the effect compression

from top by an US probe or compression from side by a

moving organ or muscle. By moving scatterers independent

of each other, a nonrigid tissue motion was created, as shown

in Fig. 3 (left) and (middle). As shown in Fig. 3 (right),

the motion within the imaging field changes from a few

micrometers to up to a millimeter, which corresponds to a

maximum of 2% compression in the axial direction and 2.5%

compression in the lateral direction.

For the last simulation, a more realistic motion pattern was

simulated in Field II by using the motion field estimated

from a clinical scan. Two frames acquired approximately

10 s apart were chosen as the reference frame and the frame
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Fig. 2. Simulated probe motion in axial (left) and lateral (middle) directions.
By moving the probe away from the center of the tissue phantom, a rigid
motion is generated. Right: tissue motion direction with arrows and the
colorbar represents the motion amplitude for both cases. Probe motion was
simulated for a motion range of 1–1024 µm, but only 256-µm motion is
shown here for clarity.

Fig. 3. Simulated tissue deformations in the axial (left) and lateral (middle)
directions. A nonrigid motion is generated to mimic tissue deformation caused
by probe compression or muscle contraction. Right: tissue motion direction
with arrows and the colorbar represents the motion amplitude for both cases.
Tissue deformation was simulated for a wide range of values, but only 2%
and 2.5% compression in the axial and lateral directions are shown here for
clarity.

with motion. The extracted motion field from these two frames

accommodates a combination of a large scale counterclock-

wise motion located at the south–east of the image and a

small scale clockwise motion located at the north–west of the

image with an average motion of 203 ± 113 µm as shown

in Fig. 4 (middle). This motion field was then applied to a

numerical simulation of a homogeneous tissue phantom shown

in Fig. 4 (left).

Simulation parameters were chosen specifically to match

the parameters of the clinical study with a center fre-

quency 6 MHz, 80% bandwidth, 160 elements, and a pitch

of 237.5 µm. The −6-dB width of the point spread function

at 25-mm depth was 287 and 397 µm in the axial and lateral

directions, respectively.

Fig. 4. Left: simulated realistic motion in Field II on a homogeneous tissue
phantom without any dominant structures. Middle: Extracted motion field
from a clinical data set that was subsequently applied on the homogeneous
phantom shown on the left to simulate a realistic motion. The colorbar
represents the motion amplitude in micrometers and the white arrows show
the direction of the tissue motion. Right: Example B-mode frame acquired
with a commercial US scanner that was used to extract a realistic motion.

The simulated tissue phantom had 10 scatterers per reso-

lution cell for every simulation to generate a fully developed

speckle pattern [30]. For the simulations with probe motion

and tissue deformations, the phantom included circular hypoe-

choic and hyperechoic regions with a diameter of 2, 3, 4,

and 5 mm and 4-point scatterers (Figs. 2 and 3). For the

realistic motion simulations (Fig. 4), a homogeneous phantom

was used without any structure, which makes the motion

estimation harder, because in this case, there are no dominant

features in the B-mode frames to aid the motion estimation,

and the motion estimation is, therefore, obtained purely from

the simulated speckle pattern. The attenuation coefficient was

set to 0.5 dB/cm/MHz and white Gaussian noise was added

to the simulated data before beamforming. By shifting the

scatterers together or independently, a different speckle pattern

was generated for all tested scenarios. The signal to noise ratio

in the simulated B-mode image was varied between 20 dB,

which is the empirical lower bound where a suitable motion

correction is possible for SR imaging with the proposed

approach, and 50 dB, which is the dynamic range of the US

scanner used in the clinical study.

The motion estimation algorithm was applied to the

simulated B-mode image after envelope detection, log-

compression, and downsampling. The resulting images had

a pixel size of 60 × 60 µm2 and a 50-dB dynamic range.

During image registration, most of the parameters were kept

the same except the grid spacing and the regularization penalty,

which had a large effect on motion estimation accuracy for

some cases. The similarity measure of squared pixel distance

(also called squared difference) was used for all estimations.

Among two interpolation techniques available with this motion

estimation method, linear interpolation was used instead of

cubic, as cubic interpolation was found to have higher error

values due to the discontinuities inside and at the boundaries

of the image [31]. The final result was cubic interpolated.

