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We study the implications of including many covariates in a first-step estimate entering a two-step
estimation procedure. We find that a first-order bias emerges when the number of included covariates is
“large” relative to the square-root of sample size, rendering standard inference procedures invalid. We show
that the jackknife is able to estimate this “many covariates” bias consistently, thereby delivering a new
automatic bias-corrected two-step point estimator. The jackknife also consistently estimates the standard
error of the original two-step point estimator. For inference, we develop a valid post-bias-correction
bootstrap approximation that accounts for the additional variability introduced by the jackknife bias-
correction. We find that the jackknife bias-corrected point estimator and the bootstrap post-bias-correction
inference perform excellent in simulations, offering important improvements over conventional two-step
point estimators and inference procedures, which are not robust to including many covariates. We apply
our results to an array of distinct treatment effect, policy evaluation, and other applied microeconomics
settings. In particular, we discuss production function and marginal treatment effect estimation in detail.

Key words: Many covariates asymptotics, Robust inference, Bias Correction, Resampling Methods,
M-estimation

JEL Codes: C12, C13, C14, C21

1. INTRODUCTION

Two-step estimators are very important and widely used in empirical work in Economics and
other disciplines. This approach involves two estimation steps: first an unknown quantity is
estimated, and then this estimate is plugged in a moment condition to form the second and
final point estimator of interest. For example, inverse probability weighting (IPW) and generated
regressors methods fit naturally into this framework, both used routinely in treatment effect and

The editor in charge of this paper was Aureo de Paula.
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policy evaluation settings. In practice, researchers often include many covariates in the first-
step estimation procedure in an attempt to flexibly control for as many confounders as possible,
even after model selection or model shrinkage has been used to select out some of all available
covariates. Conventional (post-model selection) estimation and inference results in this context,
however, assume that the number of covariates included in the estimation is “small” relative to
the sample size, and hence the effect of overfitting in the first estimation step is ignored in current
practice.

We show that two-step estimators can be severely biased when too many covariates are
included in a linear-in-parameters first-step, a fact that leads to invalid inference procedures even
in large samples. This crucial, but often overlooked fact implies that many empirical conclusions
will be incorrect whenever many covariates are used. For example, we find from a very simple
simulation setup with a first step estimated with 80 i.i.d. variables, sample size of 2,000, and even
no misspecification bias, that a conventional 95% confidence interval covers the true parameter
with probability 76% due to the presence of the many covariates bias we highlight in this
article (Section 7).1 This result is not specific to our simulation setting, as our general results
apply broadly to many other treatment effect, policy evaluation, and applied microeconomics
settings: IPW estimation under unconfoundedness, semiparametric difference-in-differences,
local average response function estimation, marginal treatment effects, control function methods,
and production function estimation, just to mention a few other popular examples.

We illustrate the usefulness of our results by considering several applications in applied
microeconomics. In particular, we discuss in detail production function (Olley and Pakes, 1996)
and marginal treatment effect (Heckman and Vytlacil, 2005) estimation when possibly many
covariates/instruments are present. The latter application offers new estimation and inference
results in instrumental variable (IV) settings allowing for treatment effect heterogeneity and
many covariates/instruments.

The presence of the generic many covariates bias we highlight implies that developing more
robust procedures accounting for possibly many covariates entering the first step estimation
is highly desirable. Such robust methods would give more credible empirical results, thereby
providing more plausible testing of substantive hypotheses as well as more reliable policy
prescriptions. With this goal in mind, we show that jackknife bias-correction is able to remove the
many covariates bias we uncover in a fully automatic way. Under mild conditions on the design
matrix, we prove consistency of the jackknife bias and variance estimators, even when many
covariates are included in the first-step estimation. Indeed, our simulations in the context of MTE
estimation show that jackknife bias-correction is quite effective in removing the many covariates
bias, exhibiting roughly a 50% bias reduction (Section 7). We also show that the mean squared
error of the jackknife bias-corrected estimator is substantially reduced whenever many covariates
are included. More generally, our results give a new, fully automatic, jackknife bias-corrected
two-step estimator with demonstrably superior properties to use in applications.

