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Abstract

In this paper, we develop and demonstrate a new 2nd

order two-stage algorithm called OWO-Newton. First,
two-stage algorithms are motivated and the Gauss New-
ton input weight Hessian matrix is developed. Block
coordinate descent is used to apply Newton’s algorithm
alternately to the input and output weights. Its perfor-
mance is comparable to Levenberg-Marquardt and it
has the advantage of reduced computational complex-
ity. The algorithm is shown to have a form of affine
invariance.

1 Introduction
The multilayer perceptron (MLP) is the most widely used
type of neural network(Shepherd 1997). Training a MLP
involves solving a non-convex optimization problem to cal-
culate the network’s weights. The single hidden layer MLP
is the focus of our work because any continuous function
can be approximated to arbitrary precision(Cybenko 1992).

Though one-step methods such as backpropagation (Wer-
bos 1974), conjugate gradient (Charalambous 1992) and
Levenberg-Marquardt (Hagan and Menhaj 1994) are pop-
ular, a MLP can sometimes be trained effectively using two
step methods in which not all weights are updated simul-
taneously. Example two-step methods include cascade cor-
relation (Fahlman and Lebiere 1990), OWO-HWO (Chen,
Manry, and Chandrasekaran 1999) and layer by layer (Li,
Li, and Wang 2011).

Second order methods have better convergence than first
order methods; however, we must use care when employing
them because the full network Hessian is inherently rank de-
ficient (Smagt and Hirzinger 1998) and this can create prob-
lems in training (LeCun et al. 1998). Two-step methods al-
low us to mitigate this problem.

In this work we combine two-step feedforward training
with 2nd-order optimization methods. This allows us to
achieve fast convergence and reduced computational com-
plexity over one-step 2nd-order methods.

In Section 2 we briefly review MLP architecture and our
notation. Section 3 reviews the Output Weight Optimiza-
tion and Newton algorithms. In Section 4 we motivate two-
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Figure 1: Illustration of a Multilayer Perceptron

step second-order training methods. After discussing prob-
lems with one-step second order methods, we introduce, in
Section 5, the OWO-Newton algorithm. Section 6 devel-
ops some theoretical properties of OWO-Newton. Sections
7 and 8 give some experimental results and conclusions.

2 Architecture and Notation
Figure 1 illustrates the structure of a single hidden layer
MLP having an input layer, a hidden layer and an output
layer. We denote the number of hidden units by Nh and
the number of outputs by M . Here, the input vectors are
xp ∈ RN , and the desired output vectors are tp ∈ RM . The
training data {xp, tp} has Nv pairs in the file where we de-
note a particular pattern with an index p ∈ {1, 2, . . . Nv}.
In order to handle hidden and output unit thresholds, the in-
put vector xp is augmented by an extra element xp(N + 1),
where xp(N + 1) = 1. For each training pattern p, the net
function for the jth hidden unit is given by:

np(j) =
N+1∑
k=1

w(j, k)xp(k) (1)
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so the net vector is
np = Wxp (2)

where W is Nh by N+1 and the corresponding hidden unit
activation Op(j) = f(np(j)). Putting everything together,
the ith output for the pth training pattern is

yp(i) =
N+1∑
j=1

woi(i, j)xp(j) +

Nh∑
k=1

woh(i, k)Op(k) (3)

or in matrix-vector notation

yp = Woixp +WohOp (4)

where Woi ∈ RM×(N+1), contains bypass weights, Woh ∈
RM×Nh contains weights from hidden units to the outputs
and Op is a vector of length Nh. Some quantities that
we define for convenience are the number of input weights
Niw = Nh(N + 1), the number of network weights Nw =
Nh(N + 1) + M · Nh, and the number of basis functions
Nu = N +Nh + 1. Sometimes we refer to Woh and Woi

as wo since they are both connected to the outputs, in par-
ticular wo = vec(Woi : Woh) where the vec() operator
concatenates matrices into a vector column by column.

3 Neural Network Training
In neural network training we choose network weights to
minimize an objective function such as the mean square er-
ror (MSE) denoted as E(w), which we will often abbreviate
as E. The MSE over a training set, called the training error,
is given by

E =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
2 (5)

where yp(i) is given in (3) and w is a vector of network
weights, w = vec(W,Woh,Woi).