The registration was always initialized with a uniform grid

and the maximum number of grid refinement steps used by

the multiresolution method was fixed to two. The registration

method was changed between rigid, affine, nonrigid, and

two-stage (also referred to as both inside the MATLAB code)

in order to demonstrate the accuracy of each method for
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Fig. 5. Results of simulations carried out with rigid sample translation (also referred to as probe motion) as shown in Fig. 2. The average absolute motion
estimation error for all simulated motion values (11 simulations spanning 1–1024 µm, each repeated 20 times) are shown for the axial (left) and lateral (right)
directions, respectively. Error bars show the standard deviation in absolute motion estimation error over all simulated motion values. Values are shown for
SNR values of 50, 40, 30, and 20 dB for all motion estimation methods.

different scenarios. A grid spacing of 128 × 128 was used

for all simulations except the simulated translational motion,

where a larger spacing of 256 × 256 and 512 × 512 showed

an improvement. When a grid size of 128 × 128 was chosen

initially, the registration function also used a 64 ×64 grid and

a 32×32 grid thanks to two subsequent grid refinement steps.

To demonstrate the potential of the motion estimation method,

the regularization of the two-stage and nonrigid registrations

were optimized for each simulation. Each simulation was run

for a set of regularization values (10−6 ≤Cregularization(T ) ≥1)

and the penalty parameter that achieved the minimum error

was chosen as the optimum value. For the simulated probe

motion, lowest error values were achieved by using a higher

regularization parameter as opposed to the cases for simulated

tissue deformation and realistic motion.

B. Clinical Study

Healthy volunteers were recruited from a research cen-

ter (Charing Cross Hospital, Imperial College London,

London, U.K.). The study was approved by the National

Research and Ethics Committee (Reference 13/LO/0943), and

each participant provided written informed consent.

Clinical data was acquired in the tibialis anterior muscle

using a Philips iU22 US scanner (Philips Medical Systems,

Bothell, WA, USA) with a handheld 3–9-MHz linear array

probe. A vial of Sonovue (Bracco S.p.A, Milan, Italy) was

diluted using normal saline (25 mg in 20 mL) and was admin-

istered as an intravenous infusion (VueJect, Bracco S.p.A,

Milan, Italy) at a rate of 4 mL/min via an 18G cannula placed

in an antecubital vein. The cannula was flushed with saline

[5 mL of sodium chloride 9 mg/mL (0.9%) solution] and

disconnected. B-mode and CEUS (power modulation) frames

were acquired using the RS imaging mode of the Philips

scanner operating around a 6-MHz center frequency with a

mechanical index of 0.06 and a dynamic range of 50 dB.

Several acquisitions from three healthy volunteers were

recorded over a duration of 40–55 s with 500–700 B-mode and

CEUS frames at a frame rate of 13 Hz and the resulting data

was saved to disk as video files. Supplementary video shows

the in vivo CEUS and B-mode data. It can be seen that

the tissue signal dominates the B-mode images and that the

moving bubble signals will not significantly affect the motion

estimation. B-mode frames were used for motion estimation

and the motion correction was performed on CEUS frames

before formation of the SR images.

IV. RESULTS

A. Simulation Study

The accuracy of the motion estimation for the simu-

lated probe motion in the axial and lateral directions are

given in Fig. 5 (left) and (right), respectively. The mean

absolute error values are plotted with an error bar that rep-

resents the standard deviation for a range of motion between

1 and 1024 µm.

In the case of rigid probe motion in the axial direction, all

methods estimated the motion with less than 3.5-µm absolute

error and with a standard deviation smaller than 3 µm. In the

case of rigid probe motion in the lateral direction, the absolute

error increased for all motion estimation methods, where

nonrigid motion estimation gave larger error values (8±7 µm)

for the simulations with 20-dB SNR.

Results of the nonrigid tissue deformation simulations are

shown in Fig. 6 (left) and (right) for all motion estimation

methods. Results of the rigid motion estimation for all noise

levels were above 45 µm, which is not suitable for SR

US imaging. Both affine and two-stage motion estimation

performed similarly for tissue deformation shown in Fig. 3

with absolute error values below 5.4 ± 5.2 µm for lateral

and below 3.7 ± 2.9 µm for axial motion. Due to the nature

of the simulated linear elastic compression of tissue, affine

motion estimation performed better than the nonrigid motion

estimation.

