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Two-Stage Trajectory Optimization for
Autonomous Ground Vehicles Parking Maneuver

Runqi Chai, Member, IEEE, Antonios Tsourdos, Al Savvaris, Senchun Chai, and Yuanqing Xia

Abstract—This paper proposes a two-stage optimiza-
tion framework for generating the optimal parking motion
trajectory of autonomous ground vehicles. The motivation
for the use of this multi-layer optimization strategy relies
on its enhanced convergence ability and computational
efficiency in terms of finding optimal solutions under the
constrained environment. In the first optimization stage,
the designed optimizer applies an improved particle swarm
optimization technique to produce a near-optimal parking
movement. Subsequently, the motion trajectory obtained
from the first stage is used to start the second optimization
stage, where gradient-based techniques are applied. The
established methodology is tested to explore the optimal
parking maneuver for a car-like autonomous vehicle with
the consideration of irregularly parked obstacles. Simula-
tion results were produced and comparative studies were
conducted for different mission cases. The obtained re-
sults not only confirm the effectiveness but also reveal
the enhanced performance of the proposed optimization
framework.

Index Terms—Two-stage optimization, optimal parking
trajectory, autonomous ground vehicles, particle swarm
optimization, irregularly parked obstacles.

I. INTRODUCTION

MOTION planing or trajectory design problems have

been widely researched over the last ten years due to

their increasingly significance in industry and military fields

[1]–[4]. A high-quality/well-designed trajectory is usually a

key for stable movement and design of advanced control

systems [5], [6]. Relative works on this topic can be found

in a number of engineering practices, such as mobile robot

movement design [7], [8], space vehicle maneuver planning

[9]–[11], and autonomous ground vehicle dynamic missions

[12], [13]. More precisely, the authors in [7] constructed a Rie-

mannian metric-based approach to plan the path for tracked-

robot on the raw point cloud. In addition, a collision-free space

maneuver robot motion planning problem was established and

addressed in [9], wherein a hybrid path planning strategy

incorporating a collision detection algorithm and a polyno-

mial interpolation technique was applied to produce feasible

motion trajectories. Besides, Yin and Chen [12] studied an

autonomous wheeled vehicle motion planning task by applying

the spatio-temporal template.
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The mission solved in the present work is a minimum-

time parking trajectory planning for a wheeled vehicle. The

core aim of this problem is to generate a path/trajectory, for the

given autonomous vehicle, to reach the specified parking area

in the shortest time without colliding other vehicles/obstacles

in the environment. Although extensive research work has

been carried out on the design of trajectories for different

mission profiles and many effective methods were successfully

developed for producing the path, it is only in the recent

five years that there has been a growing interest in planning

trajectories via optimization-based strategies [14], [15]. The

motivation for the use of this kind of technique is that in

many real-world trajectory design scenarios, not only the path

feasibility should be preserved but also various performance

indices are desired to be optimized. For this reason, in this

paper, special attentions are given to the implementation of

optimization-based trajectory design methods.

It should be noted that currently, there are mainly two

types of optimization algorithms: the intelligent methods and

traditional gradient-based methods. Contributions made to

implement different optimization techniques in autonomous

vehicle path generation problems can be found in the literature

[16]–[20]. For example, Roberge et al. [16] combined genetic

algorithm with particle swarm optimization (PSO) so as to

generate near-optimal trajectories for fixed-wing unmanned

aerial vehicles in 3-D environment. Similarly, Kim and Lee

[17] optimized the manipulator motion by using a PSO

algorithm with modified initialization strategy. However, a

main disadvantage of applying these intelligent optimization

algorithms is that the computation effort required for the

optimization process is usually high and can hardly be afforded

online.

On the other hand, Li et al. [18] generated the optimal

motions of a wheeled vehicle based on traditional interior

point method (IPM) for fulfilling an automatic parking task.

A similar application of IPM can also be found in [19],

where a higher-order manipulation optimal motion planning

problem was solved successfully. Andreas et al. [20] for-

mulated a multi-vehicle energy-optimal motion optimization

problem with the consideration of obstacle avoidance and

solved it by implementing a barrier functional-based gradient

algorithm. Although these results confirmed the effectiveness

of using gradient-based optimization techniques, the sensitivity

associated with the initial guess value is high and tends to

increase the computational time significantly.

To effectively deal with the issue of using intelligent

or traditional gradient-based optimization algorithms, a multi-

stage optimization framework is designed to optimize the
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parking movement in this study. The novelty of the pro-

posed computational framework is to incorporate an initial

trajectory generator with the gradient-based inner optimizer.

The technique used for this reference trajectory generator

is a modified PSO method with enhanced local exploitation

ability. Compared with traditional single-stage optimization

strategy, using the proposed structure tends to have improved

convergence performance and reduced computational cost.

This will be shown in the simulation section of this paper.

The rest of this paper will be organized as follow: Sec II

constructs the mathematical formulation of the time-optimal

wheeled vehicle automatic parking problem as well as the

collision-free constraints. Following that, in Sec III, the two-

stage computational optimization framework is introduced.

Detailed simulation results and comparative studies are illus-

trated in Sec IV. Finally, the concluding remark is given in

Sec V.

II. AUTONOMOUS GROUND VEHICLE PARKING

OPTIMIZATION PROBLEM

In this section, the parking optimization model of the

wheeled vehicle is formulated. Priory to presenting in detail

the formulation of the parking optimization problem studied in

this research, it is also worth recalling some related works re-

garding different vehicle models and mission scenarios inves-

tigated in the literature. Currently, there exist various vehicle

dynamic systems that can be applied to describe or control the

movement of intelligent vehicles. For instance, in [21], a three-

degree-of-freedom vehicle dynamic model was constructed.

