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ABSTRACT We implement high-quality sketch colorization using two-stage conditional generative adver-
sarial network (GAN) training based on different intermediate features. The intermediate features used in
autonomous colorization are the grayscale parsing and interval pixel-level color parsing. The autonomous
colorization based on grayscale parsing feature can learn the spacial topology of pixels in the first stage to
guide the colorization in the second stage. The autonomous colorization based on pixel-level color parsing
feature can learn the color information of few feature points in the first stage to guide the colorization of
all pixels in the second stage. Additionally, we use the intermediate feature of sampling points as constraint
and achieve the color reconstruction using Laplacian mesh editing as a special second stage. Furthermore,
the interactive colorization uses the superpixel color parsing as the intermediate feature. Specifically, we use
the simple linear iterative cluster (SLIC) to obtain a palette that maintains the edges in the first stage to
guide the colorization in the second stage. As for evaluation metrics, we propose a color-coded local binary
pattern (CCLBP) score based on color distances from the first-order 8 pixels to the central pixel, to measure
the degrees of color blurring and mess. We also propose a light-sensitivity (LS) score based on the reversed
grayscale map, to measure the degrees of auto painting and overfitting of the color hint. According to
the L1 distances between the original and generated color images based on these scores, compared with
state-of-the-art methods including one stage approaches such as pix2pix and PaintsChainer and two-stage
approaches such as Style2Paints and DeepColor, our model can achieve the highest-quality autonomous
colorization. Moreover, compared with pix2pix, PaintsChainer and Style2Paints with color hints, according
to the proposed objective evaluation aswell as the user visual study, ourmodel can achieve the highest-quality
interactive colorization as well.

INDEX TERMS Colorization, sketch, line arts, generative adversarial network.

I. INTRODUCTION

Similar to the gray-to-image problem [1], [2], the sketch-to-
image problem requires the color information to make the
generated results vivid. Coloring is an ill-posed problem that
requires generating reasonable colors and textures based on
a sketch, which is an attractive issue in the field of non-
photorealistic rendering. Traditional energy-based methods
such as LazyBrush [3] can only handle some lines with
low shape complexity, which makes it prone to generating
unnatural color in hair and other detailed parts and caus-
ing vacancies and other phenomena. With the development
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of deep learning, especially the generative adversarial net-
works, many painting tasks have been implemented using
adversarial learning [4]–[6] by employing the adversarial
loss to improve the effect of the color features, and it has
achieved good visual effects. PaintsChainer [7] is the first
online project of sketch colorization using a deep learn-
ing method. There are three automatic colorization meth-
ods including PaintsChainer1 [8], PaintsChainer2 [9] and
PaintsChainer3 [10].

There are some important issues in sketch colorization.
First, sketch colorization is based on the sketch contour,
and so the paired data are used for training. The sketch can
provide the conditional information to fit the different colors
in the different body spaces. Moreover, the color hints can be
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FIGURE 1. Two-stage sketch colorization with color parsing.

used as the conditional information to help the colorization.
Therefore, the quality of sketch edge and color hint is critical
to colorization.
Second, sketch-to-image is an ill-posed problem. It is

difficult to get vivid colorization and avoid the mode col-
lapse. To reduce the complexity of training while introducing
more conditional information, it is better to implement it
by generating some intermediate feature, and following that
with another refinement stage. There are many two-stage
approaches that can be used to refine the generation results.
The GAN can contain a single generator or discriminator, or it
can be a concatenation of multiple generators and discrimi-
nators, each of which comprises one decomposed task such
as a Gaussian pyramid module [11], palette module [4] or
others [12].
To obtain abundant features during the deep learning,

there are some typical structural forms of the GAN. First,
DCGAN [13], [14] is a set of convolutional neural net-
work structures that enable tricks such as BatchNorm to
be successfully used. Second, Pix2pix [15] uses the advan-
tages of the UNet structure, which has become widely used.
Pix2pixHD [16] generates high-resolution visually appeal-
ing results using a novel adversarial loss, as well as the
architecture of a multi-scale generator and discriminator. The
residual network is used to get more important features. Our
colorization networks use pix2pix as well as pix2pixHD.
Another important issue is the mode collapse. The reg-

ularized GAN [17] applies an encoder to a real picture to
construct an implicit feature space, which then helps the
generator to perform better. The GANwithout an encoder can
hardly fit the multiple distributed modes, but the RegGAN
can do better. The EBGAN [18] and BEGAN [19] are similar
works. In [6], the Wasserstein distance is used to train the
cGAN to overcome model collapse and enable the model to
converge much better. However, the ability to fit complex
distributions is reduced. The image palette that we use from

the SLIC can be seen as color regularization information
that is obtained by an encoder for a real color map, mak-
ing it easy to fit more complex color schemes. Moreover,
each segment area has the same color, which is conve-
nient for constructing a pencil line hint, similar to the real
situation.

