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TWO-STAGE ROBUST OPTIMIZATION, STATE-SPACE

REPRESENTABLE UNCERTAINTY AND APPLICATIONS

Michel Minoux1

Abstract. The present paper addresses the class of two-stage robust
optimization problems which can be formulated as mathematical pro-
grams with uncertainty on the right-hand side coefficients (RHS un-
certainty). The wide variety of applications and the fact that many
problems in the class have been shown to be NP-hard, motivates the
search for efficiently solvable special cases. Accordingly, the first ob-
jective of the paper is to provide an overview of the most important
applications and of various polynomial or pseudo-polynomial special
cases identified so far. The second objective is to introduce a new sub-
class of polynomially solvable robust optimization problems with RHS
uncertainty based on the concept of state-space representable uncer-

tainty sets. A typical application to a multi period energy production
problem under uncertain customer load requirements is described into
details, and computational results including a comparison between op-
timal two-stage solutions and exact optimal multistage strategies are
discussed.

Keywords. Robust optimization, Graph algorithms, Min-Max
optimization.
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1. Introduction

The main focus of this paper is on the class of 2-stage robust optimization
problems which can be stated as mathematical programs with uncertainty on the
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right-hand side (RHS uncertainty in short). Such problems are characterized by
the following features:

(i) The right-hand side coefficients in (at least part) of the constraints are subject
to uncertainty and can take on any value in a given uncertainty set (either
finite or compact).

(ii) The set of decision variables can be split into two components, the “here and
now” (or “primary”) decision variables and the “wait-and-see” (or “secondary”
or “recourse”) variables. The primary decision variables, denoted x (x ∈ R

n)
have to be fixed before knowing which occurrence of uncertainty will be real-
ized. Once the x variables have been fixed, the secondary decision variables,
denoted y (y ∈ R

m) can still be adjusted after observing which occurrence of
uncertain right-hand sides has been realized.

In addition a (deterministically known) objective function c(x, y) has to be min-
imized or maximized, taking into account the worst possible occurrence of uncer-
tainty in the uncertainty set for the right-hand sides.

A generic model for problems in the above defined class can be stated as follows.
There are m constraints subject to uncertainty of the form:

θi(x, y) ≤ bi (i = 1, . . . , m) (1.1)

together with possibly extra constraints on the x variables only, or on the y vari-
ables only of the form x ∈ X , y ∈ Y (X and Y are given nonempty compact
sets).

The right-hand side vector b = (bi)i=1,...,m, is subject to uncertainty and only
known to belong to a given uncertainty set B ⊂ R

m. B is assumed to be nonempty,
and either finite or closed and bounded. Moreover we assume nonemptyness of the
set of x ∈ X such that, ∀b ∈ B : Ŷ (x, b) �= ∅, where: Ŷ (x, b) = {y : θ(x, y) ≤ b}∩Y .

The problem is then formulated as:

Min
x∈X

{

Max
b∈B

{

Min
y∈Ŷ (x,b)

{c(x, y)}

}}

. (1.2)

Before proceeding further, let us briefly mention the special case when only pri-
mary variables x are present (this is referred to as “single stage” robust optimiza-
tion). In that case, the constraints (1.1) simply reduce to: θi(x) ≤ bi (i = 1, . . . , m)
and the problem boils down to:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Minimize c(x)

s.t.:

θ(x) ≤ b

x ∈ X

where b is the m-vector with components bi = Minb∈B {bi}.
Such “single stage” robust models have been investigated by [20, 21] in the

case of robust linear programming problems, and are known to produce overly
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conservative solutions (i.e. solutions for which the price to pay for robustness is
too high). In view of this, these “single stage” models will not be given further
consideration here.

A much more interesting special case of (1.2) is when the objective function and
the constraints are linear, giving rise to what is referred to as 2-stage robust lin-
ear program with RHS uncertainty; this class of problems, denoted R-LP-RHSU,
has been explored in particular in [10,14]. Contrasting with the robust linear pro-
gramming models investigated e.g. by Bertsimas and Sim ([2, 3]) or Ben-Tal and
Nemirovski ([1]) which give rise to polynomial-time solution procedures, problems
in the class R-LP-RHSU are strongly NP-hard even when restricting to specially
structured instances such as 2-stage robust MAX-FLOW under uncertain arc ca-
pacities [11] or robust single commodity network capacity expansion under un-
certain customer requirements [12]. However, a number of polynomially solvable
special cases are known in the class, and an overview of known results of this kind
is proposed in Section 2. The rest of the paper is organized as follows. In Sec-
tion 3 the concept of state-space representable uncertainty set is introduced and
is shown to give rise to a new subclass of polynomial-time solvable robust opti-
mization problems with RHS uncertainty. An application to a multiperiod power
production problem under uncertain customer load requirements is discussed into
details in Section 4; the computational results reported show the practical effi-
ciency of the proposed solution methods, and provide a systematic comparison (in
terms of objective function values) between 2-stage solutions and optimal multi-
stage strategies.

2. The class R-LP-RHSU and polynomially solvable

special cases

The class R-LP-RHSU corresponds to the case when the objective function and
the functions defining the constraints are linear, and thus a generic model for
problems in this class is

(I)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Minimize γT x + qT y

s.t.:

Fx + Hy ≤ b

x ≥ 0 y ≥ 0

where x ∈ R
n, y ∈ R

p, c ∈ R
n, q ∈ R

p; F and H are given matrices of dimensions
m × n and m × p, respectively.

b is an uncertain right-hand side vector which is only known to belong to a given
nonempty uncertainty set B included in R

m (B is assumed to be either finite or
closed and bounded).

It turns out that many optimization problems of practical interest can be formu-
lated as linear programs with RHS uncertainty, and even when featuring specially
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structured constraint matrices, most of them have been shown to be NP-hard (re-
fer to [14] for a thorough discussion of NP-hardness results). This section aims
at providing a brief overview of some of the most typical such applications, with
emphasis on known polynomially solvable special cases.