Output Weight Optimization
One method used to train and initialize neural networks
is the Output Weight Optimization algorithm (Manry et
al. 1992). OWO calculates the output weight matrices
Woh and Woi after the input weight matrix, W is deter-
mined in some fashion, usually by random initialization.
OWO minimizes the error function

E(wo) = wT
o Rwo − 2wT

o C+ Et (6)

In equation (6) R ∈ RNu×Nu , C ∈ RNu×M , and Et is
sum of average squares of the target vector elements. R
and C are estimates for the auto- and crosscorrelations of
the underlying random process. Equation (6) is minimized
by the solution to the linear equations RW = C. These
equations can be solved using any number of methods, but
special care must be taken when R is ill-conditioned. In
our work we use orthogonal least squares (Chen, Billings,
and Luo 1989). Because (6) is quadratic, OWO is merely
Newton’s algorithm for the output weights. A modern de-
scendant of OWO is the Extreme Learning Machine (ELM)
(Huang, Zhu, and Siew 2006) training.

Newton’s Algorithm
Newton’s algorithm is the basis of a number of popular
second order optimization algorithms including Levenberg-
Marquardt (Levenberg 1944) and BFGS (Nocedal and
Wright 2006). Newton’s algorithm is iterative where each
iteration
• Calculates the Newton direction d

• Updates variables with direction d

The direction vector d is calculated by solving the linear
equations

Hd = g (7)
where H is the Hessian of the objective function and g is
the gradient of the objective function as defined earlier. The
variables are then updated as

w← w + d (8)
Non-quadratic objective functions require a line search. This
results in w being updated as w← w + zd.

For fast convergence we would like to use Newton’s
method to train our MLP, but the Hessian for the whole
network is singular (Wille 1997). An alternative to over-
come this problem is to modify the Hessian matrix as in
the Levenberg-Marquardt algorithm. Another alternative
is to use two-step methods such as layer by layer training
(Lengellé and Denoeux 1996).

4 Motivation for Two-Step Methods
In this section we investigate the assumptions used by New-
ton’s method. Newton’s method is derived from a 2nd-order
Taylor series approximation to an objective function (Boyd
and Vandenberghe 2004). Applying this principle to (5)
gives us

EH(w) = E0+(w− w̃)Tg+
1

2
(w− w̃)TH(w− w̃) (9)

where w̃ is w from the previous iteration.
When applied to the MSE given in (5), Newton’s algo-

rithm assumes that
(A1) E is approximately quadratic in w for small weight

changes
(A2) yp(i) is well approximated as a first degree function of

w.
Note that (A2) follows immediately from (A1). We inves-

tigate whether (A2) is a valid assumption by constructing a
low degree model for yp(i). A model that yields the same
Hessian and gradient as E is

Ẽ =
1

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− ỹp(i)]
2 (10)

where ỹp(i) is

ỹp(i) =
N+1∑
n=1

woi(i, n)xp(n)+

Nh∑
k=1

woh(i, k)
[
Op(k) +O′p(k)(np(k)− ñp(k))

]
(11)
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where

O′p(k) =
∂Op(k)

∂np(k)
, (12)

ñp(k) =
N+1∑
n=1

w̃(k, n)xp(n) (13)

Here, w̃(k, n) = w(k, n) but w̃(k, n) is fixed in the cur-
rent iteration. We have used a first order Taylor series for
each hidden unit for each pattern in the training file. Since
we have a different model ỹp(i) for each pattern, which
is first degree in xp, we can term ỹp(i) a piecewise linear
model of yp(i).

The validity of the piecewise linear model is demonstrated
by,

∂E

∂w(u, v)
=

∂Ẽ

∂w(u, v)
(14)

and
∂2E

∂w(u, v)∂w(m, j)
=

∂2Ẽ

∂w(u, v)∂w(m, j)
(15)

Also the corresponding errors for each model, tp(i)− yp(i)
and tp(i)− ỹp(i) are equal for np(k) = ñp(k) since

∂yp(i)

∂w(u, v)
= woh(i, j)O

′
p(u)xp(v)

=
∂ỹp(i)

∂w(u, v)

(16)

When the vector w includes all the network weights con-
tained in W,Woh, and Woi, yp(i) is a not a first order
function of the weights w. To show this, we note that the
exact expression for output vector ỹp for our network is