For inference, while the jackknife bias correction and variance estimation deliver a valid
Gaussian distributional approximation in large samples, we find in our simulations that the
associated inference procedures do not perform as well in small samples. As discussed
in Calonico et al. (2018) in the context of kernel-based non-parametric inference, a crucial
underlying issue is that bias correction introduces additional variability not accounted for in
samples of moderate size (we confirm this finding in our simulations). Therefore, to develop better
inference procedures in finite samples, we also establish validity of a bootstrap method applied

1. Including eighty regressors is quite common in empirical work: e.g., settings with fifty residential dummy
indicators, a few covariates entering linearly and quadratically, and perhaps some interactions among these variables. The
Supplementary Appendix discusses several examples employing two-step estimators with possibly many covariates.
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to the jackknife-based bias-corrected Studentized statistic, which can be used to construct valid
confidence intervals and conduct valid hypothesis tests in a fully automatic way. This procedure
is a hybrid of the wild bootstrap (first-step estimation) and the multiplier bootstrap (second-
step estimation), which is fast and easy to implement in practice because it avoids recomputing
the relatively high-dimensional portion of the first estimation step. Under generic regularity
conditions, we show that this bootstrap procedure successfully approximates the finite sample
distribution of the bias-corrected jackknife-based Studentized statistic, a result that is also borne
out in our simulation study.

Put together, our results not only highlight the important negative implications of overfitting
the first-step estimate in generic two-step estimation problems, which leads to a first order many
covariates bias in the distributional approximation, but also provide fully automatic resampling
methods to construct more robust estimators and inference procedures. Furthermore, because
our results remain asymptotically valid when only a few covariates are used, they provide strict
asymptotic improvement over conventional methods currently used in practice. All our results are
fully automatic and do not require additional knowledge about the data-generating process, which
implies that they can be easily implemented in empirical work using straightforward resampling
methods on any computing platform.

In the remainder of this introduction section, we discuss some of the many literatures this
article is connected to. Then, the rest of the article unfolds as follows. Section 2 introduces
the setup and gives an overview of our results. Section 3 gives details on the main properties
of the two-step estimator, in particular characterizing the non-vanishing bias due to many
covariates entering the first-step estimate. Section 4 establishes validity of the jackknife bias and
variance estimator, and therefore presents our proposed bias-corrected two-step estimator, while
Section 5 establishes valid distributional approximations for the jackknife-based bias-corrected
Studentized statistic using a carefully modified bootstrap method. Section 6 applies our main
results to two examples: production function (Olley and Pakes, 1996) and marginal treatment
effect (Heckman and Vytlacil, 2005) estimation, while six other treatment effect, programme
evaluation and applied microeconomics examples are discussed in the Supplementary Appendix
(Section SA-5) to conserve space. Section 7 summarizes the main results from an extensive Monte
Carlo experiment and an empirical illustration building on the work of Carneiro et al. (2011).
Finally, Section 8 concludes. The Supplementary Appendix also contains methodological and
technical details, includes the theoretical proofs of our main theorems as well as other related
results, and reports additional numerical evidence.

1.1. Related literature

Our work is related to several interconnected literatures in econometrics and statistics.

1.1.1. Two-step semiparametrics. From a classical semiparametric perspective, when
the many included covariates in the first-step are taken as basis expansions of some underlying
fixed dimension regressor, our final estimator becomes a two-step semiparametric estimator with
a non-parametric series-based preliminary estimate. Conventional large sample approximations
in this case are well known (e.g. Newey and McFadden, 1994; Chen, 2007; Ichimura and Todd,
2007, and references therein). From this perspective, our article contributes not only to this
classical semiparametric literature, but also to the more recent work in the area, which has
developed distributional approximations that are more robust to tuning parameter choices
and underlying assumptions (e.g. smoothness). In particular, first, Cattaneo et al. (2013) and
Cattaneo and Jansson (2018) develop approximations for two-step non-linear kernel-based
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semiparametric estimators when possibly a “small” bandwidth is used, which leads to a first-
order bias due to undersmoothing the preliminary kernel-based non-parametric estimate, and
show that inference based on the non-parametric bootstrap automatically accounts for the small
bandwidth bias explicitly, thereby offering more robust inference procedures in that context.2