As for the visual performance, current sketch-to-image
algorithms and models have two common problems with the
coloring results. One is dirty content, such as the background
diffusion of PaintsChainer or the locally dirty colorization of
Style2paints v3. Another problem is the lack of color, such
as [12]. However, the model that we proposed improves the
colorization quality by adding intermediate learning features
and is better than other existing models according to objective
and subjective evaluations.

Motivated by the idea that feature parsing can improve the
quality of generated images [20], [21]. We implement the
sketch colorization task with color parsing. Our approach is
divided into two parts: two-stage autonomous colorization
based on grayscale parsing feature and interval pixel pars-
ing feature and two-stage interactive colorization based on
superpixel color parsing, as shown in Fig 1. The compared
state-of-the-art algorithms include pix2pix, PaintsChainer,
DeepColor and Styel2paintsV3, which are compared using
CCLBP score, LS score and subjective visual evaluation. Our
contributions can be summarized as follows.

1) The grayscale parsing feature and interval pixel-level
color parsing feature are used to implement high-
quality autonomous sketch colorization.

2) SLIC is used to obtain the superpixel color parsing that
maintains the sketch edges, and through the two-stage
cGAN training, high-quality interactive colorization is
achieved.

3) We propose two novel objective evaluation criteria
based on the multiscale-CCLBP score and LS score
to evaluate the colorization performance. Furthermore,
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based on the regional obedience, color obedience and
visual quality proposed by Style2paints v3, two new
subjective criteria regarding partial cleanliness and col-
orization completion are added to make a more scien-
tific visual evaluation of the sketch colorization.

II. RELATED WORKS

A. GRAY-TO-IMAGE METHODS

As gray-to-image methods, [1] proposes a fully automatic
approach that produces vibrant and realistic colorization.
Reference [2] uses a CNN to directly map a grayscale image,
along with the sparse, local user hints or the global histogram
of the LAB and HSV information, to produce a colored
output.

B. SKETCH-TO-IMAGE METHODS

Especially for the sketch based image generation prob-
lem, the colors of anime are more varied and the color
matching is more complicated than grayscale based image
generation.
As the first generation of PaintsTransfer, Style2paints [5] is

a project that is similar to PaintsChainer in which the natural
colorization based on the reference picture is well performed.
However, because the fused VGG feature maintains the topo-
logical feature of the reference image, so the color structure
tend to be overfitting. The improved Style2paints v3 can
generate better results [22].
Liu et al. [6] improved pix2pix by adding the high-level

feature matching loss of VGG and total variation loss, which
are used by [23] too. It employed Unet [24] and PatchGAN.
Frans and Kevin [4] proposed a novel network, which

designs a color scheme generation network and a shading
network. But the approach can not improve the diversity of
automatic colorization [25].
Reference [26] firstly resolve the colorization of an entire

manga page. It has both global and local functions for
interactive revision. An image processing task such as get-
ting the super resolution [27] version of an image is also
applied.

C. CONDITIONAL GAN METHODS

Understanding things well needs guidance in certain fields,
and so fitting the probability distribution becomes fitting
the conditional probability distribution. The typical works
include the conditional GAN [28], improved GAN [29] and
GVM [30]. Pix2pix [15] can translate an ill-posed map into a
map rich in details.

D. FINE GRAINED GAN METHODS

The fine-grained GANs separate generative process into mul-
tiple steps. The LAPGAN [11] is the first work to apply
hierarchical or iterative generation. The StackGAN [31] can
generate 256×256 images from the caption. The PPGN [32]
also advocated using an iterative process to continuously
adjust and improve images.

E. EDGE DETECTION METHODS

To get abundant sketches, edge extraction from real anime
images is important. Reference [4] use OpenCV to extract
edges, but the results have too much noise and are visu-
ally far from professional line-art. References [6] and [23]
use an XDoG [33] filter, which makes it easy for edge
extraction to generate black shades or miss important edges,
and the amount of noise is more. The HED [34] extracts
edges with messy and thick lines, which usually misses
many high-frequency details. Reference [5] and [12] use
sketchKeras [35], which can stably extract edges with an
appropriate ratio of low and high frequency information as
well as lines with suitable thick. The results are the visually
closest to an artificial sketch.

F. HINT DESIGN

The design of the color hints is divided into two categories.