ỹp =
[
Woi +Wohdiag(O

′
p)W

]
xp (17)

+Woh

[
Op − diag(O′p)ñp

]
The model output ỹp(i) has products woh(i, k)w(k, n). If
all network weights vary then ỹp(i) is second degree in the
unknowns and Ẽ is a fourth degree model in w and as-
sumptions (A1) and (A2) are violated. Clearly there is a
discrepancy between Ẽ in (10) and (9). Since the products
woh(i, k)w(k, n) cause this discrepancy, the corresponding
cross terms in the network Hessian H are sources of error in
training a MLP using Newton’s method. On the other hand,
if w contains weights from only one layer, the cross terms
in (17) are first degree and the discrepancy vanishes as seen
in the input weight case in (14) and (15).

This analysis justifies the use of two-step methods where
in each iteration we fix wo and train W for one half iteration
and fix W and train wo for the other. The approach above
is called block coordinate descent (BCD) (Tseng 2001).

5 OWO-Newton
One BCD approach for MLP training is to use Newton’s al-
gorithm separately for input and output weights. Note that
Newton’s algorithm for output weights is OWO.

Calculations for Input Weights
To derive OWO-Newton we first calculate the partial deriva-
tive of E with respect to the input weights. The elements of
the negative input weight gradient matrix G ∈ RNh×(N+1)

are given by:

g(j, k) = − ∂E

∂w(j, k)

=
2

Nv

Nv∑
p=1

M∑
i=1

[tp(i)− yp(i)]
∂yp(i)

∂w(j, k)

∂yp(i)

∂w(j, k)
= woh(i, j)O

′
p(j)xp(k)

(18)

Next we calculate the Gauss-Newton input weight Hessian
denoted as HR ∈ RNiw×Niw . Elements of HR are found as

∂2E

∂w(j, k)∂w(l,m)
=

2

Nv

Nv∑
p=1

M∑
i=1

∂yp(i)

∂w(j, k)

∂yp(i)

∂w(l,m)

(19)

We use orthogonal least squares to solve

HRd = g (20)

for d and update the input weight matrix W as

W←W + zD (21)

where g = vec(G) and d = vec(D). Note that in an im-
plementation, the calculations for HR should be performed
after a lexicographic ordering of W.

In (21), z is the learning factor resulting from a line
search. A line search is necessary for OWO-Newton because
(5) is not a quadratic function of w.

OWO-Newton Algorithm
Require: MAXITERS > 0

Initialize W
for k=1 to MAXITERS do

Perform OWO
Calculate G
g← vec(G)
Calculate HR

Solve (20) for d
D = vec−1(d) as
z ← argmin

z
E(W + zD)

W←W + zD
end for

Computational Burden
When analyzing the computational complexity of one iter-
ation of OWO-Newton we must first run OWO to train the
output weights which requires

Mowo = Nv(Nu + 1)

(
M +

Nu

2

)
(22)
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multiplies. Next, we calculate the the input weight Hessian
which requires

MH =NvNiw

(
Niw +

3

2

)
+

M(N + 1)(N + 2)

2
(23)

multiplies. Then we must solve the linear equations to cal-
culate the Newton direction which requires

Mols = Niw(Niw + 1)

[
M +

Niw(Niw + 1)

6

]
+

3

2
(24)

multiplies. Putting this together, the number of multiplies
required for one iteration of OWO-Newton is

MOWO−Newton = Mowo +MH +Mols (25)

6 Analysis
OWO-Newton has a number of interesting properties, but
first we lay the groundwork by defining affine invariance in
a neural network training algorithm.

Definition 1. If two equivalent networks are formed whose
objective functions satisfy E(w) = E(Tw′) with w =
Tw′, and an iteration of an optimization method yields w =
w+d and w′ = w′+d′ where w and w′ are n-dimensional,
the training method is affine invariant if d = Td′ for every
nonsingular matrix T.

An algorithm lacks affine invariance if its T matrix is
constrained to be sparse. Affine invariance leads us to the
following observation of the training error sequence Ek of
equivalent networks.

Lemma 1. Suppose two equivalent networks initially satisfy
w = Tw′ where T is any nonsingular n × n matrix and
w is n × 1. If the training algorithm is affine invariant,
the error sequences of the two networks, Ek and Ẽk, for
iteration numbers k ≥ 1 satisfy Ek = Ẽk.