Most examples mentioned in this section correspond to what is referred to as
polyhedral uncertainty (PU), i.e. when the uncertainty sets under consideration are
polytopes (= bounded polyhedra). We will also refer to an important special case of
polyhedral uncertainty, namely the so-called “knapsack constrained uncertainty”
(KCU). This corresponds to uncertainty sets which are in 1-1 correspondence with
the solution set of a given (continuous) knapsack problem.

To illustrate, suppose that we have n parameters di (i = 1, . . . , n) each of
them can take any value in a given interval

[

d0
i , d

0
i + ǫδi

]

(where d0
i is the nominal

value and d0
i + ǫδi is the worst-case value); ǫ is fixed, either equal to 1 or equal

to −1. Then knapsack-constrained uncertainty corresponds to uncertainty sets D
composed of all d = (di)i=1,...,n of the form di = d0

i + ǫσiδi (i = 1, . . . , n) for
all σ = (σi)i=1,...,n in the solution set

∑

defined by the (continuous) knapsack

constraints:
∑n

i=1 σi ≤ Γ , 0 ≤ σ ≤ σ̂ for given upper bounds σ̂i (i = 1, . . . , n) and
Γ ∈ [1, n].

If each of the uncertain parameters, di, can take any value in an interval of the
form

[

d0
i − δi, d

0
i + δi

]

(where d0
i − δi and d0

i + δi are the extreme values and the
nominal value is the central value d0

i ) then we can define a (KCU)-type uncertainty
set D′ composed of all d = (di)i=1,...,n of the form: di = d0

i + σ+
i δi − σ−

i δi for all

σ = (σ+, σ−) in the set:

∑

′ =

{

(

σ+, σ−
)

/

n
∑

i=1

(

σ+
i + σ−

i

)

≤ Γ, 0 ≤ σ+
i ≤ σ̂+

i , 0 ≤ σ−
i ≤ σ̂−

i

}

again recognized as the solution set of a continuous knapsack problem.

The parameter Γ involved in the above definitions is called the budget of un-
certainty. Note that when Γ is an integer, and the upper bounds σ̂i, σ̂

+
i , σ̂−

i are
equal to 1, the extreme points of

∑

(or
∑′

) are integer-valued, and the conditions
d ∈ D (or d ∈ D′) can be interpreted as accepting as possible scenarios only those
d = (di)i=1,...,n such that the number of components which can take on extreme
values does not exceed Γ . This is why we refer to this special case of (KCU) as
cardinality constrained uncertainty (CCU). We note here that (KCU) uncertainty
is the basic model of uncertainty considered by Bertsimas and Sim in [2, 3].

2.1. Robust PERT scheduling

PERT scheduling is a very classical problem in Operations Research, at least
when the task durations are deterministically known. An instance of this problem
is specified by a directed circuitless graph G in which the nodes correspond to the
various tasks i = 1, . . . , n of a project, and there is an arc (i, j) whenever there is
a precedence constraint stating that processing of task j should not start before
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completion of task i. In the deterministic case the duration di of each task i is
fixed and given, and the problem is to determine the minimum total duration of
the project (the total time spent between the beginning of the initial task and
the end of the terminal task). This problem is efficiently solved (in polynomial
time O(m) where m is the number of arcs) as a longest path problem in the given
circuitless graph G, when each arc (i, j) has length di (the duration of task i).
The extension of this problem to the case of uncertain task durations has been
investigated in [9, 10] assuming a polyhedral uncertainty set of (KCU) type. In
this extended version of PERT scheduling, a minimum robust project duration t∗

is looked for, i.e. the minimum value of t guaranteeing that the project can be
completed in no more than t time steps for all possible d = (di)i=1,...,n in the
uncertainty set. The special case of cardinality constrained uncertainty (CCU) is
shown to be polynomially solvable in time O(mn2) (where m is the number of
arcs in G). Other more general versions of the robust PERT scheduling problem
leading to pseudo-polynomial algorithms are described in [9], including the robust
time-dependent PERT scheduling problem.

2.2. Robust network flow problems

The robust maximum flow problem under uncertain arc capacities is defined as
follows. Given a directed graph G = [V, U ] where V is the vertex set and U the

arc set, s ∈ V , t ∈ V two specified vertices in G, and C ⊂ R
|U|
+ a set of possible

scenarios of capacities associated with the arcs, we want to determine a maximum
robust s − t flow value in G: in other words, the maximum value of z such that,
for all c ∈ C, there exists a s − t flow of value at least z. This problem has been
investigated in [11] and shown to be strongly NP-hard even in the case of an
uncertainty set of the (KCU) type. The special case when the graph G′ (deduced
from G by adding the return arc (t, s)) is planar and the uncertainty set of type
(CCU) is polynomially solvable.

Another type of single-commodity network flow problems featuring multiple
sources and sinks with uncertain requirements at nodes in the set of sinks has
been investigated in [12]. The network is represented by a given directed graph
G = [V, U ], each arc u ∈ U has a nonnegative capacity cu ≥ 0 assigned to it and
there is a set S ⊂ V of source nodes, a set T ⊂ V of sink nodes; each source
node i ∈ S has given availability ai, each sink node j ∈ T has an uncertain
requirement dj , and the vector d = (dj)j∈T is supposed to belong to a given

uncertainty set D ⊂ R
|T |
+ . To ensure feasibility, the inequality

∑

i∈S ai ≥
∑

j∈T dj

is assumed for any d ∈ D. On the other hand, it is not assumed that the given
capacities Cu (u ∈ U) are sufficient to guarantee the existence of a feasible solution
for any possible scenario of requirements d ∈ D; indeed, on each arc u ∈ U , extra
capacity xu ≥ 0 can be added, the corresponding cost incurred being linear of the
form γuxu (where γu > 0 is a given unit cost coefficient).