1) LOCAL HINT

The first is the color patch with a random position and size
after random white-out and Gaussian blurring [4], which can
easily result in local color overfitting. In the test phase, the
results are highly dependent on the user-guided specified
color attributes, and it easily results in color diffusion. This
kind of scheme involves the spatial grayscale characteristics
and has negative effects on the correct topology. The second
type is the small pixel patch hint [2], [26], which makes color
diffusion difficult, but it can avoid the problem of color hint
overfitting. Reference [26] uses the pixel-level hint, and the
patch size of dots in [2] ranges from 1× 1 to 9× 9. Although
the second type of scheme has a smaller number of color
hints, it makes the overall colorization more robust. In our
autonomous colorization, we use an 8×8 patch because a 1×1
hint will encourage an average, grayish generated hint during
the gray prediction process, and the same precise color hint
patches with the sketch and real color image are supposed.
On the other hand, larger hints will cross adjacent edges and
will easily cause hint overfitting.

2) GLOBAL HINT

Interactive colorization needs to predict the global hint based
on a small number of local hints, which can increase the
scope and effect of the hint. The global color feature such as
the histogram or palette can be extracted from the reference
image.

Reference [26] predicts the color histogram that repre-
sents the color distribution, but the corresponding coloriza-
tion location is implicit. Reference [4] predicts the dominant
color palette of an area block, but it loses important edge
information. The details of the coloring are messier, and the
saturation is poor. Another method is Style2Paints v3 [12],
which generates the global color draft by randomly splashing
various colors. However, this color parsing is too casual and
diffused, and there is no scientific region constraint for the
colorization.
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FIGURE 2. Network structure. (a) Autonomous colorization, (b1) The SLIC stage, and (b2) The interactive colorization stage.

However, our approach uses the superpixel segmenta-
tion algorithm, which is a simple linear iterative cluster
(SLIC) [36], to obtain a color segmentation map that main-
tains the edge as the referenced global hint to guide the
interactive sketch colorization.
Recently, image segmentation has been used in a variety of

computer vision tasks, such as depth prediction [37], virtual
try-on [20], scene understanding [38], [39] and image gener-
ation [40]. The use of SLIC can obtain color parsing to extend
the line hint to the local area, thereby providing more color
information to the interactive colorization.

III. METHODS

Our approach is divided into three parts: autonomous
colorization based on a grayscale image, autonomous col-
orization based on sampling points and interactive col-
orization based on color clustering. The reasons why
these two algorithms are not combined are as follows.
(1). Autonomous colorization and interactive colorization are
different. Autonomous colorization is supposed to fill color in
awide range of an image and leave nowhite area. On the other
hand, interactive colorization focuses on high color obedience
and an interactive user experience. (2). In the interactive
colorization process, the grayscale feature conflicts with the
hint and they constrain each other, which is not conducive to
sketch colorization.

A. AUTONOMOUS COLORIZATION

1) COLORIZATION BASED ON GRAYSCALE PARSING

The Wnet that is used in this paper is equivalent to the
combination of two Unets, which are subjected to both
forward and backward propagation, and the two generated
parts are synchronously conducted at the same stage, which
is different from the StackGAN scheme. Wnet makes two
related generation processes supervise each other and con-
duct joint optimize. For example, the grayscale image and the
color image that is generated from the grayscale image both

come from the same sketch. During autonomous colorization,
the grayscale image expands the spatial information of the
anime edges, and the color image refines the color distribu-
tion of the anime lines on the basis of the grayscale image.

Our network of autonomous colorization use the Unet
including the convolution, BatchNorm and ReLU layer,
which constitute the Wnet. We first extract the edges of
the color images in the training set and give them sample
hints. Then, these line-arts are sent to the first half of Wnet
whose aim is to generate the grayscale maps with correspond-
ing color hints. Second, the predicted grayscale maps and
sketches with the same random blocks from real color maps
are sent to the last half of the Wnet to obtain the automatic
colorization results, as shown in Fig 2 (a). The grayscale
and color maps are associated with each other by means of
sharing hints, and they contain the same semantics as the
sketch. Additionally, the PatchGAN size of D is 70 × 70
and a 62 × 62 probability matrix is obtained. The input of
D is a set including a sketch, grayscale map and color map,
which are specifically divided into two random groups: a real
sketch, a fake grayscale map, and a fake color map or a real
sketch, a real grayscale image and a real colored image. The
generator will more precisely fit the shadows and highlights
of the manga, as well as effectively avoid regional color
diffusion.

