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Abstract. To extract source signals with certain temporal structures,
such as periodicity, we propose a two-stage extraction algorithm. Its first
stage uses the autocorrelation property of the desired source signal, and
the second stage exploits the independence assumption. The algorithm
is suitable to extract periodic or quasi-periodic source signals, without
requiring that they have distinct periods. It outperforms many existing
algorithms in many aspects, confirmed by simulations. Finally, we use the
proposed algorithm to extract the components of visual event-related po-
tentials evoked by three geometrical figure stimuli, and the classification
accuracy based on the extracted components achieves 93.2%.

1 Introduction

It is known that blind source extraction (BSE) algorithms are suitable for ex-
tracting a few of temporally correlated source signals from large numbers of
sensor signals, say recordings of 128 EEG sensors [1]. In practice they require
certain additional a priori information of the desired source signals. Thus they
generally are implemented in a semi-blind way [2,3,5,6,7].

Among the extraction algorithms there are two famous algorithms, i.e. the
cICA algorithm [5] and the FICAR algorithm [6], both of which need to design a
so-called reference signal that is closely related to the desired underlying source
signal. That is to say, the phase and the morphology of the reference must be
matched to that of the desired signal to great extent, or the occurrence time
of each impulse of the reference signal is consistent with that of the desired
signal [8]. However, in some applications it is difficult to design such a reference,
especially when the morphology and the phase of the desired source signals are
not expected [3].

Based on our previous primary work [2,3], in this paper we propose a Tem-
porally Correlated signal Extraction algorithm (TCExt algorithm), which does
not need the reference, unlike the cICA algorithm and the FICAR algorithm.
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Computer simulations on artificially generated data and experiments on the ex-
traction of event-related potentials show its many advantages.

2 Problem Statement

Suppose that the unknown source signals s(k) = [s1(k), · · · , sn(k)]T are mu-
tually statistically independent with zero mean and unit variance, holding the
basic simultaneous mixture ICA model [1]. Without lose of generality, we fur-
ther assume s1 is the desired temporally correlated source signal, satisfying the
following relationship:

{
E {s1(k)s1(k − τ∗)} > 0
E {sj(k)sj(k − τ∗)} = 0 ∀j �= 1

(1)

where sj are other source signals, and τ∗ is the optimal lag defined below:

Definition 1. The non-zero τ∗ is called the optimal lag, if the delayed auto-

correlation at τ∗ of the desired source signal s1 is non-zero, while the delayed

autocorrelation at τ∗ of other source signals is zero. Here all of the source signals

are supposed to be mutually independent.

In addition, we give the definition of the optimal weight vector as follows:

Definition 2. The column vector w∗ is called the optimal weight vector of the

desired source signal s1, if the following relationship holds:

(w∗)T
VAs = cs1, (2)

where c is a non-zero constant, V is a whitening matrix, and A is a mixing

matrix.

3 Framework of the Proposed Algorithm

Based on the assumptions in the previous section, we have proposed a two-stage
extraction algorithm framework [3], shown in Fig.1. The first stage is called the
capture stage. In this stage, the algorithm coarsely extracts the desired source
signal by using correlation information. At the end of the stage, we obtain the
weight vector ŵ. But it can be shown that due to some practical issues [2,3] ŵ is
only close to the optimal weight vector w∗. Therefore the captured source signal
ŷ = ŵ

T
x is still mixed by the “cross-talk noise”.

Next, in the second stage, we exploit the independence assumption and use
the output of the first stage, i.e. ŵ. At the end of this stage, we obtain a sub-
optimal solution w̄ 1, which is much closer to w∗ than ŵ is. Thus we finally
obtain the desired source signal ȳ = w̄Tx, which is almost not mixed by the
“cross-talk noise”.

In the framework we will propose an improved extraction algorithm with
higher performance, even if the desired source signals have the same period or
are near Gaussian.
1 Note that in practice we almost cannot obtain the optimal solution w∗.
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Fig. 1. The framework of the proposed algorithm

3.1 Finding Lags

In practice we cannot find the optimal lag, and we can only find lags that satisfy
E {s1(k)s1(k − τi)} > E {sj(k)sj(k − τi)} , ∀j �= 1, i = 1, · · · , P . Thus, due
to performance consideration [2] we suggest to select several suitable lags that
correspond to the time structure of the desire source signal, instead of selecting
only one lag. For example, for a periodic signal we select the lags corresponding
to its fundamental period and multiple periods. The use of several lags, instead
of only one lag, can improve the extraction performance, as shown in [3].

There are many methods for finding these lags or the temporal structures [7].
For example, the cepstrally transformed discrete cosine transform [11] can be
used to detect the periods of source signals, even if the strengths of signals differ
by about 60 dB. In addition, in some applications, such as biomedical signal
processing, the lags are often readily available [7,8].