Proof. Affine invariant training of equivalent networks
yields w′ + d′ and T(w′ + d′) = w + d, so the networks
remain equivalent after one or more iterations.

Lemma 2. In OWO-Newton input and output weight train-
ing is affine invariant.

Proof. In OWO-Newton, Newton’s algorithm is used for in-
put weight training; OWO is Newton’s algorithm for output
weight training.

In multistep algorithms we train subsets of weights so we
need to define an appropriate type of affine invariance for
this case.

Definition 2. If a training algorithm satisfies the conditions
in Definition 1 except that T is always sparse, it is partially
affine invariant.

Lemma 3. The OWO-Newton algorithm is partially affine
invariant.

Proof. OWO is Newton’s method for the output weights
and Newton’s algorithm is used to train the input weights.
Therefore by Definition 1 there exist matrices TOWO and
TNewton. As a result, we can construct a sparse T for the
entire algorithm as

T =

TOWO

... 0
· · · · · ·
0

... TNewton


The existence and sparsity of this T shows that OWO-

Newton is partially affine invariant.

Lemma 4. Partially affine invariant algorithms satisfy
Lemma 1.

Proof. The proof is the same as that of Lemma 1.

When two equivalent networks are trained with OWO-
Newton Ek = Ẽk for k ≥ 1 because it is partially affine
invariant.

7 Experimental Results
In this section we compare the performance of OWO-
Newton to LM and CG using 10-fold training and valida-
tion. For each fold, all algorithms train a MLP of a given
topology from the same initial set of weights.

Wine Data File
We demonstrate OWO-Newton on the wine quality UCI
dataset (Frank and Asuncion 2010). The goal is to predict
the quality of wine from objective measures (Cortez et al.
2009). The training file consists of 11 features, and 1 target
(scored from 0-12) with 4898 training patterns. We train an
MLP with 15 hidden units for 200 iterations. The 10-fold
training error results are shown in Table 1. On the wine
dataset, the training error of OWO-Newton is superior to
that of LM and CG; however, the validation error for LM
is slightly better. Figure 2 illustrates the computational bur-
den for this training characteristic.

Remote Sensing Data File
We now demonstrate OWO-Newton on the IPNNL remote
sensing dataset (Manry 1982). The goal is to predict certain
measurements related to electromagnetic scattering such as
surface permittivity, normalized surface rms roughness and
surface correlation length (Dawson, Fung, and Manry 1993).
The training file consists of 8 features and 7 targets with
1768 training patterns. We train a MLP with 10 hidden units
for 250 iterations. Table 1 shows the results of the 10-fold
training and validation error. The training error of LM is
slightly better than OWO-Newton in this example.

Prognostics Data File
Finally, we demonstrate OWO-Newton on a prognostics
dataset which can be obtained from the IPNNL at the Uni-
versity of Texas at Arlington(Manry 1982). The prognostics
training file contains parameters that are available in a he-
licopter’s health usage monitoring system (HUMS)(Manry,
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Figure 2: 10-fold training in the Wine dataset

Hsieh, and Chandrasekaran 1999). It consists of topology of
17 feature vectors and 9 target vectors. The dataset consists
of 4745 training patterns. We train a MLP with 15 hidden
units for 100 iterations. Table 1 shows that OWO-Newton
trains and validates much better than LM and CG. Figure 4
shows that it accomplishes this at much less of a computa-
tional cost.

8 Conclusions
In this paper, we have used a piecewise linear network
model, implied by Newton’s algorithm, to motivate two-step
second order training or Block Coordinate Descent. When
Newton’s algorithm is used in both BCD steps we have the
OWO-Newton algorithm. Simulations show that the new al-
gorithm is a good alternative to the Levenberg-Marquardt
algorithm. We have demonstrated that OWO-Newton has
fast convergence with fewer multiplies for a given error level
than LM. However we find that OWO-Newton is not guaran-
teed to produce a smaller validation error than LM, but that
the generalization properties are good.

Finally, we have defined affine invariance in neural net-
works and introduced a new property called partial affine
invariance. Analysis of OWO-Newton shows that the algo-
rithm partially affine invariant.
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