TheGANneeds to accumulate trust. In other words, as long
as it generates a picture that the discriminator thinks is accept-
able, it will no longer be willing to take risks to try new
pictures to becomemore satisfactory because this processwill
bring more punishment. It becomes easier for our generator
to obtain the trust of discriminator and to change and update
modes, which can alleviate the meaningless gradient problem
bymaking the distributions of the generated data and real data
more similar.

Compared with the traditional end-to-end network struc-
ture, the end-mid-terminal structure is step-by-step color-
filled, and the middle end corresponds to an encoder of the
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FIGURE 3. Results of autonomous and interactive sketch colorization. (a). From left to right are the sketch, PaintsChainer, Style2Paints v3, DeepColor, our
model of autonomous colorization and real images. (b). The first row is PaintsChainer, the second row is ours, the last row is Style2Paints v3.

topological space, which makes parameter training relatively
easy. Moreover, the synchronous training progress strength-
ens the discrimination, and the meaning of the basic seman-
tics is continuously enriched, unlike previous works such as
AutoPainter, DeepColor and Style2paints v1, which are all
based on sets of sketches and color maps.
References [41]–[43] were based on the pipeline of dual

learning, but they are more inclined to handle style conver-
sion. Wnet has an edge encoder and a grayscale encoder,
but there is no color encoder, and so the mode collapse phe-
nomenon is alleviated by adding the prior color information
of dots. The cross-entropy loss function of our autonomous
colorization is as follows, where yu is the true grayscale
image, yw is the corresponding true color image, and xd is
the sketch edge x with the corresponding user-defined color
hints d.

LcGAN (G,D) = Exd ,yu,yw[logD(xd , yu, yw)]

+Exd ,z[log(1 − D(xd ,Gu,Gw))] (1)

The input of the first Unet is xd, z is the random noise. Gu
is the fake grayscale image.

Gu = Gu(xd , z) (2)

The input of second Unet is xd with noise z and the result
of gray prediction network, xd can make the colors of dots
clearer when generating the color map. Gw is the correspond-
ing fake color image.

Gw = Gw(xd ,Gu, z) (3)

Discriminating these two Unet at the same time
will strengthen and optimize the discriminant effectively,
as shown in (1). On the other hand, the generator G tries
to play against the discriminator until achieving the final
balance.

The L1 distance of the grayscale and color maps is taken
into consideration.

LL1(G) = Exd ,yu,z[||yu− Gu||1]

+Eyu,yw,z[||yw− Gw||1] (4)

To encourage the generated image to be more visually
similar to the real image, we employ a pretrained VGGNet
to extract the high-level information of the image. The
L2 distance from ReLU_4.3 of the VGG16 for the predicted
grayscale map and the real gray map and that between the
predicted color map and the real color map are respectively
calculated as the feature constraints, and the formula is as
follows.

LF4(G) = Exd ,yu,z[||ϕj(yu) − ϕj(Gu)||2]

E yu,yw,z[||ϕj(yw) − ϕj(Gw)||2] (5)

By optimizing the following loss function ( λ1 = λ = 10),
as shown in (6), the final optimal generator is obtained.

G∗ =argmin
G

max
D

LcGAN (G,D)+λ1LL1(G)+λLF4(G) (6)

The total variation loss is used in [6], [23] in order to make
the color smoother and enhance the color correlation between
adjacent pixels, but it also easily leads to color diffusion
and overlap. Predicting the grayscale map can effectively
avoid traditional problems such as the color spreading across
regions, the lack of color and low color saturation.
In the training phase, for a certain color image in every

epoch, the 8 × 8 color feature blocks have random spatial
positions that are randomly selected from 0 to 60, and then
added to the sketch and the grayscale image. The control
points of the sketch, grayscale and color map remain the same
throughout the learning process. In the test stage, the user can
usually give any number of color hint dots. However, in our
autonomous colorization, we provide no hint. The results
are shown in Fig 3(a). In the test comparison of interactive
coloring, we provide hints to the model using the grayscale
intermediate feature and implement an objective evaluation
as one of the baselines of interactive colorization.