The computation time including both the motion estimation

and motion correction were measured for an image with a size
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Fig. 6. Results of simulations carried out with nonrigid sample deformation (also referred to as tissue deformation) as shown in Fig. 3. The average
absolute motion estimation error for all simulated motion values (11 pairs of simulations with a compression ratio of 0.002%–2% in the axial direction and
0.0025%–2.5% in the lateral direction, each repeated 20 times) are shown for the axial (left) and lateral (right) directions, respectively. Error bars show the
standard deviation in absolute motion estimation error over all simulated motion values. Values are shown for SNR values of 50, 40, 30, and 20 dB for all
motion estimation methods.

Fig. 7. Left: Simulated motion field applied on the B-mode image as shown in Fig. 4. Top: motion estimated with affine, nonrigid, and two-stage registration
methods for the simulated motion given on the left. Bottom: absolute difference between induced and estimated motion fields.

of 641 × 670 pixels while using only a single core of 12 core

processor at 2.6 GHz. For this given setup, rigid registration

and motion correction took 42 iterations and approximately

10 s. The second fastest method was the affine registration,

which took 47 iterations and approximately 15 s. Nonrigid

registration with an optimized Cregularization(T ) = 2 × 10−4

was the slowest method, which took 201 iterations and

approximately 90 s. Two-stage registration with an optimized

Cregularization(T ) = 3 × 10−2 took 47 iterations for affine and

eight iterations for nonrigid registration with a total of 20 s

approximately.

B. Simulation Results for the Realistic Motion

A B-mode image with motion was generated with 20-dB

SNR using the motion field extracted from the clinical scan

shown in Fig. 4 (middle). This frame with motion was regis-

tered to a reference B-mode image without motion by using

nonrigid, affine, and two-stage motion estimation methods.

Fig. 7 (top) shows the motion field estimated by different

methods and Fig. 7 (bottom) shows the absolute difference

between induced and estimated motion fields. Amongst all

the methods presented, the two-stage method has the lowest

mean absolute error value of 12.2 µm, which increased to

15.3 µm for the nonrigid method and 28.7 µm for the

affine method. When using the two-stage method, the absolute

motion estimation error was less than 15 µm for 70% of the

total image area, whereas this area drops down to 65% for the

nonrigid and 38% for the affine method.

Overall, the rigid method has the worst performance since

it cannot accommodate the localized shearing and rotation of

the tissue for this case of simulated realistic motion. The affine
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method has good performance for this case; however, it per-

forms worse than the two-stage method. The second nonrigid

registration stage of the two-stage method compensates for

the local deformations and gives an advantage over the affine

method. The nonrigid method works best for small local

deformations, however, when the motion is larger than a few

pixels the performance drops significantly, which is visible in

the south–west corner of Fig. 7 (bottom–middle). Therefore,

the two-stage method is a good composite method that com-

pensates the large global motion first and provides a better

starting point for the nonrigid registration stage.

C. Effect of Regularization Parameter

By comparing the computation time, it is easy to notice

the advantage of the two-stage registration against nonrigid

registration. According to the previously given example,

nonrigid registration with an optimized regularization parame-

ter performed 201 iterations, where the two-stage registration

with an optimized regularization parameter performed a total

of 55 iterations to minimize the cost function. The first

stage compensates a large portion of the motion by using

the faster affine method and requires fewer iterations for the

slower second stage based on the nonrigid registration.

Although speed improvement is a big advantage when

using the two-stage method, the most important benefit of

this method is improved estimation robustness when using a

nonoptimized regularization parameter. To demonstrate this,

a large image region (between 10 to 35 mm in depth and

between −13 to 13 mm in lateral) and a smaller region

(between 10 to 30 mm in depth and between −8 to 13 mm

in lateral) were chosen from the same data set simulated with

the realistic motion, where the small region avoids the large

motion at the south–west corner of Fig. 4 (middle).

Performance of all estimation methods for this simulation

is shown in Fig. 8 (top) for the small region and (bottom) the

large region. The mean absolute error values calculated for

each method is plotted against the regularization parameter.