Second, Chernozhukov et al. (2018) study the complementary issue of “large” bandwidth or
“small” number of series terms, and develop more robust inference procedures in that case. Their
approach is to modify the estimating equation so that the resulting new two-step estimator is less
sensitive to oversmoothing (i.e. underfitting) the first-step non-parametric estimator. Our article
complements this recent literature by offering new inference procedures with demonstrably more
robust properties to undersmoothing (i.e. overfitting) a first step series-based estimator, results
that are not currently available in the semiparametrics literature. See Section 3 for more details.

1.1.2. High-dimensional models. Our results go beyond semiparametrics because we
do not assume (but allow for) the first-step estimate to be a non-parametric series-based estimator.
In fact, we do not rely on any specific structure of the covariates in the first step, nor do we rely
on asymptotic linear representations. Thus, our results also contribute to the literature on high-
dimensional models in statistics and econometrics (e.g. Mammen, 1989, 1993; El Karoui et al.,
2013; Cattaneo et al., 2018b; Li and Müller, 2017, and references therein) by developing generic
distributional approximations for two-step estimators where the first-step estimator is possibly
high-dimensional. See also Fan et al. (2011) for a survey and discussion on high-dimensional
and ultra-high-dimensional models.3 A key distinction here is that the class of estimators we
consider is defined through a moment condition that is non-linear in the first step estimate
(e.g. propensity score, generated regressor, etc.). Previous work on high-dimensional models
has focused exclusively on either linear least squares regression or one-step (possibly non-
linear) least squares regression. In contrast, this article covers a large class of two-step non-linear
procedures, going well beyond least squares regression for the second step estimation procedure.
Most interestingly, our results show formally that when many covariates are included in a first-
step estimation the resulting two-step estimator exhibits a bias of order k/

√
n in the distributional

approximation, where k denotes the number of included covariates and n denotes the sample size.
This finding contrasts sharply with previous results for high-dimensional linear regression models
with many covariates, where it has been found that including many covariates leads to a variance
contribution (not a bias contribution as we find herein) in the distributional approximation, which
is of order k/n (not k/

√
n as we find herein). By implication, the many covariates bias we uncover

in this article will have a first-order effect on inference when fewer covariates are included relative
to the case of high-dimensional linear regression models.

1.1.3. Ultra-high-dimensional models and covariate selection. Our results also have
implications for the recent and rapidly growing literature on inference after covariate/model
selection in ultra-high-dimensional settings under sparsity conditions (e.g. Belloni et al., 2014;
Farrell, 2015; Belloni et al., 2017, and references therein). In this literature, the total number

2. A certain class of linear semiparametric estimators has a very different behaviour when undersmoothing the
first step non-parametric estimator; see Cattaneo et al. (2010, 2014a,b) and Cattaneo et al. (2018a) for discussion and
references. In particular, their results show that undersmoothing leads to an additional variance contribution (due to the
underlying linearity of the model), while in the present article we find a bias contribution instead (due to the non-linearity
of the models considered).