This model was then applied in order to develop a main-

servo loop integrated chassis control system. Considering the

nonholonomic constraint that limits the wheels to roll with no

slip, a kinematic car-like model was established and used in

[22] to plan the trajectory for the autonomous lane change

maneuver. In addition, an integrated vehicle dynamic model

containing the visual recognition system, electrical servo brak-

ing system, and steering system was constructed in [23]. Based

on this integrated model, a nonsingular fast terminal sliding

mode-based emergency braking control strategy was designed.

For the parking trajectory planning problem considered in this

paper, alternatively, we use kinematics of a car-like vehicle to

plan the time-optimal parking trajectories.

A. Vehicle Kinematic Model

In order to describe the movement of a front-steering

vehicle, the equations of motion are firstly constructed. The

vehicle is considered as a rigid-body and the sideslip problem

is ignored. As a result, its equations of motion can be described

as the following system of differential equations:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑝̇𝑥(𝑡) = 𝑣(𝑡) cos(𝜃(𝑡))
𝑝̇𝑦(𝑡) = 𝑣(𝑡) sin(𝜃(𝑡))
𝑣̇(𝑡) = 𝑎(𝑡)
𝑎̇(𝑡) = jerk(𝑡)

𝜃(𝑡) = 𝑣(𝑡) tan(𝜑(𝑡)) 1
𝑙

𝜑̇(𝑡) = 𝜔(𝑡)

(1)

In Eq.(1), (𝑝𝑥, 𝑝𝑦) is the central point of the rear wheel.

𝑡 ∈ [0, 𝑡𝑓 ] denotes the time; 𝑣 and 𝑎 are the vehicle velocity

and acceleration variables, respectively. 𝜃 stands for the orien-

tal angle, whereas 𝜑 refers to the steering angle with regard to

the steering wheel. For brevity reasons, the state variables are

defined as 𝑥 = [𝑝𝑥, 𝑝𝑦, 𝑣, 𝑎, 𝜃, 𝜑]
𝑇 ∈ R

6. The control variables

are composed by the jerk and the front wheel angular velocity

𝜔. That is, 𝑢 = [jerk, 𝜔]𝑇 ∈ R
2. To better illustrate the vehicle

reference frame, a detailed illustration is plotted in Fig.1. Other

vehicle-dependent parameters appeared in Fig.1 are the front

overhang length 𝑛, length between the front and rear wheel 𝑙,
rear overhang 𝑚, and the vehicle width 2𝑏, respectively.
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Fig. 1: Automatic parking mission

B. Automatic Parking Process Constraints

Several mission constraints should be satisfied during the

vehicle movement.

1). State constraints: The tolerable range of the state

variables can be described as:
⎧

⎨

⎩

𝑝𝑥(𝑡) ∈ [𝑝𝑚𝑖𝑛
𝑥 , 𝑝𝑚𝑎𝑥

𝑥 ]
𝑝𝑦(𝑡) ∈ [𝑝𝑚𝑖𝑛

𝑦 , 𝑝𝑚𝑎𝑥
𝑦 ]

𝑣(𝑡) ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]

⎧

⎨

⎩

𝑎(𝑡) ∈ [𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥]
𝜃(𝑡) ∈ [𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥]
𝜑(𝑡) ∈ [𝜑𝑚𝑖𝑛, 𝜑𝑚𝑎𝑥]

(2)

It should be noted that these state constraints are not just

included to make the problem more complex but they do exist

in reality. For example, in order to have enough reaction time

for potential emergencies, the vehicle should maneuver at a

relatively low speed. Hence, a box constraint is assigned to the

vehicle speed. Besides, it is not desired to have a significant

variance in terms of the speed 𝑣(𝑡) as it brings discomfort to

the drivers or passengers. Therefore, certain limits should be

given to the magnitude of 𝑎(𝑡).
2). Control constraints: Certain requirements should also

be given to the control variables. For example,

|jerk(𝑡)| ≤ 𝑑𝑚𝑎𝑥
𝑎

|𝑘̇(𝑡)| ≤ 𝑑𝑚𝑎𝑥
𝑘

(3a)

(3b)

In Eq.(3), 𝑘 = tan 𝜃
𝑙

stands for the instantaneous cur-

vature, whereas 𝑘̇ = 𝜔
𝑙 cos2 𝜃

is the corresponding derivative.

𝑑𝑚𝑎𝑥
𝑎 and 𝑑𝑚𝑎𝑥

𝑘 are the maximum allowable values of the jerk



variable and 𝑘̇, respectively. The aim for imposing a constraint

on the jerk variable is to smoother the actual acceleration

profile. As for the second control constraint (3b), similarly,

it can avoid non-smooth segment in the trajectory, thereby

improving the ride comfort.

3). Parking area constraints and terminal conditions: To

place the vehicle in the specific parking area shown in Fig.1,

constraints should be imposed during the vehicle maneuver

and at the terminal time instant. Since rigid-body is treated

as a rectangular in the 2-D plane, the four corners can be

expressed by:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝐴𝑥, 𝐴𝑦) = (𝑝𝑥 + cos(𝜃)(𝑙 + 𝑛)− 𝑏 sin(𝜃),
𝑝𝑦 + sin(𝜃)(𝑙 + 𝑛) + 𝑏 cos(𝜃))

(𝐵𝑥, 𝐵𝑦) = (𝑝𝑥 + cos(𝜃)(𝑙 + 𝑛) + 𝑏 sin(𝜃),
𝑝𝑦 + sin(𝜃)(𝑙 + 𝑛)− 𝑏 cos(𝜃))

(𝐶𝑥, 𝐶𝑦) = (𝑝𝑥 −𝑚 cos(𝜃) + 𝑏 sin(𝜃),
𝑝𝑦 −𝑚 sin(𝜃)− 𝑏 cos(𝜃))