The robust minimum cost capacity expansion problem is then to determine how
much extra capacity xu has to be added on each arc u ∈ U in order to guarantee
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the existence of a feasible flow from S to T for any scenario of requirements d ∈ D,
while minimizing total cost

∑

u∈U γuxu. It has been shown in [12] that this problem
class is strongly NP-hard, even in the single-source case (|S| = 1) and uncertainty
sets of type (KCU). On the other hand, polynomially solvable special cases have
been proposed in [17] and [12]. In the former reference, polynomial solvability is
obtained assuming that the uncertainty set for requirements is a polytope defined
as a product of intervals. In the latter reference, it is obtained by assuming:

(a) a single source node (|S| = 1),
(b) planarity of the graph G′ deduced from G by adding an extra node t and |T |

arcs of the form (j, t) for all j ∈ T ;
(c) the uncertainty set for requirements if of the (CCU) type.

2.3. Robust inventory management under uncertain customer

requirements

Restricting to the single-product case, we consider a given time horizon dis-
cretized into T consecutive time periods t = 1, 2, . . . , T . In the deterministic case
(i.e. when customer requirements are assumed to be exactly known in each time
period of the horizon) this classical problem consists in determining the amount yt

to be provisioned in each time period t = 1, . . . , T so as to meet customer require-
ments, while minimizing total procurement costs and keeping the total amount in
store below a given capacity limit C.

It can be formulated as a linear program in which the customer requirements
appear in the right-hand side coefficients. Now, when the customer requirements
d = (dt)t=1,...,T are uncertain, and only known to belong to a given uncertainty

set D ⊂ R
T , a 2-stage robust linear programming formulation is obtained by

considering recourse variables representing the possibility of having stockout. The
recourse variable corresponding to period t is zero if the inventory level It in
period t is nonnegative; it is equal to −It (the amount of product missing to meet
customer requirements) in time period t in case It < 0 (stockout). A penalty term
involving the recourse variables with high penalty costs is added to the objective,
in order that stockout situations be avoided, as far as possible, in an optimal
robust solution. In the case when the uncertainty set D is a product of intervals,
a pseudo-polynomial algorithm, based on a dynamic programming approach, has
been described in [14] to solve this 2-stage robust version of inventory management.
The multistage version of the inventory management problem under uncertainty
is investigated in [13].

2.4. Other general polynomial solvability results

More general polynomially solvable cases of problems of the form (I) in the
class R-LP-RHSU are also known, including:

• the case of a finite uncertainty set with cardinality bounded by a polynomial
in n + p and m;
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• the subfamily of instances for which the parameter p (the number of recourse
variables y) is bounded by a fixed constant (see [14] for a detailed proof).

3. A new class of polynomially solvable 2-stage robust

problems with RHS uncertainty

3.1. Problem formulation

Consider the generic (nonlinear) optimization problem:

(P )

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Minimize f(x) + ψ(y)

s.t.:

gi(x) − yi = bi (i = 1, . . . , m) (3.1)

x ∈ X, y ∈ R
m

where:

x ∈ R
n, y ∈ R

m, X ⊂ R
n is a polyhedron described by a given set of

equality/inequality constraints,
f : R

n → R

ψ : R
m → R

gi : R
n → R (i = 1, . . . , m).

We assume that f, ψ and gi (i = 1, . . . , m) are given convex, possibly non
smooth, functions. In addition to this, it will be assumed in the sequel that one of
the two following properties (i) or (ii) holds:

(i) gi(x) is linear in x for all i = 1, . . . , m;
(ii) ψ is nondecreasing (y′ ≤ y ⇒ ψ(y′) ≤ ψ(y)).

It is easily realized that under either (i) or (ii), the function ψ(g(x)− b) is convex
in x. Thus, when the right-hand side vector b = (bi)i=1,...,m is known and fixed,
then problem (P ) is a convex optimization problem which can be solved efficiently
by standard optimization techniques.

Indeed, ψ being convex in x, (P ) reduces to the convex minimization problem
over the polyhedron X :

{

Minimize f̃(x) = f(x) + ψ(g(x) − b)

s.t. x ∈ X.

In the case when f̃ : R
n → R is convex polyhedral, and assuming that, ∀x ∈ X ,

the value f̃ as well as a subgradient of f̃ at x can be computed in polynomial time,
then (P ) can be solved in polynomial time using the ellipsoid algorithm [7].

Now, suppose that the right-hand side vector b is not known deterministically,
but is subject to uncertainty. More specifically, we assume that b can take any value
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in a given uncertainty set B of possible values. In the sequel it will be assumed
that the set B is either finite (discrete) or compact. Then the problem has to
be considered as a robust optimization problem with right-hand side uncertainty
(RHSU) the robust version of problem (P ) will be denoted (P ′). In such a problem
a best possible decision x has to be determined, assuming that the values of the y
variables can be eventually adjusted, depending on which value of the right-hand
side b arises, to satisfy the m equality constraints (3.1). Thus in the above robust
optimization problem, the x variables are the “first stage” (or “primary”) decision
variables; and the y variables are the “second stage” (or “recourse”) variables.

In the sequel the standard Min-Max criterion will be considered i.e. an optimal
robust decision x corresponds to minimizing the worst-case value of the objective
function f(x)+ψ(y). As a consequence, the robust optimization problem (P ′) can
be formulated as:

(P ′)

{

Min ϕ(x) = f(x) + Max
b∈B

{ψ(g(x) − b)}

x ∈ X.

We note here that an important special case of the above model arises when the
functions f, ψ and gi (i = 1, . . . , m) are linear. In this case, the problem belongs
to the class R-LP-RHSU discussed in Section 2. As previously mentioned this
class of problems has been shown to the NP-hard when the uncertainty set B is a
polyhedron.

An intuitive explanation of the above hardness result in the case of problem (P )′

is a follows. Optimizing over x ∈ X the function:

f(x) + Max
b∈B

{ψ(g(x) − b)}

requires evaluating its value at a number of tentative points x1, x2, . . . , xk, . . . Now
we observe that when B is an arbitrary polyhedron, for any fixed given x, solving
the problem: Maxb∈B{ψ(g(x) − b} amounts to maximizing a convex function over
a polyhedron which is indeed a difficult task in the general case.