3. We call models high-dimensional when the number of available covariates is at most a fraction of the sample
size and ultra-high-dimensional when the number of available covariates is larger than the sample size.
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of available covariates/instruments is allowed to be much larger than the sample size, but the
final number of included covariates/instruments is much smaller than the sample size, as most
available covariates are selected out by some penalization or model selection method (e.g.
LASSO) employing some form of a sparsity assumption. This implies that the number of included
covariates/instruments effectively used for estimation and inference (k in our notation) is much
smaller than the sample size, as the underlying distribution theory in that literature requires
k/

√
n=o(1). Therefore, because k/

√
n=O(1) is the only restriction assumed in this article, our

results shed new light on situations where the number of selected or included covariates, possibly
after model selection, is not “small” relative to the sample size. We formally show that valid
inference post-model selection requires that a relatively small number of covariates enter the final
specification, since otherwise a first-order bias will be present in the distributional approximations
commonly employed in practice, thereby invalidating the associated inference procedures. Our
results do not employ any sparsity assumption and allow for any kind of regressors, including
many fixed effects, provided the first-step estimate can be computed.

1.1.4. Large-(N,T) panel data. Our findings are also qualitatively connected to the
literature on non-linear panel models with fixed effects (Fernandez-Val and Weidner, 2018, and
references therein) in at least two ways. First, in that context a first-order bias arises when the
number of time periods (T ) is proportional to the number of entities (N), just like we uncover
a first-order bias when k ∝√

n, and in both cases this bias can be heuristically attributed to an
incidental parameters/overfitting problem. Second, in that literature jackknife bias correction was
shown to be able to remove the large-(N,T ) bias, just like we establish a similar result in this article
for a class of two-step estimators with high-dimensional first-step. Beyond these two superficial
connections, however, our findings are both technically and conceptually quite different from the
results already available in the large-(N,T ) non-linear panel fixed effects literature.

1.1.5. Applications. From a practical perspective, our results offer new inference
results for many popular estimators in programme evaluation and treatment effect settings
(e.g. Abadie and Cattaneo, 2018, and references therein), as well as other areas in empirical
microeconomics (e.g. Ackerberg et al., 2007, and references therein). Section 6.1 discusses
production function estimation, which provides new econometric methodology in the context
of an IO application, while Section 6.2 considers marginal treatment effect estimation, where we
develop new estimation and inference methods in the presence of many covariates/instruments and
heterogeneous IV treatment effects. Furthermore, because our results apply to non-linear settings
in general, we cover many other settings of interest: (1) IPW under unconfoundedness (e.g.
Cattaneo, 2010, and references therein), (2) Semiparametric Difference-in-Differences (Abadie,
2005), (3) Local Average Response Function (Abadie, 2003), (4) Two-Stage Least Squares and
Conditional Moment Restrictions (e.g. Wooldridge, 2010, for a textbook review), and (5) Control
Function Methods (e.g. Wooldridge, 2015, and references therein). All these other examples are
analysed in Section SA-5 of the Supplementary Appendix.

2. SETUP AND OVERVIEW OF RESULTS

We consider a two-step GMM setting where wi = (yT
i ,ri,zT

i )T, i=1,2,...,n, denotes an observed
random sample, and the finite dimensional parameter of interest θ0 solves uniquely the (possibly
over-identified) vector-valued moment condition E[m(wi,μi,θ0)]=0 with μi =E[ri|zi]. Thus,
we specialize the general two-step GMM approach in that we view the unknown scalar μi
as a “generated regressor” depending on possibly many covariates zi ∈R

k , which we take as
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the included variables entering the first-step specification. Our results extend immediately to
vector-valued unknown μi, albeit with cumbersome notation, as shown in Section SA-4.1 of the
Supplementary Appendix. See Section 6.1 for an application with a bivariate first-step.

Given a first-step estimate μ̂i of μi, which we construct by projecting ri on the possibly high-
dimensional covariate zi with least squares, as discussed further below, we study the two-step
estimator:

θ̂ =argmin
θ∈�

∣∣∣∣∣�1/2
n

n∑
i=1

m(wi,μ̂i,θ )

∣∣∣∣∣, (2.1)

where |·| denotes the Euclidean norm, �⊆R
dθ is the parameter space, and �n is a (possibly

random) positive semi-definite conformable weighting matrix with positive definite probability
limit �0. Regularity conditions on the known moment function m(·) are given in the next section.