3.2 The First Stage: Coarse Recovery

After choosing suitable lags τi(i = 1, · · · , P ) and whitening the original obser-
vations, the first stage employs our previously proposed algorithm [2] to obtain
the weight vector ŵ:

ŵ = EIG
( P∑

i=1

(
Rz(τi) + Rz(τi)

T
))

, (3)

where Rz(τi) = E{z(k)z(k − τi)
T }, z(k) are the whitened observations, and

EIG(Q) is the operator that calculates the normalized eigenvector corresponding
to the maximal eigenvalue of the matrix Q.

If the desired signal is periodic, then the algorithm (3) can be rewritten as

ŵ = EIG
( P∑

i=1

(
Rz(iτ) + Rz(iτ)T

))
, (4)

where τ is the fundamental period of the desired source signal. If several desired
source signals have the same period, they still can be extracted under some weak
conditions, confirmed by the following theorem.
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Theorem 1. Suppose there are q source signals (s1, · · · , sq) that are mutually

uncorrelated and have the same period N , and also suppose their autocorrelations

satisfy E{si(k)si(k−N)} �= E{sj(k)sj(k−N)}, ∀i �= j and 1 ≤ i, j ≤ q. Without

lose of generality, further suppose r1 > · · · > rq, where ri = E{si(k)si(k − N)}.
Then the i-th source signal can be perfectly extracted by the weight vector wi

that is the normalized eigenvector corresponding to the i-th largest eigenvalue of

E{z(k)z(k − N)T }.

Proof: Since wi is the normalized eigenvector corresponding to the i-th largest
eigenvalue of E{z(k)z(k − N)T }, we have E{z(k)z(k − N)T }wi = λiwi, i =
1, · · · , q, where λi is the i-th largest eigenvalue. In other words, VAE{s(k)s(k −
N)T }ATVT wi = λiwi. Since VA is an orthogonal matrix, then E{s(k)s(k −
N)T }(ATVTwi) = λi(A

TVTwi), indicating that (ATVTwi) is the normalized
eigenvector corresponding to the eigenvalue λi of E{s(k)s(k−N)T }. Due to the
distinction of the eigenvalues of E{s(k)s(k − N)T }, we can deduce that λi is
its i-th largest eigenvalue, i.e., λi = ri. According to the assumptions and the
previous development, E{s(k)s(k−N)T } is a diagonal matrix, and thus we have
(AT VTwi) = ei, whose the i-th element is one while other elements are zero.
On the other hand, we have y = wT

i z = wT
i VAs = eT

i s, implying the i-th source
signal is perfectly extracted. �

The algorithm (3) has many advantages (see [2,3] for details). However, although
it can achieve good extraction quality, it can be shown that the algorithm is
insufficient to perfectly recover the desired source signal, and that the solution
ŵ in this stage is just close to the optimal weight vector w∗ [3]. Thus, to make
the solution ŵ further closer to w∗, in the second stage we derive a higher-order
statistics based algorithm.

3.3 The Second Stage: Fine Extraction

Under the constraint ‖w‖ = 1, the maximum likelihood criteria for extracting
one source signal is given by

{
min l(w) = −E{log p(wT z(k))}
s.t. ‖w‖ = 1

(5)

where p(·) denotes the probability density function (pdf) of the desired source
signal. Note that minimizing (5) only leads to one source signal, but not neces-
sarily the desired source signal s1. However, if we use the ŵ from the first stage
as the initial value, then we can necessarily obtain the s1.

By the Newton optimization method, we obtain the following algorithm for
extracting the desired source signal s1:

{
w+ = w − µE

{
f
(
wT z

)
z
}
/E

{
f ′

(
wT z

)}

w = w+/‖w+‖,
(6)

with the initial value w(0) = ŵ. µ is a step-size that may change with the
iteration count. In particular, it is often a good strategy to start with µ = 1.
f(·) is a nonlinearity, given by f(·) = −(log p(·))′ = −p(·)′/p(·).
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In general, the pdf p is unknown and should be estimated. We present a density
model that combines the t-distribution density model, the generalized Gaussian
distribution density model and the Pearson system model. Our motivation is that
the nonlinearity derived from the t-distribution is more robust to the outliers and
avoids the stability problem [9], and that the nonlinearity derived from Pearson
system can achieve good performance when the desired source signals are skewed
and/or near Gaussian [10].