The purpose of the present section is to introduce and investigate a special
subclass of polynomially solvable robust optimization problems of the form (P ′),
which is obtained when the uncertainty set B for the right-hand side b has a special
structure which we refer to as “state space representable”.

3.2. State-space representable uncertainty sets

We introduce here the concept of state-space representable uncertainty set ap-
plied to a given collection of uncertain real parameters b1, b2, . . . , bm which, in the
context of the present paper, correspond to the right-hand side coefficients of a
given 2-stage robust optimization problem of the form (P ′). Such an uncertainty
set is defined by considering an associated directed sequential graph G = [V, U ]
featuring the following structure.



TWO-STAGE ROBUST OPTIMIZATION 463

4 

2 

3 

6 

7 

8 

9 

5 

1 

2

b
+

1 

b
-

3 

1

b
-

1 

4

b
+

2 

3

b
0

2 

5

b
0

2 

b
+

3 

7

b
+

3 

6

b
+

333

b
+

3 

Values of b1 Values of b2 Values of b3

S 

Figure 1. An example graph corresponding to the state-space
representation of an uncertainty set for a 3-parameter case.

The vertex set is of the form V1∪V2∪· · ·∪Vm∪{s} where each Vi is a subset of
nodes corresponding to the real parameter bi (i = 1, . . . , m), and with each node
j ∈ Vi, there is an associated value v(j) for bi. The vertex indexed s is an additional
vertex playing a special role to be explained below, but does not correspond to
any of the uncertain parameters. The arc set U is composed of a given set of arcs
of the form (j, k) where j ∈ Vi, k ∈ Vi+1 (i ∈ [1, m − 1]), together with the set of
all arcs of the form (s, j) j ∈ V1.

We observe that it is not assumed that for given i ∈ [1, m − 1] the arc set U
contains all the ordered pairs (j, k) with j ∈ Vi, k ∈ Vi+1. U can contain only some
of these ordered pairs. It should also be noticed that, in the above model for any
i ∈ [1, m], the values v(j) j ∈ Vi need not be distinct (a same value for bi can be
represented by several distinct nodes in Vi).

Now we define the uncertainty set B(G, v) corresponding to the above graph G as
composed of all the m-tuples [v (j1) , v (j2) , . . . , v (jm)] such that (s, j1, j2, . . . , jm)
is the vertex set of a directed path originating at s in G.

To illustrate the above definition, consider the graph shown in Figure 1, which
corresponds to a 3 parameter example (m = 3), each parameter bi (i = 1, . . . , 3)
can take 3 possible values b−i , b0

i and b+
i . Here we have V1 = {1, 2}, V2 = {3, 4, 5},

V3 = {6, 7, 8, 9}. Next to each node j, we show the value v(j). For instance v(1) =
b−1 , v(3) = b0

2, v(6) = b+
3 . The scenario set represented by the graph in Figure 1

is composed of the sequences:
(

b−1 , b0
2, b

+
3

)

,
(

b−1 , b0
2, b

−
3

)

,
(

b−1 , b+
2 , b+

3

)

,
(

b−1 , b+
2 , b−3

)

,
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(

b+
1 , b+

2 , b+
3

)

,
(

b+
1 , b+

2 , b−3
)

,
(

b+
1 , b0

2, b
+
3

)

. Observe that the value b0
2 appears twice

associated with nodes in V2; the value b+
3 appears three times associated with

nodes in V3. The possibility of such multiple occurrences of the same value is
inherent to the definition.

It is worth observing that the above construction leads to compact represen-
tations of uncertainty sets of potentially huge cardinality. For instance if in the
underlying graph G, each Vi has p nodes and G contains all the possible arcs be-
tween Vi and Vi+1 (for all i = 1, . . . , m−1) then the cardinality of the uncertainty
set B(G, v) is ν = pm; from this we deduce that the size of the representation
(the space complexity of storing the graph G) is O

(

mp2
)

= O
(

mν2/m
)

. Thus for

instance, if ν = 1012, m = 100, mν2/m ≃ 102.18 ≃ 150.

Also worth pointing out here is that several families of uncertainty sets pre-
viously proposed in the literature are special cases of state-space representable
uncertainty sets as defined above. As examples of this, we mention the knapsack-
type uncertainty sets used by Bertsimas and Sim ([2, 3]) and the “parsimonious”
uncertainty model of [13]. Also it can be shown that state-space representable un-
certainty sets turn out to be well suited to capturing the structure of uncertainty
arising from finite state Markov chain models (more details about these various
applications can be found in [15]).

3.3. Polynomial solvability and efficient solution methods

We now turn to show how the special structure of state-space representable
uncertainty set can be exploited to come up with efficient solution algorithms,
assuming that ψ is separable of the form ψ(y) =

∑n
i=1 ψi (yi) with ψi convex for

all i = 1, . . . , m. In addition to this, for all i = 1, . . . , m, such that gi is not linear
in x, ψi is assumed to be a nondecreasing function of yi. Our first result is to show
that, for any given x ∈ X , computing the objective function value of (P ′) can
be done efficiently in time polynomial in the size of the graph G representing the
uncertainty set.

Proposition 3.1. Let G = [V, U ] denote the graph representing the uncertainty
set B(G, v). Then for any fixed x ∈ X, computing Maxb∈B(G,v){ψ(g(x) − b)} can
be done in polynomial time O(|U |).

Proof. For each node j ∈ Vi in G, v(j) denotes the corresponding value of bi, and
the resulting contribution in the sum

∑m
i=1 ψi (gi(x) − bi) is wj = ψi (gi(x) − v(j)).

Thus, for any b ∈ B(G, v) which corresponds to a path in G originating at s
and traversing the nodes (j1, j2, . . . , jm), the value of ψ(g(x) − b) is equal to
wj1 + wj2 + · · · + wjm, i.e. the sum of the weights of the nodes in the path. Look-
ing for b in B maximizing this value therefore amounts to determining a maximum
weight path originating at s in the sequential (hence circuitless) graph G. It is
well-known that this problem can be solved in time O(|U |) using a Bellman type
algorithm. �
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Our second result shows that ϕ, the objective function of problem (P ′), is convex
in x and that, for any given x, a subgradient of ϕ at x can be deduced from the
computation of the value ϕ(x).