When the dimension of the included variables zi is “small” relative to the sample size, k =
o(

√
n), textbook large sample theory is valid, and hence estimation and inference can be conducted

in the usual way (e.g. Newey and McFadden, 1994). However, when the dimension of the included
covariates used to approximate the unknown component μi is “large” relative to the sample size,
k =O(

√
n), standard distribution theory fails. To be more specific, under fairly general regularity

conditions, we show in Section 3 that:

V −1/2(θ̂ −θ0 −B) � Normal(0, I), (2.2)

where� denotes convergence in distribution, with limits always taken as n→∞ and k =O(
√

n),
and V and B denoting, respectively, the approximate variance and bias of the estimator θ̂ .
This result has a key distinctive feature relative to classical textbook results: a first-order
bias B emerges whenever “many” covariates are included, that is, whenever k is “large”
relatively to n in the sense that k/

√
n �→0. A crucial practical implication of this finding is

that conventional inference procedures that disregard the presence of the first-order bias will
be incorrect even asymptotically, since V −1/2B=OP(k/

√
n) is non-negligible. For example,

non-linear treatment effect, instrumental variables and control function estimators employing
“many” included covariates in a first-step estimation will be biased, thereby giving over-rejection
of the null hypothesis of interest. In Section 7, we illustrate this problem using simulated data
in the context of instrumental variable models with many instruments/covariates, where we find
that typical hypothesis tests over-reject the null hypothesis four times as often as they should in
practically relevant situations.

Putting aside the bias issue when many covariates are used in the first-step estimation, another
important issue regarding (2.2) is the characterization and estimation of the variance V . Because
the possibly high-dimensional covariates zi are not necessarily assumed to be a series expansion,
or other type of convergent sequence of covariates, the variance V is harder to characterize
and estimate. In fact, our distributional approximation leading to (2.2) is based on a quadratic
approximation of θ̂ , as opposed to the traditional linear approximation commonly encountered
in the semiparametrics literature (Newey, 1994; Chen, 2007; Hahn and Ridder, 2013), thereby
giving a more general characterization of the variability of θ̂ with potentially better finite sample
properties.

Nevertheless, our first main result (2.2) suggests that valid inference in two-step GMM settings
is possible even when many covariates are included in the first-step estimation, if consistent
variance and bias estimators are available. Our second main result (in Section 4) shows that the
jackknife offers an easy-to-implement and automatic way to approximate both the variance and

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/86/3/1095/5101315 by U

niversity of M
ichigan user on 01 M

ay 2019



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[19:34 2/4/2019 OP-REST180083.tex] RESTUD: The Review of Economic Studies Page: 1101 1095–1122

CATTANEO ET AL. MANY INCLUDED COVARIATES 1101

the bias:

T
def= V̂ −1/2(θ̂ −θ0 −B̂) � Normal(0, I). (2.3)

To implement the jackknife method, one first constructs θ̂
(�)

, for which the �th observation is

deleted and then both steps are re-estimated using the remaining observations. Denote by θ̂
(·) =

n−1∑n
�=1 θ̂

(�)
the average of the leave-one-observation-out estimators, then

B̂= (n−1)(θ̂
(·) − θ̂ ), V̂ = n−1

n

n∑
�=1

(θ̂
(�) − θ̂

(·)
)(θ̂

(�) − θ̂
(·)

)T. (2.4)

Simulation evidence reported in Section 7 confirms that the jackknife provides an automatic data-
driven method able to approximate quite well both the bias and the variance of the estimator θ̂ ,
even when many covariates are included in the first-step estimation procedure. An important virtue
of the jackknife is that it can be implemented very fast in special settings, which is particularly
important in high-dimensional situations. Indeed, our first-step estimator will be constructed using
least-squares, a method that is particularly amenable to jackknifing.