(𝐷𝑥, 𝐷𝑦) = (𝑝𝑥 −𝑚 cos(𝜃)− 𝑏 sin(𝜃),
𝑝𝑦 −𝑚 sin(𝜃)) + 𝑏 cos(𝜃))

(4)

After the definition of corner points, if a successful park-

ing maneuver is achieved, the following inequality constraints

should hold:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓𝑠𝑙𝑜𝑡(𝐴𝑥) ≤ 𝐴𝑦 ≤ 𝐶𝐿

𝑓𝑠𝑙𝑜𝑡(𝐵𝑥) ≤ 𝐵𝑦 ≤ 𝐶𝐿

𝑓𝑠𝑙𝑜𝑡(𝐶𝑥) ≤ 𝐶𝑦 ≤ 𝐶𝐿

𝑓𝑠𝑙𝑜𝑡(𝐷𝑥) ≤ 𝐷𝑦 ≤ 𝐶𝐿

(5)

where 𝐶𝐿 is the width of the road. 𝑓𝑠𝑙𝑜𝑡 is given by 𝑓𝑠𝑙𝑜𝑡(𝑥) =
−(𝐻(𝑥) + 𝐻(𝑥 − 𝑙𝑆𝐿))𝑙𝑆𝑊 . Here, 𝐻(𝑥) is the unit jump

function. 𝑙𝑆𝐿 and 𝑙𝑆𝑊 represent the length and width of

the parking area. Using the function 𝑓𝑠𝑙𝑜𝑡(𝑥) can effectively

describe the frontier of the desired parking area, and this

function can easily be obtained via the linear combination of

the translation and reflection of 𝐻(𝑥). Similarly, 𝑦 = 𝐶𝐿
is applied to describe the frontier on the other side of the

road. The inequality (5) indicates the vehicle should move

below 𝑦 = 𝐶𝐿 but above 𝑦 = 𝑓𝑠𝑙𝑜𝑡(·) during the entire time

evolution.

To complete the entire mission, some state variables are

required to reach specific values at the terminal time instant.

That is,

𝑣(𝑡𝑓 ) = 0, 𝑎(𝑡𝑓 ) = 0 (6)

This implies the automatic parking will end with a full stop.

4). Obstacle avoidance constraints: In this research,

we are interested in finding optimal parking trajectories in

the presence of irregularly placed obstacles (see obstacle

𝐴
′

𝐵
′

𝐶
′

𝐷
′

in Fig.1). To avoid colliding with other vehicles,

obstacle avoidance constraints should be designed and entailed

in optimization formulation. This is achieved by restricting that

any corner point of one rectangular should be outside the other

rectangular area. It is worth mentioning that if the following

inequality holds true, then the edge point 𝐴 can locate outside

the obstacle 𝐴
′

𝐵
′

𝐶
′

𝐷
′

.

𝑆𝐴′𝐴𝐵′ + 𝑆𝐵′𝐴𝐶′ + 𝑆𝐶′𝐴𝐷′ + 𝑆𝐴′𝐴𝐷′ ≥ 𝑆𝐴′𝐵′𝐶′𝐷′ (7)

In Eq.(7), 𝑆 stands for the area operation. As a result,

if we use Eq.(7) to avoid the collision between the vehi-

cle and the obstacle, eight inequalities should be imposed.

Furthermore, during the optimization process, two additional

collision-free constraints should also be taken into account in

case that the vehicle will not hit the edge of the target parking

slot (e.g. 𝑂 = (0, 0) and 𝐸 = (𝑙𝑆𝐿, 0)). That is, the point 𝑂
and 𝐸 should locate outside the vehicle rectangular area:

{︂

𝑆𝐴𝑂𝐵 + 𝑆𝐵𝑂𝐶 + 𝑆𝐶𝑂𝐷 + 𝑆𝐴𝑂𝐷 ≥ 𝑆𝐴𝐵𝐶𝐷

𝑆𝐴𝐸𝐵 + 𝑆𝐵𝐸𝐶 + 𝑆𝐶𝐸𝐷 + 𝑆𝐴𝐸𝐷 ≥ 𝑆𝐴𝐵𝐶𝐷
(8)

Remark 1. It should be noted that in [15], the authors achieved

the collision-free with respect to 𝑂 and 𝐸 by transforming

these two points to the vehicle’s body frame. However, this

intuitive restriction of the slot corner might introduce discon-

tinuity, which will have negative effects for the optimization

solver. Alternatively, we use an equivalent but continuous

version shown in Eq.(8) to describe it in this study.

C. Objective and Overall Optimization Formulation

Since it is desirable to fulfill the parking movement in the

shortest time, minimizing 𝑡𝑓 is selected as the main objective

function. The objective function 𝐽 , together with the physical

path constraints and obstacle avoidance constraints, formulates

the automatic parking maneuver optimization model. The

overall formulation is summarised as:

minimize 𝐽 = 𝑡𝑓
subject to ∀𝑡 ∈ [𝑡0, 𝑡𝑓 ]

Eq.(1) (dynamic constraints)
Eq.(2),Eq.(3) (state/control constraints)
Eq.(5) (path constraints)
Eq.(6) (terminal condition)
Eq.(7),Eq.(8) (collision-free constraint)

(9)

III. TWO-STAGE TRAJECTORY OPTIMIZATION

FRAMEWORK

In this section, the two-stage trajectory design method

is introduced and applied to address the autonomous vehicle

parking maneuver problem. The discretized version of the

optimal parking problem is firstly defined in Sec III.A. Then

an initial parking movement generator is designed in Sec III.B

so as to produce a feasible and near-optimal parking trajectory.