Proposition 3.2.

(i) The function η : x → η(x) = Maxb∈B(G,v){ψ(g(x)− b)} is convex (nonsmooth)
in x.

(ii) For any given x, denote b̄ the vector in B(G, v) achieving the maximum of
ψ(g(x) − b) and, for i = 1, . . . , m let:
λi denote a subgradient of ψi at ȳi = gi(x) − b̄i;
γi denote a subgradient of gi at x or the gradient of gi at x in case gi is linear
in x.
Then the vector γ =

∑m
i=1 λiγi ∈ ∂η(x), i.e. is a subgradient of η at x.

Proof. (i) follows from the fact that the η function is the pointwise maximum
of a (finite) collection of convex (possibly nonsmooth) functions of x. Now to
prove (ii), we are going to show that η(x′) ≥ η(x) + γT (x′ − x) for all x′. Since
η(x′) = Maxb∈B(G,v) {

∑m
i=1 ψi (gi(x

′) − bi)} we deduce that:

η (x′) ≥
m

∑

i=1

ψi

(

gi (x′) − b̄i

)

.

Now, since λi is a subgradient of ψi at yi = gi(x) − b̄i, it follows that:

m
∑

i=1

ψi

(

gi (x′) − b̄i

)

≥
m

∑

i=1

[

ψi

(

gi(x) − b̄i

)

+ λi (gi (x′) − gi(x))
]

= η(x) +

m
∑

i=1

λi (gi (x′) − gi(x)) .

Since γi ∈ ∂gi(x), we know that gi(x
′) − gi(x) ≥ γT

i (x′ − x). Now, for all i
such that gi is not linear in x, we know that λi ≥ 0 (because ψi is nondecreasing)
therefore implying:

λi (gi (x′) − gi(x)) ≥ λiγ
T
i (x′ − x) .

On the other hand for all i such that gi is linear in x, the above inequality holds
with equality (irrespective of the sign of λi).

From this we obtain:

m
∑

i=1

λi (gi (x′) − gi(x)) ≥
m

∑

i=1

λiγ
T
i (x′ − x) = γT (x′ − x).

From this we conclude that γ ∈ ∂η(x). �
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In view of the above results, the robust optimization problem (P ′) can be shown
to be solvable in time polynomial in n (the number of x variables) and |U |, the
number of arcs of the graph representing the uncertainty set: this is a consequence
of the well-known result by Grötschel et al. [7]. However, the latter polynomiality
result is more conceptual than practical, since it is based on the use of the so-
called “Ellipsoid Algorithm”, which is not practically efficient. Thus for practical
purposes, the use of a constraint generation scheme (“cutting plane” approach),
or the use of so-called bundle methods (see e.g. [5, 8]) are to be preferred. The
computational results discussed in the following section have been obtained using
a constraint-generation procedure.

4. Application to a multi-period energy management

problem under uncertainty

4.1. Problem description

In this section we discuss an application of the above robust optimization model
and solution approach to a problem arising in the context of multi-period produc-
tion planning in energy management. This problem may be viewed as an aggre-
gated and simplified version of the well-known Unit Commitment problem which
consists in determining the best possible production schedules of a given set of elec-
trical power production units over a given multi-period horizon (in the extensive
body of literature devoted to this problem, we refer to [4, 6, 18, 19]).

In the problem discussed here, we consider an aggregate representation of the
various production units into a single “super-unit” capable of delivering in each
time period t of a given T -period horizon, any power level between 0 and Pmax

t

where Pmax
t represents the sum of the maximum power which can be produced by

all the units which can be activated during time period t (in practice, Pmax
t will

actually depend on t e.g. to take into account the necessary outage periods for
maintenance of some units). To fix ideas, if we consider a daily planning problem,
the number of time periods will typically lie between 48 and 96 each time pe-
riod corresponding to half an hour. Among the most important constraints which
have to be taken into account for each individual production unit are the so-called
ramping constraints i.e. constraints limiting the speed of variation of the power
delivered from one time period to the next. We will therefore assume that a sim-
plified aggregate counterpart of all these individual constraints can be expressed
in the form of a gradient-type constraint on the global production of the “super-
unit”. More precisely, denoting xt the total power produced during time period t,
these constraints can be expressed as:

{

−δ−t ≤ xt − xt−1 ≤ δ+
t (t = 2, . . . , T ) (4.1)

0 ≤ xt ≤ Pmax
t (t = 1, . . . , T ) (4.2)

where δ+
t and δ−t (t = 2, . . . , T ) are given values.
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The objective function (to be minimized) is the sum of two parts:

a) The sum over all periods t = 1, . . . , T , of the production costs γt (xt); ∀t, γt is
supposed to be a given convex polyhedral function: R+ → R+ defined as the
pointwise maximum of a finite number of given affine functions. We note here
that such a representation of the production costs is a good approximation of
reality since, as power load requirements increase, those units having minimum
marginal production cost are activated first; next, units corresponding to the
second best marginal production cost are activated, and so on. As a result, a
convex piecewise affine production cost function is obtained.

b) The second part of the objective function is intended to account for the pos-
sible extra costs incurred either in case of supply shortage or in case of excess
production. More precisely, when dt > xt (case of supply shortage) the missing
power dt − xt has to be bought on the market at a given unit price αt which
usually exceeds the marginal production costγ (xt + 1) − γ (xt); when dt < xt

(case of production in excess), the extra power xt−dt can be sold on the market
at a given unit price βt but usually at the expense of a reduced benefit (due to
market behavior, one has βt < αt; moreover βt is often less than the marginal
production cost). Thus, for a given production plan x = (xt)t=1,...,T and power
requirements d = (dt)t=1,...,T , the second part of the objective reads:

H(x, d) =

T
∑

t=1

(

αt [yt]
− − βt [yt]

+
)

where yt = xt − dt, [yt]
+

= Max {0, xt − dt}, [yt]
−

= Max {0, dt − xt}.