While result (2.3) could be used for inference in large samples, a potential drawback is
that the jackknife bias-correction introduces additional variability not accounted for in samples
of moderate size. Therefore, to improve inference further in applications, we develop a new,
specifically tailored bootstrap-based distributional approximation to the jackknife-based bias-
corrected and Studentized statistic. Our method combines the wild bootstrap (first-step) and the
multiplier bootstrap (second-step), while explicitly taking into account the effect of jackknifing
under the multiplier bootstrap law (see Section 5 for more details). To be more specific, our third
and final main result is:

sup
t∈R

dθ

∣∣∣P[T ≤ t]−P
�[T � ≤ t]

∣∣∣→P 0, T � def= V̂ �−1/2
(θ̂

�− θ̂ −B̂�), (2.5)

where θ̂
�

is a bootstrap counterpart of θ̂ , B̂� and V̂ � are properly weighted jackknife bias
and variance estimators under the bootstrap distribution, respectively, and P

� is the bootstrap
probability law conditional on the data. Our bootstrap approach is fully automatic and captures
explicitly the distributional effects of estimating the bias (and variance) using the jackknife, and
hence delivers a better finite sample approximation. Simulation evidence reported in Section 7
supports this result.

In sum, valid and more robust inference in two-step GMM settings with possibly many
covariates entering the first-step estimate can be conducted by combining results (2.3) and (2.5).
Specifically, our approach requires three simple and automatic stages: (1) constructing the two-
step estimator θ̂ , (2) constructing the jackknife bias and variance estimators B̂ and V̂ , and finally
(3) conducting inference as usual but employing bootstrap quantiles obtained from (2.5) instead
of those from the normal approximation. In the remainder of this article we formalize these results
and illustrate them using simulated as well as real data.

3. THE EFFECT OF INCLUDING MANY COVARIATES

In this section, we formalize the implications of overfitting the first-step estimate entering (2.1),
and show that under fairly general conditions the estimator θ̂ , and transformations thereof, exhibit
a first-order bias whenever k is “large”, that is, whenever k ∝√

n. The results in this section justify,
in particular, the distributional approximation in (2.2).
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3.1. Regularity conditions

A random variable is said to be in BM� (bounded moments) if its �th moment is finite, and in
BCM� (bounded conditional moments) if its �th conditional on zi moment is bounded uniformly
by a finite constant. In addition, define the transformation

Hα,δ
i (m)= sup

(|μ−μi|+|θ−θ0|)α≤δ

|m(wi,μ,θ )−m(wi,μi,θ0)|
(|μ−μi|+|θ −θ0|)α .

The following assumption collects some basic notation and regularity conditions.

Assumption 1 (Regularity Conditions). Let 0<δ, α, C <∞ be some fixed constants.

(i) m is twice continuously differentiable in μ with derivatives denoted by ṁ(wi,μ,θ0)=
∂

∂μm(wi,μ,θ0) and m̈(wi,μ,θ0)= ∂2

∂μ2 m(wi,μ,θ0). In addition, m and ṁ are

continuously differentiable in θ .
(ii) Hα,δ

i (m),Hα,δ
i ( ∂m

∂θ
),Hα,δ

i ( ∂ṁ
∂θ

)∈BM1.

(iii) mi, ṁi, m̈i, Hα,δ
i (m̈), ε3

i , |ṁiεi|, |m̈i|ε2
i , |Hα,δ

i (m̈)|ε2
i ∈BCM2, where mi =m(wi,μi,θ ),

ṁi =ṁ(wi,μi,θ ), m̈i =m̈(wi,μi,θ ), and εi =ri −μi.

(iv) M0 =E

[
∂
∂θ

m(wi,μi,θ0)
]

has full (column) rank dθ .

These conditions are standard in the literature. They require smoothness of m(w,μ,θ ) with
respect to both μ and θ , and boundedness of (conditional) moments of various orders. In future
work, we plan to extend our results to non-differentiable second-step estimating equations.