Subsequently, the generated initial parking trajectory is pro-

vided to the inner gradient optimization solver which will be

discussed in Sec III.C. The overall structure of this two-stage

method is summarised in Sec III.D.

A. Discretized Optimal Parking Model

It is important to remark that the optimal control model

(9) is not solvable in its present form. In order to optimize

the control variables of the automatic parking problem, a

necessary procedure is to parameterize the continuous-time

model. Suppose that the time interval [0, 𝑡𝑓 ] is divided into 𝑁𝑘

segments. The goal of the optimization becomes finding the

optimal control values at all the discrete time instants subject

to the terminal time can be minimized and the constraints

can be satisfied. The state can be obtained by integrating



the dynamics numerically. That is, the optimization model

becomes [10]:

minimize 𝐽 = 𝑡𝑁k

subject to ∀𝑡𝑘, 𝑘 ∈ {1, 2, ..., 𝑁𝑘}
𝑥𝑘+1 = 𝑥𝑘 + ℎ𝑘

∑︀𝑠
𝑖=1 𝑞𝑖𝑓(𝑥𝑘𝑖, 𝑢𝑘𝑖)

𝐶(𝑥𝑘, 𝑢𝑘) ≤ 0
Φ(𝑥𝑁k

, 𝑡𝑁k
) = 0

𝑖 = 1, ..., 𝑠

(10)

in which 𝐶(·, ·) stands for the general form of inequality con-

straints, whereas Φ(𝑥𝑁k
, 𝑡𝑁k

) = [𝑣𝑁k
, 𝑎𝑁k

]𝑇 is the terminal

condition. 𝑞𝑖 is the discretization coefficient and 𝑠 is the stage

of the integration. 𝑥𝑘𝑗 and 𝑢𝑘𝑗 are the intermediate variables

defined on the current time interval [𝑡𝑘, 𝑡𝑘+1]. Compared with

the original model (9), the continuous-time system equations

are transcribed into a series of algebraic equations. This static

version can then be solved by standard optimization techniques

[24].

B. Initial Parking Maneuver Planner

Following the establishment of discretized model, it is

desired to find an efficient optimization algorithm. In this

paper, a two-stage optimization structure is used to search

the optimal solution of Eq.(10). The motivation for the use

of this design philosophy relies on its enhanced convergence

and computational ability. Traditional optimizers tend to be

sensitive with the user-provided initial guess value and they are

likely to get stuck at an infeasible point or local optimal point.

This issue becomes more severe when the number of decision

variable increases. To effectively deal with this issue, an initial

parking movement generator is designed. The method used in

this stage is an adaptive gradient PSO (AGPSO) method. For

completeness, a brief description of this approach is stated

below.

PSO is a simple swarm-based intelligent algorithm. Each

particle among the swarm has a position as well as a velocity

vector. That is,

𝑢𝑗(𝐺) = [𝑢𝑗,1(𝐺), ..., 𝑢𝑗,𝐷(𝐺)]
𝑣𝑗(𝐺) = [𝑣𝑗,1(𝐺), ..., 𝑣𝑗,𝐷(𝐺)]

(11)

in which 𝑗 = 1, 2, ..., 𝑁𝑗 ; 𝑁𝑗 stands for the size of the

swarm. 𝐷 denotes the dimensionality index of the search-

ing space. In this way, each particle located at position 𝑢𝑗

can be treated as a candidate solution. During the evolution

process, we can denote the best position of the 𝑗th particle

as 𝑝𝑗(𝐺) = [𝑝𝑗,1, ..., 𝑝𝑗,𝐷], whereas the best position among

the swarm can be recorded as 𝑔(𝐺) = [𝑔1(𝐺), ..., 𝑔𝐷(𝐺)].
Subsequently, the new velocity vector is updated according to

the definitions of 𝑔 and 𝑝, which can be written as:

𝑣𝑗,𝑑(𝐺+ 1) = 𝑤𝑣𝑗,𝑑(𝐺) + 𝑟1𝑐1(𝑝𝑗,𝑑(𝐺)− 𝑢𝑗,𝑑(𝐺))
𝑟2𝑐2(𝑔𝑑(𝐺)− 𝑢𝑗,𝑑(𝐺))

(12)

In Eq.(12), several parameters are introduced. For example,

𝑤 is the inertia weight parameter and is usually assigned

as a constant. 𝑐1 and 𝑐2 are two acceleration parameters

corresponding to the cognitive component (𝑝𝑗,𝑑(𝐺)−𝑢𝑗,𝑑(𝐺))
and the social component (𝑔𝑑(𝐺)− 𝑢𝑗,𝑑(𝐺)), respectively. 𝑟1

and 𝑟2, on the other hand, are two random parameters defined

on [0, 1]. Based on Eq.(11) and Eq.(12), the new position of

the 𝑗th particle can be computed via:

𝑢𝑗,𝑑(𝐺+ 1) = 𝑢𝑗,𝑑(𝐺) + 𝑣𝑗,𝑑(𝐺+ 1) (13)

To evaluate the quality of the particle, the fitness function

should be introduced. For general unconstrained problems, the

fitness value can simply be set as the objective value. However,

for the constrained parking maneuver planning problem, the

constraint violation value should also be included in the fitness

function so as to reflect the solution feasibility. To do this,

an effective strategy is to calculate the total violation degree

of the particle 𝑉 𝑜𝑙𝑗,𝑑(𝐺) ∈ [0, 1]. The way to compute this

value can be found in [25] and is omitted for space reasons.

Consequently, the augmented fitness value associated with

each particle is computed via:

𝐽aug

j,d (𝐺) =

{︂

𝐽j,d(𝐺), if 𝑉 𝑜𝑙j,d(𝐺) = 0;
𝐽*(𝐺) + 𝐽*(𝐺)𝑉 𝑜𝑙j,d(𝐺), if 𝑉 𝑜𝑙j,d(𝐺) > 0.