2) COLORIZATION BASED ON PIXEL-LEVEL COLOR PARSING

Similar to the cGAN based on intermediate feature of
grayscale images, we trained the cGAN based on the interme-
diate feature of sampled feature points, without adding prior
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color information of dots in the first stage. The second stage
can be a cGAN or Laplacian mesh editing [44]. Specifically,
we take the reconstructed color image using the Laplacian
differential mesh deformation algorithm in the RGB color
space as the baseline representing the efficiency and accuracy
of the deep learning algorithm. Considering the sketch as a
plane with some gullies, the intermediate feature points that
are obtained by the GAN are regarded as the applied force,
and then the colored image can be regarded as groups of
mountains.
3D mesh deformation method generally contains three

steps. First, transform the Descartes coordinates of the mesh
into differential coordinates. Second, change the coordinates
of some of the characteristic points to predict the desired
deformation effect. Third, implicitly solve the linear equa-
tion Ax=B and then restore the differential coordinates as
Descartes coordinates to accomplish the mesh editing.
Command M = (V, Ea, F) is a triangular mesh with n

vertexes. V is the set of vertexes, Ea is the set of edges, and
F is the set of mesh faces. The vertex adjacency matrix A of
the mesh is represented as follows.

Aij =

{

1 (i, j) ∈ Ea

0 otherwise
(7)

Dij =

{

di i = j

0 otherwise
(8)

Kij =











di i = j

−1 (i, j) ∈ Ea

0 otherwise

(9)

The graph Laplacian matrix is K=D-A in (9). And di is the
number of vertexes that are adjacent to the vertex i in (8).

Vertex i is represented by an absolute coordinate in the
Descartes coordinate system: vi= (xi, yi, zi). The differential
coordinates are defined as follows:

δi = [δ(x)i , δ
(y)
i , δ

(z)
i ] = vi −

1

di

∑

j|(i,j)∈Ea

vj (10)

Lsx = Dδ(x) (11)

The differential coordinates of the mesh can be obtained
according to the following formula (11), where matrix
LS =K, x is an n-dimensional vector that contains the abso-
lute coordinate components of all vertexes, and y and z are
similar to x.
The solution requires solving a reversible linear system.

The large equations can be effectively obtained by the linear
algebra operation and then the topological information of the
deformed mesh can be obtained by the decoupling and recou-
pling of these equations. Take the X space as an example:

[

Ls

Im×n

]

x =

[

Dδ(x)

XF1:m

]

(12)

In the equation, n is the number of all mesh points, and m is
the row of feature vectors, whose corresponding coordinates

FIGURE 4. Reconstruction based on the Laplacian mesh deformation
corresponding to different sampling interval parameters N.

are stored in XF, YF and ZF respectively. Im×n represents
some lines to be added under LS, whose elements are zeros
except for 1 in the position whose column is the index of the
corresponding feature point. During practical applications,
we usually select some constraint points on the 3D grid and
then use the least squares method to realize the mesh editing.

The solution process can use advanced linear system
solvers such as TAUCS or SUPERLU [44]. The algorithm
steps that are used in this paper are as follows.

1) The 512 × 512 image is divided into 64 64 × 64
subimages. For engineering reasons, 128 × 128 and
256 × 256 subimages will overload the memory and
cause errors when reading the vertex information using
OpenMesh.

2) The GAN obtains the color feature points of the image
based on big data. Considering the edge connection and
internal filling performance of the subimage, 22 × 22
feature points with an interval of 3 are selected, which is
approximately 10 percent of all pixels. Other intervals
cannot obtain perfect reconstruction results, as shown
in Fig 4.

3) Map each subimage onto the 64 × 64 3D mesh topol-
ogy and transform it into the differential mesh space
to reconstruct the colored image using Laplacian sur-
face editing in the RGB space. We obtain the sym-
metric positive definite matrix A and the right hand
color distribution matrix B, and then send them to the
SuperLU_DIST [45].

4) Integrate the overall colored image using the segmented
subimages.

B. INTERACTIVE COLORIZATION

Interactive colorization contains two stages. The first stage
obtains the SLIC color segmentation feature map S of the real
anime color map as the target image. Then, the translucent
sketch image is merged with the 10×10 checkerboard image
to get input image I. The checkerboard image is used to guide
the transform from the sketch to the SLIC map. Considering
that color parsing is the main purpose in the first stage,
we make the sketch and checkerboard image translucent,
as shown in Fig 5. Then, we randomly extract 20-30 color hint
lines with random thicknesses from 3-5 and random locations
from S and attach them to I to obtain Ih, which is used as
the input of the Unet. In the learning process, we randomly
change the hue to prevent the overfitting of colors. The model
of the first stage is marked as A.
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FIGURE 5. Interactive colorization based on color parsing. (a) sketch,
(b) checkerboard image, (c) hint map with translucent sketch and
checkerboard, (d) color parsing result, and (e) final result generated from
(a) and (d).