3.2. First-step estimation

We are interested in understanding the effects of including possibly many covariates zi, that is,
in cases where its dimension k is possibly “large” relative to the sample size. For tractability and
simplicity, we consider linear approximations to the unknown component:

μi =E[ri|zi]=zT
i β+ηi, E[ziηi]=0, (3.6)

for a non-random vector β, where ηi represents the error in the best linear approximation. This
motivates the least-squares first-step estimate:

μ̂i =zT
i β̂, β̂ ∈argmin

β∈Rk

n∑
i=1

(ri −zT
i β)2, (3.7)

which is quite common in empirical work. It is possible to allow for non-linear models, but such
methods are harder to handle mathematically and usually do not perform well numerically when zi
is of large dimension. Furthermore, a non-linear approach will be computationally more difficult,
as we discuss in more detail below. As shown in the already lengthy Supplementary Appendix
(Section SA-9), our proofs explicitly exploit the linear regression representation of μ̂i to scale
down the already quite involved technical work. Nevertheless, we also conducted preliminary
theoretical work to verify that the main results presented below carry over to non-linear least-
squares estimators (e.g. logistic regression when ri is binary).

Using the first-step estimate μ̂i in (3.7), we investigate the implications of introducing possibly
many covariates zi, and thus our approximations allow for (but do not require that) k being
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“large” relative to the sample size. Specifically, we show that when k ∝√
n conventional inference

procedures become invalid due to a new bias term in the asymptotic approximations.
In some settings, the covariates zi can have approximation power beyond the first-step

estimation, as it occurs for instance when these covariates are basis expansions. To allow for
this possibility, we also define, for a non-random matrix �,

E[ṁ(wi,μ,θ0)|zi]=�zi +ζ i, E[ziζ
T
i ]=0, (3.8)

where ζ i is the error from the best linear approximation of E[ṁ(wi,μi,θ0)|zi] based on zi. This
approximation error will not be small in general, because our article allows for generic high-
dimensional first-step covariates. However, in some special cases it can be small as we discuss
further below.

The following assumption collects the key restrictions we impose on the first-step procedure.

Assumption 2 (First-Step).

(i) max1≤i≤n |μ̂i −μi|=oP(1).
(ii) E[|ηi|2]=o(n−1/2) and E[|ηi|2]E[|ζ i|2]=o(n−1).

This assumption imposes high-level conditions on the covariates zi entering the first-step
estimate (3.7), covering both series-based non-parametric estimation and, more generally, many
covariates settings. Assumption 2(i) requires uniform consistency of μ̂i for μi only, without a
convergence rate. In Section SA-2 of the Supplementary Appendix we discuss primitive conditions
in different scenarios, covering (1) nonparametric series-based methods (Belloni et al., 2015;
Cattaneo et al., 2018), (2) generic covariates with alternative conditions on the tails of their
distribution, and (3) generic covariates formed using many dummy/discrete regressors. The
assumption also holds easily when covariates are discrete and a fully saturated model is used.
This list is not meant to be exhaustive, and primitive conditions for other cases can be found in
the vast literatures on non-parametric sieve estimation and high-dimensional models. Underlying
this assumption is the implicit requirement that the error from the best linear approximation of
μi based on zi in (3.6) should vanish asymptotically.

Assumption 2(ii) concerns the approximation power of the covariates zi explicitly, measured
in terms of the mean squared error of best linear approximations. It requires, at least, that the best
linear approximation error in (3.6) is sufficiently small relative to the sample size in mean square.
The condition E[|ηi|2]=o(n−1/2) cannot be dropped without affecting the interpretation of the
final estimand θ0 because the first-step best linear approximation error will affect (in general) the
probability limit of the resulting two-step estimator. In other words, either the researcher assumes
that the best linear approximation is approximately exact in large samples, or needs to change the
interpretation of the probability limit of the two-step estimator because of the misspecification
introduced in the first step. The latter approach is common in empirical work, where researchers
often employ a “flexible” parametric model, such as linear regression, Probit or Logit, all of which
are misspecified in general.