(14)

where 𝐽*(𝐺) is the worst objective value among the 𝐺th

iteration.

It is well known that PSO method has a strong glob-

al exploration ability. In order to further enhance its local

exploitation ability, a local gradient operation is embedded

in the algorithm framework. Supposing that 𝑉 𝑜𝑙 and 𝐽 are

differentiable in their searching space, the Jacobian vector of

𝑉 𝑜𝑙 and 𝐽 can be expressed by [26]:

∇𝑢𝐽𝑗 = [
𝜕𝐽j

𝜕𝑢j,1
, ...,

𝜕𝐽j

𝜕𝑢j,d
]

∇𝑢𝑉 𝑜𝑙𝑗 = [
𝜕𝑉 𝑜𝑙j
𝜕𝑢j,1

, ...,
𝜕𝑉 𝑜𝑙j
𝜕𝑢j,d

]
(15)

Based on the Jacobian vector, a local searching direction

that minimizes the objective and constraint violation can be

written as 𝑒𝑗 = −(𝑎1
∇u𝐽j

‖∇u𝐽j‖
+ 𝑎2

∇u𝑉 𝑜𝑙j
‖∇u𝑉 𝑜𝑙j‖

). It is easy to

verify that a decrease with regard to the augmented fitness

function can be achieved by moving the current position

along 𝑒. Specifically, if one calculates the inner product of

⟨𝑒𝑗 ,−(∇𝐽𝑗/‖∇𝐽𝑗‖)⟩ or ⟨𝑒𝑗 ,−(∇𝑉 𝑜𝑙𝑗/‖∇𝑉 𝑜𝑙𝑗‖)⟩, the result

will be negative [26]. It is worth noting that 𝑎1 and 𝑎2 are

two positive parameters. Since the primary task for the initial

parking movement generator is to produce a feasible and near-

optimal reference, these two parameters should be adjusted in

an adaptive way. This is achieved by setting 𝑎1 = 𝑁𝑓/𝑁𝑗

and 𝑎2 = 1 − 𝑎1. Here, 𝑁𝑓 refers to the number of feasible

candidates among the current generation. In this way, more

priorities can be given to optimizing the objective when there

are more feasible candidates among the swarm and vice versa.

After calculating the descent direction 𝑒𝑗 , the current solution

is updated by

𝑢̄𝑗(𝐺) = 𝑢𝑗(𝐺) + 𝑠𝑗𝑒𝑗 (16)

where 𝑠 stands for the step length along 𝑒𝑗 .

Remark 2. The evolution process of the constructed AGPSO

algorithm will continue until the number of generation reaches

the limit. Since the goal of the initial movement generator

is only to produce a qualified guess for the second stage

optimization process, the maximum value of 𝐺 is limited to

𝐺𝑚𝑎𝑥 = 30 for the sake of computational burden.



Remark 3. One advantage of using the AGPSO algorithm in

the first stage is that it requires no physical and theoretical

knowledge of the problem. Moreover, the robustness and

convergence with respect to the particle position and velocity

can be guaranteed by selecting the control parameters 𝑤, 𝑐1
and 𝑐2 properly.

C. Optimization Strategy in the Second Stage

The optimization strategy applied in the second stage is

traditional gradient method (e.g. sequential quadratic program-

ming or IPM). It was investigated in [25] that if a gradient-

based technique starts its Newton iteration from an initial

point which is near to the optimal solution, the algorithm can

successfully converge to desired point with less iteration and

computational time. Therefore, the initial parking maneuver

trajectory obtained from the first stage is provided to the

second stage gradient-based algorithm as a “warm start”. At

this point, most of constraints are less likely to become active

and the search direction is less restricted.

D. Implementation consideration of the Two-Stage Opti-

mization

In order to better illustrate the proposed parking ma-

neuver optimization framework, the overall algorithm im-

plementation flowchart is depicted in Fig.2, while the two-

stage optimization process is extracted and summarised in the

pseudocode (see e.g., Algorithm 1).
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Solve the optimization 

model via gradient-

based algorithms

Initialize              and             
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position and velocity 

vectors for each particle
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Select           and

Itere

,kN jN
maxG

G
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solution via local gradient 

operation (16)

Set G=G+1 maxG G<

No
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Calculate the step 

length and update 

the solution
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If NLP 

tolerance       is 
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e
No

 1Iter Iter= +

Output the optimal 

parking trajectory

Assign the PSO solution 

as the starting point

Yes

Fig. 2: Overall algorithm implementation flowchart

The two-stage optimization process is implemented over

sequential calls to several function files carrying out the

particle initialization, computing the local gradient direction,

performing the Newton iteration, and calculating the step

length. A number of function files are created for different

Algorithm 1 Framework of the two-stage solver

/*1st Stage Optimization*/

Input: Control parameters of the AGPSO 𝑤, 𝑐1, 𝑐2, 𝑟1, 𝑟2,

𝑁𝑗 , 𝑎1, 𝑎2, 𝑁𝑘 and 𝐺;

/*Main Loop*/

Step 1: Initialize the position and velocity vector;

Step 2: Calculate the augmented fitness value for each

particle via Eq.(14);

Step 3: Update the particle via local gradient operation (16);

Step 4: Select 𝑔(𝐺) from the current swarm;

Step 5: Update 𝑎1 and 𝑎2;

Step 6: Update 𝑣𝑗,𝑑 and 𝑢𝑗,𝑑 via Eq.(12) and Eq.(13);

Step 7: Check if 𝐺 ≤ 𝐺𝑚𝑎𝑥 is satisfied,

if not, set 𝐺 = 𝐺+ 1 and go back to Step 2;

Output: The initial parking movement trajectory;

/*2nd Stage Optimization*/

Input: The convergence tolerance of gradient method 𝜖,
𝐼𝑡𝑒𝑟 = 0 and the near-optimal parking trajectory obtained

from Stage 1;

/*Main Loop*/

Step 1: Check the convergence tolerance of the gradient

solver:

(a). if is greater than 𝜖, go to Step 2;

(b). if not, stop the iteration;

Step 2: Search new solution via Newton iteration [27];

Step 3: Compute the step length via the line search method

and update the current solution [10], [24];

Step 4: Set 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1 and go back to Step 1;

Output: The optimal parking maneuver trajectories;

components of the algorithm. For instance, in the first opti-

mization stage, functions are defined to produce:

1) The temporal nodes and discretization coefficients.