For a given uncertainty set D for power load requirements, the problem of
minimizing the above defined objective function taking the worst case value
Maxd∈D{H(x, d)} over all possible scenarios of load requirements is recognized
as a special case of the generic problem (P ′) introduced in Section 3.1. Indeed it
corresponds to:

f(x) =

T
∑

t=1

γt (xt)

X = {x/x satisfies (4.1) and (4.2)}

g(x) = x, b = d, y = x − d

and ψ(y) =

T
∑

t=1

αt [yt]
− − βt [yt]

+

(please note that, g(x) being linear in x and ψ convex, the assumptions required
in Section 3.3 indeed hold in this case).

If the uncertainty set D is state-space representable and the corresponding graph
G = [V, U ] with node weights v is given, then the results of Section 3.3 can be
used to efficiently solve the 2-stage robust optimization problem (P ′).
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It is worth pointing out here that in case a more realistic and detailed represen-
tation of the unit commitment problem were needed, requiring the consideration of
a more complex solution set X (e.g. to take into account a more precise description
of each individual production unit), the same computational approaches as those
proposed in Section 3.3 would still apply (the only difference being in the size of
the linear (or quadratic) program to be solved in each iteration of the procedure
(cutting planes, bundle or proximal method). In our computational experiments,
however, feasible sets defined by (4.1) and (4.2) have been considered. As will be
explained below, this will allow us to compare the optimal 2-stage robust solutions
against optimal robust strategies for the multistage version of the problem.

4.2. Computational experiments

We describe here a set of computational experiments carried out on a series of
randomly generated test instances of the above-described problem for values of T
ranging from 30 to 40 and state-space representable uncertainty sets with under-
lying graphs featuring up to 287 nodes per time period. In addition to illustrating
the computational efficiency of a cutting-plane approach for solving problem (P ),
our computational results provide an experimental basis for comparing, in terms
of objective function values:

(a) the optimal 2-stage robust production plans obtained as exact optimal solu-
tions to problem (P ′) defined above;

(b) the optimal strategies obtained as exact solutions to the robust multistage ver-
sion of the same problem (using the same state-space representable uncertainty
set).

A detailed description of the latter multistage version of the robust power pro-
duction planning problem is out of the scope of the present paper, we refer the
interested reader to [15]. For the purpose of the present discussion it will be enough
to sketch the main difference between the 2-stage model and the multistage model
as follows.

In the 2-stage model, all the production levels x1, x2, . . . , xT have to be chosen,
once and for all, before knowing which realizations of uncertain load requirements
will occur. By contrast, in the multistage version, uncertainty is assumed to be
revealed progressively over time, and in any time period t, the possibility is left
to the decision-maker, to adjust his/her decision, depending on the observed real-
ization of uncertainty over the previous time periods 1, 2, . . . , t − 1. However this
increased flexibility as compared with the 2-stage version, comes at the expense
of more demanding computational requirements, if only in terms of memory re-
quirement for representing “solutions”. Indeed the concept of a “solution” for a
multistage problem actually corresponds to what is referred to as a “strategy”;
an optimal strategy is defined by specifying, for each time period t, the optimal
decision x∗

t for period t as a function of:

(a) the current state of the production system,



TWO-STAGE ROBUST OPTIMIZATION 469

(b) the realization of uncertainty observed along the preceding time periods (i.e.
d1, d2, . . . , dt−1).

It turns out that for the aggregate version of the production planning problem
discussed here, computing (and storing) optimal strategies is possible even for
a fairly large number of time periods (see [15] for details). As a result of the
above-described increased flexibility offered by the multistage version of the prob-
lem, cheaper robust production plans can be expected as compared with optimal
2-stage robust solutions. However no precise quantitative estimates of the differ-
ences between the two versions of the power production planning problem were
available up to now for instances featuring a significant number of time steps. To
the best of our knowledge, the computational experiments presented below thus
appear to be the first systematic comparison of 2-stage versus multistage versions
of this kind of multi period decision problems under uncertainty.

In the computational results presented below, the instances of the power pro-
duction planning problem have been drawn at random as follows.

(1) For each t = 1, . . . , T , the cost functions γt(x) do not depend on t and are
convex piecewise affine, given as:
γ(x) = Max{15x; 450 + 20(x − 30); 1050 + 25(x − 60); 1800 + 40(x − 90)}.

(2) Pmax = 100, and ∀t, the δ+
t and δ−t values are all equal to the same value

∆ = 30.
(3) For each t = 1, . . . , T , the αt and βt values are chosen in a given interval

[vmin, vmax] while complying with the condition αt > βt for all t.
(4) The graph providing the state-space representation of uncertain load require-

ments over time is constructed as explained in the Appendix.
The main parameters in this construction are:
– the interval [µ−, µ+] in which the average values µt for load requirements

are randomly selected;
– the parameter λ ∈ [0, 1] representing the dispersion of load requirements

around their mean values µt;
– the number K of possible values for load requirements in each time pe-

riod t. These K values, denoted θ1
t , θ

2
t , . . . , θK

t , are chosen equally spaced
between the extreme values: θ1

t = µt(1− λ) and θK
t = µt(1 + λ) (in all our

computational experiments, the same value K = 7 has been used);
– the (integer) value Wmax corresponding to the maximum allowed path

weights in the graph (for details, refer to Appendix).