The reason why the SLIC algorithm is used to obtain
the global color hint is because the palette that is obtained
after segmentation seeks to retain the sketch edges, and each
segment area has the same color, which is convenient for
constructing a pencil line hint similar to the real situation. The
SLIC function is as follows. Themeasured distance is divided
into Dc and Ds. In the CIELIB color space, Dc calculates the
lab color distance between pixel i and cluster center Cj. The
measurement distance of Ds is in the x and y coordinate space,
and it calculates the position distance between pixel i and
cluster center Sj. The color proximity and spatial proximity
are standardized through their maximum distances Nc and
Ns in the clusters as (15). Eventually, color clustering is
achieved.

Dc =

[

(Lj − Li)
2 + (aj − ai)

2 + (bj − bi)
2
]1/2

(13)

Ds =

[

(xj − xi)
2 + (yj − yi)

2
]1/2

(14)

D =

[

(Dc/Nc)
2 + (Ds/Ns)

2
]1/2

(15)

The cross-entropy loss function of the first stage is as
follows.

LcGAN1 (G1,D) = EIh,S [logD(Ih, S)]

+EIh,z[log(1 − D(Ih,Gs))] (16)

The L1 distances of the SLIC map are then considered.

LL1(G1) = EIh,S,z[||S − Gs||1] (17)

The generator is optimized by using the following loss
function ( λ1 = 10 ).

G∗
1=argmin

G1

max
D

LcGAN1 (G1,D)+λ1LL1(G1) (18)

In the second stage, all samples in the training set of the
first stage are subjected to model A, and the soft target palette
Ps is obtained, which concatenates with the real sketch K as
the input of the second stage. Then, the real anime color map
T is used as the target image. In the learning process, we ran-
domly change the hue of Ps and T to prevent the overfitting
of colors. The colorization training is implemented by means
of pix2pixHD, whose generator uses the progressive strategy
and discriminator uses multiple di scrimination with different

receptive fields. The model of the second stage is marked
as B. The cross-entropy loss function of B is as follows.

LcGAN2 (G2,D) = EK ,Ps,T [logD(K ,T )]

EK ,Ps,z[log(1 − D(K ,GT ))] (19)

The L1 distances of the color map are then considered.

LL1(G2) = EK ,T ,z[||T − GT ||1] (20)

The perception loss of VGG19 is taken into consideration,
including relu1_1, relu2_1, relu3_1, relu4_1 and relu5_1.

LFj(G2)=EK ,T ,z[||ϕj(T ) − ϕj(GT )||2] (21)

Moreover, the total variation loss is added to ensure smooth
colorization.

TV (x) =
∑

i,j

[

(xi+1,j − xi,j)
2 + (xi,j+1 − xi,j)

2
]1/2

(22)

The generator is optimized by using the following loss func-
tion ( λ1 = λFi = 10, λTV = 1 ).

G∗
2 = argmin

G2

max
D1,D2,D3

∑

k=1,2,3

LcGAN2 (G2,Dk )

+ λ1LL1(G2)+
∑

Fi=1∼5

λFiLFi(G2)+λTVLTV (G2) (23)

IV. EXPERIMENT RESULTS

A. DATASET

Our original database comes from Safebooru, Baidu and
Danbooru2017 [46]. After web crawling, image cropping and
data filtering, we collected 20,000 512× 512 colored manga
images for training, and 200 images for test. After using
sketchKeras to obtain the corresponding original sketch,
we get the corresponding grayscale map by rgb2gray trans-
formation, and then constitute the sketch-gray-color image
sets.

B. TRAINING SET

We set the batchsize to 4 in the training stage. In addition,
we train the network with Adam, and the initial learning rate
is 2e-4. Moreover, the instance normalization and the normal
initialization of network are used.

C. BASELINE

One-stage colorization based on pix2pix is used as the base-
line of autonomous colorization, and the pix2pix trained with
hint is used as a baseline of interactive colorization. In addi-
tion, the colorization based on grayscale features with hints
is used as the baseline of interactive colorization as well.

D. QUANTITATIVE EVALUATION

In this section, we compare our reconstructions with the
images that were generated by PaintsChainer, DeepColor and
Style2paints V3. We select 200 line-arts of real images from
the test set to conduct the quantitative evaluation including
light-sensitivity score and the CCLBP score because adaptive
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FIGURE 6. Color coded LBP, R1 and B3 share the same value.

color filling and the quality of the filling result are two aspects
of great concern for sketch colorization. The evaluation of
the colorization effect is based on the same hue of the same
position, although the shapes of the hints that are used by
different algorithms are slightly different. For example, these
include the slim pencil line of PaintsChainer, which is similar
to our method; the thick line of DeepColor; or the circular
point of Style2paints V3.