2) The initial position and velocity vectors of all the parti-

cles.

3) The total violation degree of each particle.

4) The augmented fitness value, 𝑝𝑗(𝐺) and 𝑔(𝐺).
5) The descent direction 𝑒𝑗 and the locally updated solution.

Besides, several function files are defined in the second

optimization stage so as to calculate:

1) The first and second-order derivatives of the objective

function.

2) The derivative of the parking movement path constraints.

3) The step length regulated by the Goldstein condition [24].

IV. SIMULATION STUDY

In this section, the simulation results of applying the

designed two-stage optimization framework to the autonomous

ground vehicle parking trajectory planning problem construct-

ed in Sec II are shown. The assignment of vehicle-dependent

and mission-dependent parameters is displayed in Table I,

whereas control parameters for the proposed optimization

scheme are tabulated in Table II.

In order to validate the performance of the proposed

design, several mission cases are established and tested. The



TABLE I: Vehicle/mission dependent parameters

Parameters Values Variables Ranges

𝑙SL, m 5 𝑝x, m [−10, 15]
𝑙SW , m 2 𝑝y , m [−2, 3.5]
𝐶𝐿, m 3.5 𝑣, m/s [−2, 2]
𝑛, m 0.8 𝑎, m/𝑠2 [−0.75, 0.75]
𝑙, m 2.5 𝜃, deg [−180∘, 180∘]
𝑚, m 0.7 𝜑, deg [−33∘, 33∘]
2𝑏, m 1.771 𝑡, s [0, 50]

TABLE II: Control parameters of the algorithm

Parameters Values/ranges Parameters Values/ranges

𝑤 (1 + 𝑟1)/2 𝑎1 [0, 1]
𝑐1 1.49445 𝑎2 [0, 1]
𝑐2 1.49445 𝑁k 50
𝑟1 [0, 1] 𝐺max 30
𝑟2 [0, 1] 𝜖 10−6

𝑁j 100 𝐼𝑡𝑒𝑟max 5000

initial conditions, along with the collision-free constraint set-

ting for different case studies, are summarised in Table III. The

positional information for different obstacles 𝑂𝑝, 𝑝 = 1, ..., 6
is given below:

O1











Ax = 6.01, Ay = 2.61
Bx = 9.95, By = 3.30
Cx = 9.64, Cy = 5.05
Dx = 5.70, Dy = 4.35

O2











Ax = 8.03, Ay = 0.66
Bx = 11.97, By = −0.03
Cx = 11.66, Cy = −1.78
Dx = 7.72, Dy = −1.08

O3











Ax = 0.27, Ay = −0.92
Bx = −3.59, By = −1.96
Cx = −4.05, Cy = −0.24
Dx = −0.19, Dy = 0.79

O4











Ax = −1.35, Ay = 2.53
Bx = 2.21, By = 0.71
Cx = 3.02, Cy = 2.29
Dx = −0.55, Dy = 4.11

O5











Ax = 5.25, Ay = 0.50
Bx = 9.18, By = 1.26
Cx = 9.51, Cy = 0.48
Dx = 5.59, Dy = −1.24

O6











Ax = 0.52, Ay = −1.25
Bx = −3.43, By = −1.91
Cx = −3.72, Cy = −0.16
Dx = 0.22, Dy = 0.50

TABLE III: Automatic parking mission cases

Case No. Initial conditions Obstacle position 𝑂i

1







𝑝x(0) = 10.70
𝑝y(0) = 1.5
𝜃(0) = 0

No obstacle

2







𝑝x(0) = 10.70
𝑝y(0) = 1.5
𝜃(0) = 0

Obstacles 1&2

3







𝑝x(0) = 10.70
𝑝y(0) = 1.5
𝜃(0) = 0

Obstacles 1&3

4







𝑝x(0) = 10.70
𝑝y(0) = 1.5
𝜃(0) = 0

Obstacles 1&2&3

5







𝑝x(0) = 9.70
𝑝y(0) = 2.40
𝜃(0) = −5

Obstacles 4&5

6







𝑝x(0) = 9.70
𝑝y(0) = 2.4
𝜃(0) = −5

Obstacles 4&5&6

The state boundary values at the terminal time 𝑡𝑓 should

satisfy 𝑥𝑓 = [𝑣𝑓 , 𝑎𝑓 ]=[0, 0]. The control constraints assigned

to the jerk and curvature derivative are given by jerk(𝑡) ∈
[−0.5, 0.5] and 𝑘̇(𝑡) ∈ [−0.6, 0.6], respectively. All the sim-

ulation results were generated applying Matlab 2016b under

Windows 10 and Intel (R) Core(TM) i7-4790 CPU, with 12.00

GB RAM.