The results obtained on a series of 21 randomly generated instances are displayed
in Tables 1 to 4. In each table the columns show successively:

• the instance identifier;
• the value of λ (dispersion of demand around average demand) corresponding

to the instance;
• the cost of the “average production plan”, which corresponds to fixing xt =

µt (∀t), i.e. in each time period, the production level is set equal to the average
demand;
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Table 1. T = 30, Kmax = 7, Wmax = 20 (the corresponding
graph has 147 nodes per time period), µt randomly chosen in
[40, 100], α(t) and β(t) randomly chosen in [15, 35] and such that
α(t) > β(t).

instance ♯

Dispersion Cost of Cost optimal ♯ of Cost optimal Relative
of demand average 2-stage cutting-plane strategy difference

around production prod plan iterations (1st decision) 2-stage/opt
average plan (1st decision) strategy

demand (λ)

P1 ±5% 39 787 39 337 (69.03) 338 39 339 (69) 5 × 10−5

P2 ±5% 46 978 46 716 (90.00) 335 46 714 (90) 4.3 × 10−5

P3 ±5% 37 057 36 797 (61.76) 382 36 803 (62) 1.6 × 10−4

P4 ±10% 40 732 40 281 (69.00) 330 40 273 (69) 8 × 10−4

P5 ±10% 47 825 47 587 (89.98) 319 47 578 (90) 2 × 10−4

P6 ±10% 37 769 37 504 (62.02) 364 37 498 (62) 1.6 × 10−4

P7 ±30% 44 484 44 008 (68.98) 320 43 998 (69) 2 × 10−4

P8 ±30% 51 845 51 590 (90.00) 311 51 572 (90) 3.5 × 10−4

P9 ±30% 41 163 40 829 (63.00) 351 40 805 (63) 6 × 10−4

Table 2. T = 30, Kmax = 7, Wmax = 40 (the corresponding
graph has 287 nodes per time period), µt randomly chosen in
[40, 100], α(t) and β(t) randomly chosen in [15, 35] and such that
α(t) > β(t) (the only change as compared with Table 1 concerns
the value Wmax. The instances considered in Table 2 are the same
as for Table 1, the only change is in the increased value of Wmax.
This results in a bigger uncertainty set and the cost function val-
ues are increased accordingly).

instance ♯

Dispersion Cost of Cost optimal ♯ of Cost optimal Relative
of demand average 2-stage cutting-plane strategy difference

around production prod plan iterations (1st decision) 2-stage/opt
average plan (1st decision) strategy

demand (λ)

P1 ±5% 40 456 39 942 (70.42) 330 39 945 (70) 7 × 10−5

P2 ±5% 47 758 47 417 (89.98) 298 47 420 (90) 6 × 10−5

P3 ±5% 37 711 37 350 (62.05) 351 37 355 (62) 1.3 × 10−4

P4 ±10% 42 173 41 581 (70.79) 331 41 573 (71) 2 × 10−4

P5 ±10% 49 502 49 102 (90.02) 328 49 089 (90) 2.6 × 10−4

P6 ±10% 39 113 38 646 (61.89) 356 38 633 (62) 3.4 × 10−4

P7 ±30% 48 917 48 193 (76.99) 295 48 138 (78) 1.1 × 10−3

P8 ±30% 56 817 56 329 (90.00) 293 56 303 (90) 4.6 × 10−4

P9 ±30% 45 432 44 522 (62.99) 328 44 454 (63) 1.5 × 10−3

• the cost of the optimal robust 2-stage production plan obtained using the
approach described in Section 3.3 and applying a constraint-generation scheme
(cutting-plane procedure); next to each cost function value, the value of the
first decision (i.e. the production level in time period 1) is shown in parenthesis;
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Table 3. T = 36, Kmax = 7, Wmax = 30 (the correspond-
ing graph has 217 nodes per time period), µt randomly chosen
in [20, 100], α(t) and β(t) randomly chosen in [10, 40] and such
that α(t) > β(t).

instance ♯

Dispersion Cost of Cost optimal ♯ of Cost optimal Relative
of demand average 2-stage cutting-plane strategy difference

around production prod plan iterations (1st decision) 2-stage/opt
average plan (1st decision) strategy

demand (λ)

P10 ±10% 58 949 58 645 (73.86) 419 58 653 (69) 1.3 × 10−4

P11 ±10% 45 041 44 351 (70.36) 448 44 348 (60) 7 × 10−5

P12 ±10% 60 111 59 278 (90.00) 384 59 280 (90) 3.3 × 10−5

P13 ±20% 62 294 61 961 (73.99) 396 61 962 (74) 1.6 × 10−5

P14 ±20% 47 833 47 108 (71.04) 414 47 087 (60) 4.4 × 10−4

P15 ±20% 63 243 62 415 (90.03) 335 62 418 (90) 5 × 10−5

Table 4. T = 40, Kmax = 7, Wmax = 25 (the correspond-
ing graph has 182 nodes per time period), µt randomly chosen
in [30, 90], α(t) and β(t) randomly chosen in [10, 50] and such
that α(t) > β(t).

instance ♯

Dispersion Cost of Cost optimal ♯ of Cost optimal Relative
of demand average 2-stage cutting-plane strategy difference

around production prod plan iterations (1st decision) 2-stage/opt
average plan (1st decision) strategy

demand (λ)

P16 ±10% 50 274 48 686 (60.03) 425 48 662 (60) 5 × 10−4

P17 ±10% 49 566 47 374 (42.00) 426 47 367 (42) 1.5 × 10−4

P18 ±10% 49 090 47 346 (59.88) 512 47 304 (60) 9 × 10−4

P19 ±20% 53 419 51 537 (59.92) 399 51 506 (60) 6 × 10−4

P20 ±20% 52 453 49 903 (42.00) 446 49 847 (42) 1.1 × 10−3

P21 ±20% 51 938 49 885 (61.17) 427 49 739 (61) 2.8 × 10−3

• the number of cutting-plane iterations needed to get the exact optimal solution
to problem (P )′, each iteration resulting in the addition of a new constraint
based on the current subgradient of the objective function;

• the cost of the optimal robust strategy obtained using the dynamic program-
ming based procedure described in [14] (only integral values in [0, Pmax] for the
production levels are allowed); next to each cost function value, the value of the
first decision to be taken under the optimal strategy is shown in parenthesis;

• the relative difference (in absolute value) in terms of cost between the optimal
robust 2-stage solution and the optimal robust strategy.