1) LIGHT-SENSITIVITY SCORE

After obtaining the colored image, we get the grayscale
image G. The light-sensitivity image is obtained by subtract-
ing G using a white plate with the same size as the colored
image.
The L1 distance of the light-sensitivity maps for the col-

ored images and the original color images will represent
the degree of auto painting and hint overfitting. That is,
the more negative the L1 distance is, the more inefficient
auto painting is, and the more ill-posed the spatial structure.
Namely, the color distribution is unsaturated. Additionally,
it illustrates that colorization is too dependent on the hint,
and when the area lacks a hint, it will have insufficient
colorization. Namely, the overfitting of hints is serious.

2) COLOR CODED LBP SCORE

We propose the CCLBP to objectively evaluate the manga
colorization. By calculating the color distances from the first-
order circular 8 pixels to the current central pixel, the CCLBP
feature map is obtained based on distance coding in the RGB
space. For example, the color value of R channel for location
(i,j) in CCLBP map comes from the binaries R1, R2 and
R3, as shown in Fig 6 and (26). DR in (24) is the distance
value in R channel between two pixels in original image color
space. If the distance value TR3 between I(i,j) and I(i,j+1) is
larger than Tth, the corresponding binary R3 is 1, as shown in
(25). Otherwise, R3 is 0. After obtaining R1, R2 and R3, they
are decoded into the color space of CCLBP map, as shown
in (26). This feature map has a tolerance to color variation.
The larger the threshold of T is, the higher the degree of
tolerance towards regional colorization errors.
Moreover, the CCLBP score mainly focuses on the ren-

dering details including the smoothness and clearness of
the coloration in different areas. The black area represents
the similar colors or closed hues, and the edge feature can
represent the degree of color diffusion. Namely, the messy
edge represents disharmonious colorization. The L1 distances
of the CCLBP feature maps between the original images and

FIGURE 7. Example curve of the CCLBP score, where the horizontal axis
represents the threshold of T.

FIGURE 8. Detailed examples of the reasons for positive values of the
light-sensitivity score and CCLBP score in the experiment.

FIGURE 9. CCLBP and LS maps of an interactive example. From left to
right, they are the sketch, colorization result, LS map, CCLBP5 map,
CCLBP10 map and CCLBP15 map. The first row is PaintsChainer v3,
followed by Style2paints v3, our model of pix2pixHD+SLIC, pix2pix+SLIC,
pix2pix + hint and our model with grayscale + hint.

the generated images is used to represent the coloring effect.
The more negative the L1 distance is, the more inefficient
the ability of natural and high-quality colorization. We select
thresholds of 5, 10, and 15 to get the multi-CCLBP scores,
according to Fig 7.

T =

(

D2
Rij

+ D2
Gij

+ D2
Bij

)1/2
(24)

Rc=1:3 =

{

1 TRc ≥ Tth

0 otherwise
(25)

ICCLBP(R) = 256 × (4 × R1 + 2 × R2 + R3)/8 (26)

E. RESULTS

As for autonomous colorization, our result is the best
compared with the other three state-of-the-art algorithms,
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FIGURE 10. Autonomous sketch colorization results and the corresponding LS maps and multiscale-CCLBP maps (Th = 5, 10, 15).

TABLE 1. L1 scores of autonomous colorization.

as shown in TABLE 1. The values come from the statistical
means of 200 images in the test set.
Taking the original color map as a reference, the light-

sensitivity score and CCLBP score should be negative, which
are lower than the ideal values of the original color map.
The reasons for the positive values in the experiment are as
follows.

1) For the light-sensitivity score, we hope that the white
area is minimized during the coloring process; there-
fore, if the algorithm automatically colors the white
space in the original image, the light-sensitivity score
may be positive.

2) For the CCLBP score, the better effect is expected
to increase the black area of the CCLBP map as
much as possible to indicate the naturally smooth and

nondiffusion of the color. If the coloring algorithm
reduces the jaggedness in the original image and it
has better local details, a positive score will appear.
Another reason is that some edge information is miss-
ing during edge extraction, resulting in more black
areas, as shown in Fig 8.

However, the comparison experiments among Paints-
Chainer, Style2paints V3, DeepColor and our model are
based on the same edge extraction map. Therefore, the rel-
ative values absolutely can explain the colorization quality of
the corresponding algorithm.