We use the t-distribution [9] to model the super-Gaussian distribution. The
derived nonlinearity is

f(y) = −p(y)′/p(y) =
(1 + β)y

y2 + β
λ2

. (7)

where parameters β and λ2 can be calculated by λ2 = βΓ (β−2
2 )/(2m2Γ (β

2 )) and

κt = m4

m2

2

− 3 = 3Γ (β−4
2 )Γ (β

2 )/(Γ (β−2
2 )2)− 3, where m2 and m4 are respectively

the second-order moment and the fourth-order moment of the distribution. It
is clear to see that the function f(y) approaches to zero when the value of y
abruptly increases, implying that it is robust to the undue influence of outliers.

To extract the sub-Gaussian source signal, we use the well-known fixed non-
linearity

f(y) = y3, (8)

which belongs to the generalized Gaussian density model.
In some applications the desired source signals are skewed, such as the com-

ponents of the ECG with absolute skewness ranging from 1 to 10. In addition, in
some cases the desired source signals are close to Gaussian. Due to these facts,
we use the Pearson system to derive a family nonlinearities that are more suit-
able to extract the skewed and/or near Gaussian signals than the ones derived
from the t-distribution and the generalized Gaussian distribution.

The nonlinearity derived from the Pearson system is given by [10]

f(y) = −
p′p(y)

pp(y)
= −

(y − a)

b0 + b1y + b2y2
, (9)

where a, b0, b1 and b2 are the parameters of the distribution, calculated by a =
b1 = −m3(m4 + 3m2

2)/C, b0 = −m2(4m2m4 − 3m2
3)/C, b2 = −(2m2m4 − 3m2

3 −
6m3

2/C, where C = 10m4m2 − 12m2
3− 18m3

2. Note that this type of nonlinearity
is also robust to the outliers, just as the nonlinearity given in (7).

Now we have presented three types of nonlinearities for three types of signals.
According to the estimated moments, the algorithm (6) adopts suitable nonlin-
earities. A procedure for the adaptive nonlinearity selection using the sample
moments may be given as follows.

Repeat until convergence:

1. Calculate the second, third and fourth sample moments m̂2, m̂3, m̂4 for cur-
rent data y(l) = wT (l)z, where l represents the iteration number.
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2. According to the estimated moments, select the nonlinearity as follows:
– If m̂4 > m̂2

3 + 4.5, then calculate the nonlinearity (7);
– if m̂4 < 2.5, then use the nonlinearity (8);
– if 2.5 ≤ m̂4 ≤ m̂2

3 + 4.5, then calculate the nonlinearity (9).
3. Calculate the weight vector w(l + 1) using the algorithm (6).

4 Simulations

In the first simulation, we generated seven zero-mean and unit-variance source
signals, shown in Fig.2. Each signal had 2000 samples, and its statistics prop-
erty is shown in Table 1. These signals were randomly mixed and whitened. Our
goal was to extract the temporally correlated source signals s1, s2, s3, s6 and s7

one by one. After estimated the suitable lags for extracting each desired signal,
we employed our proposed two-stage algorithm (TCExt). To make comparisons,
we also employed the akExt algorithm [4], the cICA algorithm [5], the FICAR
algorithm [6], the SOS algorithm [7], the CPursuit algorithm [13], the SOBI al-
gorithm [12] and the pBSS algorithm [14] on the whitened signals. Note that,
in this simulation both the cICA and the FICAR could not extract the source
signals due to the difficulty to design the reference signals, but in order to com-
pare the extraction quality, we designed suitable reference signals in advance
according to the waveforms of the source signals. To compare the extraction
performance we used the following performance index

PI = −10E{lg(s(k)− s̃(k))2} (dB) (10)

where s(k) is the desired source signal, and s̃(k) is the extracted signal (both
of them are normalized to be zero-mean and unit-variance). The higher PI
is, the better the performance is. The averaged performance indexes over 100
independent trials of each algorithm are shown in Table 2, from which we can
see that the proposed algorithm generally has better performance than the other
algorithms.

Table 1. The properties of the source signals in Fig.2. ‘p’ denotes the corresponding
signal was strictly periodic; ‘c’ denotes temporally correlated but not strictly periodic;
‘n’ denotes random noise without any time structure.

source signal s1 s2 s3 s4 s5 s6 s7

periodicity p c c n n c p

kurtosis -1.5 -1.0 0.7 -1.2 2.8 0.4 7.5

In the next experiment we applied our algorithm to extract potentials evoked
by three types of geometrical figures stimuli, and our objective is to classify each
type of figures according to the extracted visual evoked potentials (VEPs).

One right-handed subject, aged 21, volunteered to participate in the present
study. The subject was healthy both in psychological and neurological, and had
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Fig. 2. Source signals. (a) A segment of the seven source signals. Note that s1, s2, s3 had
the same period, but differ in autocorrelations. (b) The corresponding autocorrelation
functions of the source signals of (a).