A. Parameter analysis

In this subsection, the impact of different control pa-

rameters on the computational time and convergence ability

is firstly studied. This analysis includes: 1). the influence of

the number of temporal node 𝑁𝑘; and 2). the impact of the

convergence tolerance value 𝜖.
To assess the convergence speed of the AGPSO opti-

mization with respect to 𝑁𝑘, the goal attainment value is

used as the primary indicator. Take mission case 2 as an

example, the goal attainment value 𝜇𝑡f ∈ [0, 1] is computed

by 𝜇𝑡f = 1 −
𝐽aug−𝑡*f
𝑡max
f

−𝑡*
f

, where 𝑡*𝑓 and 𝑡𝑚𝑎𝑥
𝑓 are set to 15 and

20, respectively. By specifying 𝑁𝑘 = (50, 75, 100, 150), the

results are depicted in Fig.3.
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Fig. 3: Convergence results with respect to 𝑁𝑘

Fig.3 presents the results on the goal attainment value

versus the number of generation 𝐺 plane. Although using

a large 𝑁𝑘 can improve the approximation accuracy of the

continuous-time model, the number of decision variables will

be increased. As a result, the convergence speed of the

AGPSO is decreased significantly. Since the aim of the first

stage optimization is only to produce a near-optimal parking

movement to warm start the second stage optimization, a

relatively small 𝑁𝑘 value (e.g., 𝑁𝑘 = 50) is used.

Furthermore, it is found that the second stage opti-

mization process tends to be sensitive with respect to the

convergence tolerance value 𝜖. Using case 1 as an instance,

a sensitivity analysis was performed by specifying different

values of 𝜖 and the results are displayed in Table IV. According

TABLE IV: Sensitivity analysis with respect to 𝜖

Values for 𝜖 1e-4 1e-5 1e-6 1e-7 1e-8

𝑡f (s) 15.072 15.045 14.140 14.128 14.122

𝑡p (s) 44.384 44.775 45.324 66.541 82.337

to Table IV, a better solution can be obtained by using a smaller

index of accuracy 𝜖. However, the computational time 𝑡𝑝 is

monotonically increasing as 𝜖 becomes tighter. To balance the

solution optimality and the computational burden, 𝜖 is set to

10−6 for the test trials.



B. Optimal Parking Maneuver Trajectories

The optimal parking maneuver trajectory for different

mission cases are partly displayed and the effectiveness of the

obtained results is analyzed in this subsection. More precisely,

the maneuver profiles for cases 3-6 are plotted in Fig.4,

whereas the corresponding optimized state and control profiles

are depicted in Figs.5-9. Different from most previous works

[14], [28], wherein regularly parked obstacles were considered,

we are interested in finding optimal parking trajectories with

the consideration of irregularly placed obstacles. Moreover,

in case 4 and case 6, the target parking area is occupied

partly by other vehicles. As can be seen from Figs.4-9, the

proposed two-stage optimization framework is able to optimize

the parking maneuver without violating the vehicle path,

terminal and collision-free constraints. In terms of the solution

optimality, this can be partly reflected by the calculated control

evolution profiles (especially the jerk trajectory). Since the jerk

variable does not appear in the path constraint and it appears

in the dynamics linearly, we can expect the jerk has a bang-

singular-bang behaviour for any 𝑡 ∈ [0, 𝑡𝑓 ]. This conclusion

can also be analogized according to the Proposition 3 stated

in [10].
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Fig. 4: Parking maneuver for Cases 3-6

A significant difference of the parking movement can be

found between case 5 and case 6. This can be explained that in

case 6, the desired parking area is largely occupied by another

vehicle. When the vehicle enters the parking area, it only has

limited rooms to adjust its attitude. As a result, to meet the

specific final boundary conditions, more number of maneuver

are required at the expense of objective value (e.g. final time

𝑡𝑓 ).

C. Comparison Against Other Techniques

This subsection presents a comparative study in terms

of the optimal parking movement achieved by performing

the proposed two-stage strategy and other optimization-based

trajectory planning techniques reported in the literature. For

instance, an IPM-based direct transcription method outlined

in [15] and an artificial bee colony-based (ABC) intelligent
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Fig. 5: Optimal trajectories for Case 1
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Fig. 6: Optimal trajectories for Case 3
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Fig. 7: Optimal trajectories for Case 4
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Fig. 8: Optimal trajectories for Case 5
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Fig. 9: Optimal trajectories for Case 6

optimization method studied in [29]. For the purpose of com-

parison, the default setting suggested in the original paper is

used. Detailed optimization results including the objective and

process time 𝑡𝑝 for different parking scenarios are summarised

in Table V.

TABLE V: Computational results for different methods

Case

No.

IPM-based ABC-based Proposed

𝑡f (s) 𝑡p (s) 𝑡f (s) 𝑡p (s) 𝑡f (s) 𝑡p (s)

1 14.140 27.996 15.091 157.263 14.140 45.324

2 14.943 179.311 15.224 163.408 14.929 68.232

3 14.982 222.891 15.576 161.367 14.955 76.734

4 15.558 264.382 15.971 159.192 15.374 88.380

5 16.707 211.600 17.053 147.135 16.569 75.121

6 27.147 289.523 28.506 156.381 26.723 147.192

It is important to note that in this study, we are interested

in finding an optimization strategy such that the computational

time 𝑡𝑝 can be decreased yet the solution optimality can be

maximally preserved. Hence, compared with the 𝑡𝑓 results, 𝑡𝑝
is rather important and should be given more attentions when

assessing the performance of different algorithms. From the

results presented in Table V, it can be seen that the optimal

objective results 𝑡𝑓 calculated using the proposed method

and single-stage IPM-based approach investigated in [15] are

comparable. For the normal case (e.g. case 1), the IPM-based

direct method can generate the parking trajectory with the

smallest computational cost. However, when more irregular

collision-free constraints are considered in the optimization

model, it becomes difficult for a single-stage optimization

structure to converge. Alternatively, the two-stage optimization

framework tends to perform better in terms of achieving

enhanced convergence speed (small 𝑡𝑝 values) and objective

values. This further confirms the superiority of using the

investigated scheme to compute the optimal parking maneuver.