In TABLE 2, test images from 1 to 100 are evaluated
by using PaintsChainer1, 101-150 using PaintsChainer2, and
151-200 using PaintsChainer3. The mean CCLBP score is
calculated from T5, T10 and T15, respectively weighted by
0.5, 0.3 and 0.2, because the CCLBP map with T5 can
showmore colorization details, which is more important. The
overall score is the mean value of LS score and the mean
CCLBP score. Our model with the grayscale map performs
better than our model with the pixels and the model with
the Laplacian mesh editing in autonomous coloring. In the
interactive coloring test, we provide the approach based on
the grayscale map with hints in the same position and color
as in the other algorithms. By comparing the other two-stage
algorithms, it is proved that the test results using SLIC as
the color parsing features are better than other one-stage
method such as PaintsChainer and pix2pix, as well as two-
stage methods such as Style2paints v3.
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FIGURE 11. Histogram of the subjective evaluation scores.

TABLE 2. L1 scores of interactive colorization.

The subjective evaluation is divided into five aspects.
(a). The overall color visual effect is scored according to the
evaluator’s first feeling of the coloring result, and it describes
the overall popularity of the colorization. (b). The color obe-
dience describes whether the resulting color is consistent with
the hint color. PaintsChainer3 often has a low color obedi-
ence score. (c). The regional obedience describes whether
the color spreads within a reasonable range, and whether it
spreads to the background or crosses the line boundary to
enter another key area. PaintsChainer often spreads color into
the background, and Style2Paints3 sometimes can not spread
the correct color within the reasonable range. (d). The local
rendering purity determines whether the local part is enlarged
enough to observe whether the color is messy, or whether
the local information is clear. Style2Paints3 often results in
messy local images. (e). Colorization completion describes
the size of the white areas of the entire image, and white
space in the key part is considered to be a colorization failure.
Style2Paints3 often leaves large white areas in the coloriza-
tion. Our results have better visual quality and create more
vivid paintings than other approaches.
To evaluate the visual performance in the interactive col-

orization task, we conducted a user study with 20 participants
consisting mostly of students who were interested in manga.

1) LAYOUT OF THE USER STUDY

After a short introduction to the colorization task, users
are instructed to observe the original color images with

TABLE 3. Average scores of our user study.

FIGURE 12. More colorization results of real sketches. From up to down,
there are the sketch, sketch with hint, predicted SLIC maps and our
results.

wonderful coloring performance. Then, they are instructed
to randomly select a hint map from our test set. We show
the hint maps all the time during the observation time of the
different color images of the compared methods. Since the
colorization quality is related to the perception of details and
the whole generated images, we set a time limit of 30 seconds,
after which we hide the current image. During the observation
time, the users were asked to score the five subjective evalu-
ation criteria from a-e. The score is from 1 to 10. There are
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a total of 1200 generated images, and each participant needs
to randomly observe 400 images. We designed the study to
only take approximately 4 hours per participant, which results
in the collection of 8000 human decisions. Table 3 shows
the average scores of our user study. The corresponding
histogram is shown in Fig 11.

V. CONCLUSION AND FUTURE WORK

By means of L1 distance evaluation based on light-sensitive-
score and CCLBP-score, compared with PaintsChainer,
Style2paints V3 and DeepColor, it is shown that our model
can achieve high-quality manga colorization both visually
and numerically when given the line-art.
The creations of PaintsChainer are easily color-diffused,

and the results of Style2paints V3 frequently experience a
lack of coloring and messy details. Finally, the results of
DeepColor are usually varicolored. All the above matters are
improved by our automatic colorization method. Future work
will implement global feature coloring, style transformation,
and specific emotion rendering.

1) Global feature colorization. Our model can colorize the
similar grayscale areas in the global perception field.
Other global features are the color histogram and image
saturation, which can implement the style conversion.

2) Emotion rendering. Different colors or different combi-
nation of colors represent different emotional features.
Emotion colorization is higher level rendering based
on cognitive psychology, which will help to research
image emotion recognition and interaction. Changing
the facial expressions corresponding to specific emo-
tions can also enrich the emotion rendering effect.

Moreover, the training scheme, which includes using
grayscale parsing and random patch hints together as well
as the SLIC parsing implementation, are universal for the
interactive generation of ink paintings, watercolors, and oil
paintings. Ink paintings especially need to be researched and
promoted, which will increase public awareness and partici-
pation in traditional Chinese painting.
In summary, through subjective and objective evaluations,

compared with the results of the state-of-the-art coloring
algorithms, the coloring effect of our model with color pars-
ing is the best both in autonomous and interactive coloriza-
tion, which is shown in Fig 9, Fig 10 and Fig 12. However,
the coloring effect of the colorist is better because of the
rich coloring experience and a mount of time consuming.
Therefore, AI coloring needs to be improved in the future.
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