Table 2. The averaged performance index of each algorithm over 100 independent
trials. ‘-’ indicates that PI was less than 5 dB or the algorithm could not converge in all
the trials. ‘akExt(1)’ indicates that the value of the parameter τ of the akExt algorithm
was equal to the fundamental period of the desired signal; ‘akExt(2)’ indicates the
value of τ was equal to the doubled fundamental period. The same with ‘SOS(1)’ and
‘SOS(2)’.

TCExt akExt(1) akExt(2) SOS(1)SOS(2) cICAFICARSOBICPursuit pBSS

PI of s1 48.0 17.6 15.9 41.2 37.3 20.6 13.2 8.9 48.3 7.9

PI of s2 26.9 - - - - - - 8.7 27.8 10.2

PI of s3 12.2 - - - - - - 14.6 10.7 6.7

PI of s6 22.0 34.9 - - - - 20.9 32.2 21.4 -

PI of s7 57.3 42.0 37.7 45.6 41.4 39.4 34.3 35.7 36.2 20.1

a normal vision. He was seated in a comfort and fixed chair, 0.7m far from the
screen of monitor, in a sound and light attenuated RF shielded room.

Three types of geometrical figures(five different-size units for each type) were
presented to the subject, i.e. the circle, the square, and the triangle figures. In
each trial, a type of geometrical figures, say the circle figure, appeared according
to the sequence illustrated in Fig.3. In order to reduce the subject’s expectation,
each trial showed a type of figures randomly (each type was showed in identical
probability). EEG signals were recorded (see Fig.4), sampled at 1000 Hz (thus
each trial had 3174 samples) and bandpass filtered between 0.1 Hz and 200 Hz,
by a 64-channel EEG system (SynAmps2, Neuroscan, at our Lab for Perception
Computing at Shanghai Jiao Tong University, China).

From the original EEG data, we used the proposed algorithm to extract three
VEP components by the following procedure. Suppose we had extracted q (q < 3)
components of VEPs, which corresponded to the first q largest eigenvalues among
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Fig. 3. A stimuli sequence in one trial. The X axis showed the lasting time of the
presence or the non-presence of the figure stimuli. The Y axis showed the relative size
of the geometrical figure.
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Fig. 4. Five-second segments of the original EEGs recorded by sensors (from Channel
44 to Channel 58). (a) EEGs of the Circle Class after the epoch-finding. (b) EEGs
of the Square Class after the epoch-finding. (c) EEGs of the Triangle Class after the
epoch-finding.

all of the eigenvalues of
∑P

i=1(Rz(iτ) + Rz(iτ)T ), and we extracted the next
VEP component:

1. Applied the proposed algorithm to extract the component that corresponded
to the (q + 1)-th largest eigenvalue of

∑P

i=1(Rz(iτ) + Rz(iτ)T );
2. To ensure the extracted component was not the component of artifacts, we

calculated its autocorrelation;
3. Since the components of VEPs exhibited time-locked activation to task-

related events and those of artifacts did not, the autocorrelations of VEP
components had peaks locating at lag 3174, lag 6348, lag 9522, et al., while
those of artifacts components did not. By this method, if we found the ex-
tracted component was not a component of VEPs, then we discarded it and
went back to step 1. It should be noticed that there are many approaches, e.g.
[15], that can help us further distinguishing artifacts from evoked potentials.

This loop continued until we extracted three VEP components; each component
consisted of 120 trials. Then the epoch-finding was conducted using the Neu-
roscan toolbox so that the trials corresponding to the same type of figures were
gathered into a class (Fig.5 shows the average result of the trials belonging to the
same extracted VEP component in each class). Thereby we had three classes,
namely the Circle Class, the Square Class and the Triangle Class.

We randomly selected 60 trials of each extracted component as the training set
and the remained trials of each extracted component as the test set. For classifi-
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Fig. 5. The averaged trials. The signal in i-th row and j-th column is the average
result of the trails belonging to the i-th extracted VEP component of the j-th class
(i, j = 1, 2, 3).

cation, the feature vectors of each class were constructed as follows: we selected
some features from each trial of the first, the second and the third extracted
components, respectively, and these features were concatenated orderly to form
a feature vector. Here we selected 30 features from the frequency components of
each trial according to the MIFS-U algorithm [16], an effective feature selection
method based on mutual information. Finally, we used the multi-category SVM
as the classifier, and the classification accuracy reached 93.2%.

5 Conclusions

We propose a two-stage algorithm for extracting source signals that satisfy some
given temporal structure. The algorithm is suitable to extract the periodic or
quasi-periodic source signals, even if the desired source signals have the same pe-
riod (but they should have different autocorrelation structure). Compared with
many widely-used extraction algorithms, the algorithm has better performance,
verified by simulations and experiments.
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