Rigid and affine registration methods do not use a regular-

ization parameter, so they have the same constant value for

the whole range. The performance of the nonrigid and the

two-stage registration methods depends on the regularization

parameter, where the performance is best for the optimized

values highlighted by red and blue circles in Fig. 8.

For the small region, the rigid method has the largest

error between all methods due to the shearing and rotation

of the tissue. When the regularization parameter is optimized,

the nonrigid and the two-stage methods have similar error

values. However, the two-stage method provides a better

performance for a broader range of regularization parameters,

which is advantageous for real-time applications where the

optimization of the regularization parameter may not be pos-

sible for every frame.

For the large region, the rigid method again has the largest

error as shown in Fig. 8 (bottom). The affine and the two-stage

methods performed similarly for both the large and small

regions, but the performance of the nonrigid method dropped

significantly. By comparing the results after choosing a large

Fig. 8. Performance of nonrigid and two-stage methods are demonstrated
with a varying regularization parameters. Top: small region of interest.
Bottom: large region of interest. Rigid and affine methods are not regularized,
so they always estimate the same motion field for a given image.

and a small area from the same B-mode image, one can con-

clude that the robustness of the two-stage motion estimation

method is better than the nonrigid method.

D. Clinical Results

It is hard to demonstrate the accuracy of the motion estima-

tion and correction on the clinical data set without knowing

the ground truth. Therefore, this section demonstrates the use

of the two-stage motion estimation on clinical SR images

based on the assumption that healthy volunteers without

peripheral arterial disease should have long straight vascular

structures without stenosis and tortuous vessels, as demon-

strated by [32] and [33] using angiograms and micrographs.

Fig. 9 shows the CEUS maximum intensity projection (MIP)

and the SR image generated from a 45-s clinical scan with

580 frames. Using less than a minute of clinical data acquisi-

tion, the imaging region was visualized using the SR method

with an average number of localizations of 30 MBs/frame.

Motion correction was performed by using the estimated

motion with the two-stage method, where the estimated motion

from two selected regions are shown in Fig. 9 (bottom) as

a demonstration. An average motion of 233 ± 17 µm/s was

estimated from the clinical US scans. Qualitatively, it is clear

that the spatial resolution of the SR image is higher than that

of the MIP.

Fig. 10 (top) demonstrates the effect of motion correction on

a chosen vessel. The average thickness of the vessel inside the

boxes are given in Fig. 10 (bottom). The sizes of the vessels

from these images were measured by using linear interpola-

tion [34]. The full width at half maximum (FWHM) of the

vessel was measured as 1075 µm from the MIP image without
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Fig. 9. Top: MIP of the CEUS frames acquired from healthy human
volunteers. Middle: SR image created using the same CEUS frames after
motion correction. Colorbar corresponds to the number of localized MBs.
Bottom: estimated motion from the clinical data is plotted for the red and
blue rectangles shown in the MIP image as a function of time.

Fig. 10. Top: CEUS MIP and SR image of a selected vessel is shown with
and without motion correction. Bottom: average thickness of the vessel inside
the green boxes are plotted to demonstrate the achieved improvement after
motion correction.

motion correction. The SR image without motion correction

achieved a subwavelength vessel FWHM of 220 µm; however,

after the application of proposed two-stage motion correction

method, the FWHM of the vessel was reduced to 104 µm and

the double-vessel feature disappeared.

The benefit of using two-stage motion estimation and

motion correction on SR imaging in human microvasculature

is demonstrated in Fig. 11. The microvessels were chosen

from four different SR images acquired from three healthy

volunteers. Fig. 11 shows the effect of the proposed two-

stage motion correction on different microvessels, where the

thickness of vessels are given in Table I. After motion correc-

tion the torturous vessels appeared as straight vessels, which

shows the significance of the two-stage motion correction on

clinical interpretation of SR US images. Motion correction

also potentially removed blurred vessels and artificial double

copies, which were mostly visualized as single vessels after

correction. After motion correction, the size of the average

vessel in the SR image dropped from 146 µm down to 94 µm

by reducing the width of the motion-blurred microvessels

approximately 1.5-fold as listed in Table I.