The main observations which can be derived from the results of Tables 1 to 4 are
the following:

a) The number of iterations needed to get the exact robust optimal solution is
on average close to 10–12 times the number of variables (T ), which is typical
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of the behavior of a cutting-plane approach. In view of the well-known warm-
start capabilities of the (dual) simplex algorithm, each iteration only requires
a few additional pivots, thanks to which the computation times are reduced
(all CPU times are less than 1 minute with a 2.5 GHz Intel Core i5 with a
4 Gbytes RAM, using the linprog function in a Matlab environment).

b) The relative differences between the optimal 2-stage solution value and the cost
of the “average production plan” are significant, typically between 0,5% and 4%
with an average 1,5%. This confirms the benefit of considering a robust opti-
mization model over the crude approach consisting in converting the problem
into a deterministic one with the average values of the uncertain parameters
(load requirements).

c) In spite of a significant diversity in the instances considered (in terms of number
of time periods, size of the graph representing the uncertainty set, dispersion of
load requirements around their average value) the differences in cost between
the optimal 2-stage solution values and the values of the corresponding optimal
strategy are quite small, typically less than 0.15% (the only exception is P21
with a difference of 0.28%). These results tend to suggest that, at least for the
class of problems considered here, taking the sequence of decisions correspond-
ing to the optimal robust 2-stage solution leads to objective function values
very close to the best which can be expected from an optimal strategy (i.e.
by exploiting the full flexibility offered in the multistage robust version of the
problem).

d) In a majority of instances, the first decisions (i.e. the production level to be set
in the first time period) corresponding either to the optimal 2-stage solution or
to the optimal strategy turn out to be almost identical (the only cases where
significant differences are observed are P11 and P14 in Tab. 3). This observation
suggests that the two-stage robust optimization model investigated here for
power production planning under uncertainty is a good candidate to serve
as a basis for a “rolling horizon” approach capable of closely approximating
optimal strategies, and still applicable to models both closer to reality and more
complex. By contrast, the presence of complicating constraints in the equations
which define the dynamics of the power production system would result in a
significant increase in the dimension of its state space representation, making
the search for exact optimal strategies computationally out of reach.

Conclusions

The class of 2-stage robust optimization problems with right-hand side uncer-
tainty is related to many interesting applications such as robust PERT scheduling,
robust network flows, inventory management under uncertain customer require-
ments. An overview of a number of known results on this class, emphasizing poly-
nomially solvable special cases, has been proposed. In addition to this, the concept
of state-space representable uncertainty set as been introduced and shown to give
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rise to a new subclass of polynomially solvable robust optimization problems fea-
turing RHS uncertainty.

As a typical example of possible applications involving such problems, a mul-
tiperiod power production problem under uncertain load requirements has been
discussed. The computational results reported confirm the relevance of the pro-
posed models and the practical efficiency of the proposed solution methods.

Various perspectives of future research naturally emerge from the present work,
among which the search for additional polynomially solvable special cases possibly
related to new applications. Also the issue of further investigating the connections
between the 2-stage and the multistage versions of robust dynamic optimization
problems is certainly worth considering.

Appendix: Construction of state-space representation

of uncertainty in the computational experiments

This Appendix aims at providing details of the construction of the graph rep-
resenting uncertainty on load requirements in the computational experiments re-
ported in Section 4.2.

For each t, K possible values θ1
t , θ2

t , . . . , θ
K
t for load requirements during time

period t are generated, by selecting at random the mean value µt > 0, and for any
given value of λ ∈ [0, 1] (representing dispersion around the mean value µt), we
set: θ1

t = µt(1 − λ), θK
t = µt(1 + λ) and, for any k = 1, 2, . . . , K:

θk
t = θ1

t +
(k − 1)

(K − 1)
θK

t

(for instance, taking λ = 0.1 corresponds to a ±10% fluctuation of load around
the mean value).

The µt values (t = 1, . . . , T ) are successively drawn at random on a chosen inter-
val [µ−, µ+] as follows. First µ1 is selected randomly from the uniform distribution
on [µ−, µ+]; next, each µt+1 is selected at random from the uniform distribution
on the interval:

[

µ−, µ+
]

∩
[

µt − η
(

µ+ − µ−
)

; µt + η
(

µ+ − µ−
)]

where η is a parameter chosen in [0, 1] (in our experiments, η = 0.3). This way
of proceeding thus takes into account the dependence between consecutive time
periods which can be observed in practice, namely that the relative differences
dt+1−dt

dt

are reasonably small percentages.

For all t ∈ [1, T ], and for each possible realization of load requirement θk
t , there

is an associated (integer) weight wk ≥ 0. In our experiments K = 7 and the various
weights for k = 1, . . . , 7, have been chosen as:

w1 = w7 = 3; w2 = w6 = 2; w3 = w5 = 1; w4 = 0
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(so, big weights correspond to higher or lower load values, smaller weights corre-
spond to load values close to mean value).

The sequential graph G in then constructed in such a way that its various
T -node paths exactly correspond to all length-T sequences of indices k1, k2, . . . , kT

such that:

|kt+1 − kt| ≤ h (∀t = 1, . . . , T − 1) (A.1)

and:
T

∑

t=1

wkt ≤ Wmax (A.2)

(i.e. having total weight not exceeding a given prescribed maximum value Wmax).
In the computational experiments reported, we have taken h = 3, and the value

of Wmax is indicated for each series of results presented in Section 4.2.
Consistently with the generic model presented in Section 3, the node set of

G is decomposed into V1, V2, . . . , VT (an additional “source node” is added) and,
for each t = 1, . . . , T , Vt contains K × (Wmax + 1) nodes labeled (t, k, q) for k =
1, . . . , K and q = 0, 1, . . . , Wmax. The source node is labeled (0, 0, 0).

The arc set U is then constructed as follows: For each t = 1, . . . , T − 1, there
is an arc between (t, k, q) and (t + 1, k′, q′) if and only if: |k − k′| ≤ h and q +
wk′

= q′ ≤ Wmax. In addition to this, the source node (0, 0, 0) is connected to
all nodes

(

1, k, wk
)

in V1. In view of the above construction, it is readily seen
that all the directed paths of G from (0, 0, 0) to the nodes in VT represent all
the possible scenarios of load requirements complying with (A.1) and the weight
constraint (A.2).
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