Apart from the objective value, attentions should also be

given to the passenger’s comfort of the obtained solutions. To

assess the comfort of passengers, certain evaluation metrics

are desired. It is worth noting that one important factor

that could have significant influences with respect to the

passenger’s comfort is the path smoothness. By applying the

information of the jerk and 𝑘̇, a comfort indicator and a path

smoothness indicator are defined. For example, the peak jerk

value 𝐼𝑛𝑑1 = max(|𝑗𝑒𝑟𝑘|) and 𝐼𝑛𝑑2 =
∫︀ 𝑡f

0
𝑘̇𝑑𝑡, respectively.

The comparative results for different parking scenarios are

summarised and tabulated in Table VI.

TABLE VI: Comparative results for different methods

Case

No.

IPM-based ABC-based Proposed

𝐼𝑛𝑑1 𝐼𝑛𝑑2 𝐼𝑛𝑑1 𝐼𝑛𝑑2 𝐼𝑛𝑑1 𝐼𝑛𝑑2

1 0.50 1.0720 0.50 1.2175 0.50 1.0720

2 0.50 0.3063 0.50 0.5384 0.50 0.3061

3 0.50 1.0024 0.50 1.4783 0.50 1.0049

4 0.50 0.6831 0.50 0.7347 0.50 0.6775

5 0.50 0.0805 0.50 0.1177 0.50 0.0798

6 0.50 2.2058 0.48 2.8562 0.50 2.0141

As can be observed from Table VI, all the algorithms

can produce the parking trajectory without violating the jerk

path constraint. The proposed method can produce smoother

results than its counterparts for most test cases. Interestingly, a

relatively uneven performance can be found in the ABC-based

results. This is because it applies the random initialization pro-

cess and stochastic evolutionary strategies. Hence, it tends to

contain more fluctuations with respect to the control variables

[24].

Remark 4. From Table V, the computational cost results

obtained via a single gradient optimizer might experience a

significant variance between different cases. This is mainly

caused by the collision-free constraints. One obstacle will

result in eight path constraints and the increasing number of

constraints entailed in the optimization model will tighter the

searching space of the optimization process which in turn slow

down the convergence speed.

D. Convergence and Robustness Analysis

Another attempt is carried out so as to analyze the

convergence ability and robustness of the proposed two-

stage optimization structure. A dispersion experiment was

performed for the parking case 5 with 1000 Monto-Carlo trials.

The initial conditions of the vehicle are perturbed and the

random initialization data are summarised in Table VII.



TABLE VII: Dispersions of initial conditions

Initial states Distribution 3-𝜎 range

𝑝x(0), m Uniform ±5%

𝑝x(0), m Uniform ±5%

𝑣(0), m/s Zero-mean Gaussian 0.25

𝑎(0), m/𝑠2 Zero-mean Gaussian 0.25

𝜃(0), deg Uniform ±5%

𝜑(0), deg Uniform ±5%

Comparative study was made to analyze the performance

of different gradient optimization strategies, such as the single

IPM-based and single SQP-based and the two-stage optimiza-

tion framework. It is important to mention that in this test, the

maximum number of Newton iteration 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 is limited to

500. The convergence results of the dispersion experiment are

established in Table VIII.

TABLE VIII: Convergence results for different strategies

Different methods 𝑁s 𝑁inf 𝑁m
Successful

rate (%)

Single optimization

(Pure SQP)
183 116 701 18.3

Single optimization

(Pure IPM)
210 78 712 21.0

Two-stage optimization

(AGPSO+SQP)
719 28 253 71.9

Two-stage optimization

(AGPSO+IPM)
733 19 248 73.3

As can be observed from Table VIII, three performance

indicators are included. That is, the times of successful solu-

tion found 𝑁𝑠, the times of infeasible solution detected 𝑁𝑖𝑛𝑓 ,

and the times of maximum iteration exceeded 𝑁𝑚. It is ob-

vious that compared with SQP optimization method, the IPM

tends to have better solution-finding ability for the problem

investigated in this study. This can be reflected by the fact that

𝑁𝑠 achieved using IPM is generally larger than that of SQP

method. Besides, the two-stage approach is able to achieve a

higher successful rate with respect to finding optimal solutions

compared with the single optimization structure. Therefore, it

can be concluded that the implementation of stage 1 (initial

parking movement generator) can have positive influences for

improving the computational time and convergence ability of

the parking optimization process.

V. CONCLUDING REMARKS AND FUTURE WORKS

In this investigation, a hybrid optimization structure was

constructed and applied to address the autonomous vehicle

parking motion planning problem. In order to effectively

handle the sensitivity issue, an initial parking movement

generator based on an adaptive gradient particle swarm op-

timization algorithm was designed. In this way, the stage-two

gradient-based solver can start the solution-finding iteration

at a near-optimal point, thereby improving the computational

efficiency as well as the convergence ability. This conclusion

was verified by carrying out a number of case studies and

comparative simulations. Moreover, dispersion experiments

were also performed and the results revealed the proposed

two-stage strategy can have a more robust performance than

traditional single-stage optimization structures.

Our follow-up work will focus on enhancing the stability

of the proposed two-stage optimization algorithm such that

it can be applied in dealing with more complicated vehicle

models and automatic driving mission scenarios. Furthermore,

it would be worthwhile to take into account some potential

model errors and environmental uncertainties during the op-

timization process. Moreover, an integrated parking trajectory

planning and tracking control system will also be designed by

applying multi-layer optimization-based techniques.
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