V. DISCUSSION

Motion is an inherent part of in vivo imaging and US

imaging methods based on multiple acquisitions suffer from

motion artifacts even for images acquired at high frame rates

with or without MBs [35]–[37]. For SR imaging, subwave-

length motion correction methods are required to visualize

microvascular structures and flow beyond the diffraction limit

through localization of spatially isolated MBs. Rigid motion

estimation techniques using image data cannot compensate for

local deformations as demonstrated in the simulation study

presented here.

This paper employed an image-based motion estimation

approach for SR US imaging. The applied two-stage method

is a combination of affine image registration that can estimate

the global motion, and nonrigid image registration that can

estimate the local deformation of tissue. The main advan-

tage of using a two-stage registration instead of a nonrigid

registration is that the nonrigid method is more complex

and computationally heavy. The first stage, affine registration,

compensates for the global motion and it gives a better starting

point for the nonrigid stage, which also reduces the number

of iterations required to minimize the cost function.

For the first two simulation studies with the probe motion

and tissue deformations, presented in Figs. 5 and 6, the stan-

dard deviation values are relatively large since the displayed

results present a combination of many simulations performed

for 11 different motion amplitudes between 1 and 1024 µm.

For the same simulations, the accuracy of the motion estima-

tion was better in the axial direction for all methods due to the

shape of the point spread function, which was narrower in the

axial direction. These two sets of simulations were performed

to assess the feasibility of the motion estimation methods;

however, the motion field was too simplistic to highlight the

advantages of the two-stage registration method compared

with affine registration. The affine method has the degrees of

freedom required to correct for the simplistic motion, whereas

the two-stage method has many more degrees of freedom. For

these simulations, the proposed two-stage method achieved

similar results with the affine method with a mean absolute

motion estimation error of 7.5 ± 5.8 µm or less for the
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Fig. 11. Effect of motion correction is presented in 12 SR image pairs. Images are displayed in three columns. Left: image is without motion correction.
Right: image is with motion correction. Colorbar is the same as Fig. 9 and it corresponds to the number of localized MBs.

TABLE I

MICROVESSEL THICKNESS (MICROMETERS)

simulated motion range of 1–1024 µm with 20-dB SNR.

However, for the simulation with realistic motion field,

the advantage of using the two-stage method over affine

method became obvious, where the mean absolute error was

2.3 times smaller for the two-stage method.

The error values presented in this paper will change as

a function of many variables such as wavelength, sampling

frequency, imaging resolution, SNR, and regularization para-

meter. Improving some of these parameters and also using

RF data instead of image data can increase the estimation

accuracy. Although, in this paper, the motion estimation was

performed on B-mode images acquired by a commercial

scanner, the application of the proposed motion correction

scheme to RF data is possible [38]. Using RF data instead

of image data can increase the estimation accuracy, as the RF

domain is a superset of the image domain with an additional

signal phase information.

The regularization penalty might have a significant impact

on the motion estimation error for the nonrigid method;

however, it is possible to achieve a reasonable estimation

accuracy for a large range of regularization values while

using the two-stage method as shown in Fig. 8. For both the

simulation and clinical US data used in this paper, the smallest

used value was Cregularization(T ) = 2 × 10−4. Below this

value, the computation time of the estimation process increases

without a benefit since a lower penalty results in a viscouslike

registration, which is not realistic for human soft tissue. Above

the largest used value of Cregularization(T ) = 0.5, estimation

results in an affinelike registration, which is not suitable for

estimating complex nonrigid motion fields.

The motion estimation can be performed using either a

dynamic or a static reference frame. It is possible to perform

registration between each pair of consecutive frames by chang-

ing the reference frame for every registration; however, this

results in an accumulation of error over every registered frame.

In this paper, motion estimation was performed by using a

single reference frame. In this case, the choice of the refer-

ence frame becomes crucial. If the specific chosen reference

frame is corrupted with artifacts or significant motion, this

can make it very different from the rest of the frames in

the sequence. An automatic and systematic way of choosing

a good quality reference frame may eliminate this problem.
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Future improvement can include groupwise registration of

the entire video sequence together rather than pairwise

registration [39].

There are two significant limitations in SR US imaging per-

formed in 2-D. The biggest problem is the out-of-plane motion

that cannot be compensated using 2-D imaging methods.

Before starting the motion correction procedure for the clinical

study, the B-mode and CEUS frames were visually inspected.

Video files were segmented into smaller sections with no

obvious out-of-plane motion in the B-mode images. From

these segmented videos, only those with 250 or more frames

were selected for further processing. Out of 5–7 min of US and

CEUS acquisitions from three volunteers, only four continuous

acquisitions with a duration of 40–55 s were suitable for SR

imaging after motion correction. The tibialis anterior muscle is

located at one of the extremities of human body and is, there-

fore, not affected by respiration and cardiac motion. When

imaging in the abdomen and chest region, while the motion

correction algorithm was designed to cope with large motion

amplitude including that expected in abdomen, increased out-

of-plane motion will limit the applicability of our approach in

its 2-D form, as the current correction procedure relies on a

constant 2-D plane in the sample being imaged over time.

In the future, it should be possible to apply our approach

when imaging in the liver, pancreas or kidney using a 3-D

imaging approach, or 2-D SR US provided that an experienced

clinician places the probe in a way that the imaging region

only moves in-plane with the probe. Second, the acquired SR

images did not have the required resolution in the elevation

direction. Both of these issues can be addressed by using 3-D

imaging methods, which can achieve the required elevational

resolution and SNR for 3-D SR imaging [40]–[42]. Although

3-D imaging offers a solution to the problem of out-of-plane

motion, it may introduce other limitations for SR US imaging.

For multiplexed 3-D US systems, the acquired volume data is a

combination of multiple transmissions and acquisitions, which

may generate intravolume motion artifacts. High frame rate

3-D US imaging with plane waves is capable of imaging the

whole volume with a single acquisition. However, this method

suffers from low SNR due to the lack of elevational focusing,

which may increase the localization error in SR US imag-

ing. A carefully chosen imaging strategy is required for the

3-D SR US to balance the tradeoffs between motion artifacts

and localization error. High speed implementation of 3-D SR

remains a big challenge due to postprocessing complexity

and data size for both multiplexed and plane wave 3-D US

imaging.

The SR images shown in Fig. 11 have all been selected

using visually perceived improvement in image quality, based

on an assumption that the microvessels should be long and

straight in healthy patients [32], [33]. It is not possible to

calculate the resolution of the SR images due to the lack

of the ground truth. Nevertheless, it is possible to measure

the width of the microvessels, where the motion corrected SR

imaging method will not give an underestimate of the width

due to motion and localization error. For this reason, the spatial

resolution of the SR images generated in this paper using a

clinical US system has to be <94 µm (λ ≈ 250 µm), and

therefore, these results represent the first clinical localization-

based SR US imaging.

This paper used a data set acquired by a clinical scanner

with normal frame-rate and demonstrated the use of a motion

correction method without considering the computational

speed. The motion estimation and correction were performed

by using a MATLAB code and executed on a CPU; however,

it is possible to significantly improve the computational time

of the applied method by using a GPU or other parallel

processing approaches. A fast motion correction can empower

the image-based superlocalization technique and lead to quick

clinical translation of SR US imaging.

VI. CONCLUSION

Clinical motion observed in US imaging is an aggregation

of various motion types. Probe movement, respiration, cardiac

motion, and many other unavoidable sources of body motion

result in a combination of translation, shearing, and nonrigid

deformations at different scales. SR images are generated

through multiple US frames acquired over a duration of sec-

onds to minutes, where both large tissue movements and small

local deformations can be observed. To estimate both large-

and small-scale motion and local deformations simultaneously

with high precision, this paper used a two-stage approach for

US SR imaging.

Ideally, SR US imaging should be limited by the localization

precision rather than sample motion. Therefore, motion should

be compensated with an accuracy higher than the spatial

resolution of the SR image as demonstrated in this paper.

The feasibility study showed that it was possible to achieve a

subpixel (x = 60 µm) and subwavelength (λ ≈ 250 µm)

motion estimation accuracy of 7.5 ± 5.8 µm or better for

the simulated probe motion and tissue deformations while

using the two-stage image registration method. Similar results

were achieved for the simulations with a realistic motion

extracted from a clinical data set, where the mean absolute

error was 12.2 µm and 70% of the motion was estimated

with an absolute error smaller than 15 µm. The two-stage

method was then applied to achieve clinical SR US imaging of

microvasculature in human lower limb using a commercially

available clinical US scanner.
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