Furthermore, the exact quality of approximation for the first-step estimate required in
Assumption 2(ii) depends on the quality of approximation in (3.8). At one extreme, the covariates
zi may not offer any approximation of E[ṁ(wi,μ,θ0)|zi] in mean square, in which case
E[|ζ i|2]=O(1), and hence the relevant restriction becomes E[|ηi|2]=o(n−1). This corresponds
to the case of many generic covariates zi and non-linear E[ṁ(wi,μ,θ0)|zi], that is, cases where
zi are not basis expansions and/or E[ṁ(wi,μ,θ0)|zi] cannot be well approximated by a linear
combination of zi.
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At the other extreme, if E[ṁ(wi,μi,θ0)|zi] can be well approximated by the best linear
mean square prediction based on zi so that, at least, E[|ζ i|2]=O(n−1/2), then the relevant
restriction on the first-step estimate becomes E[|ηi|2]=o(n−1/2). This case encompasses the
standard two-step semiparametric setup, where the covariates zi include basis expansions able
to approximate μi =E[ri|zi] and E[ṁ(wi,μ,θ0)|zi] accurately enough in mean square (usually
justified by smoothness of these conditional expectations). From this perspective, the sufficient
conditions E[|ηi|2]=o(n−1/2) and E[|ζ i|2]=O(n−1/2) reassemble the usual requirement of better
than n1/4-consistency of first-step non-parametric estimators in two-step semiparametrics (see
Cattaneo and Jansson, 2018, and references therein), but this is imposed only on best linear
approximation errors (i.e. misspecification/smoothing bias), which are exacerbated for small k
and not for large k, the latter being the main focus of the present article.

Remark 1 (Extensions). In the Supplementary Appendix, we extend our main results in three
directions. First, in Section SA-4.1 we allow for a multidimensional first-step μi entering the
second-step estimating equation m(w,·,θ ). Second, in Section SA-4.2 we allow for a partially
linear first-step structure as opposed to (3.6). Both extensions are conceptually straightforward
(they require additional notation and tedious algebra), but are nonetheless key to handle the
production function example discussed in Section 6.1. Finally, in Section SA-4.3 we discuss a
special case of two-step estimators where high-dimensional covariates enter both the first-step
(through μi) and the second-step (in an additively separable way). This extension is useful in
the context of marginal treatment effect estimation and inference, as we illustrate in Section 6.2.
Allowing for the high-dimensional covariates to enter the second-step estimating equation in an
unrestricted way makes the problem quite difficult, and therefore we relegate the general case for
future work.

3.3. Distribution theory

It is not difficult to establish θ̂ →P θ0, even when k/
√

n=O(1). Thus, we impose the following
high-level assumption (see the Supplementary Appendix for lower-level conditions).

Assumption 3 (Consistency).

(i) θ̂ →P θ0 the unique solution of E[m(wi,μi,θ )]=0 and an interior point of �.
(ii) �n →P �0 positive definite.

On the other hand, the
√

n-scaled mean squared error and distributional properties of the
estimator θ̂ will change depending on whether k is “small” or “large” relative to the sample size.
To describe heuristically the result, consistency of θ̂ and a second-order Taylor series expansion
give:

√
n(θ̂ −θ0)≈ 1√

n
�0

n∑
i=1

m(wi,μi,θ0) (3.9)

+ 1√
n
�0

n∑
i=1

ṁ(wi,μi,θ0)
(
μ̂i −μi

)
(3.10)

+ 1√
n
�0

n∑
i=1

1

2
m̈(wi,μi,θ0)

(
μ̂i −μi

)2
, (3.11)
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where �0 =−(MT
0 �0M0)−1MT

0 �0.
Term (3.9) will be part of the influence function. Using conventional large sample

approximations (i.e. k fixed or at most k/
√

n→0), term (3.10) contributes to the variability
of θ̂ as a result of estimating the first step, and term (3.11) will be negligible. Here, however, we
show that under the many covariates assumption k/

√
n �→0, both (3.10) and (3.11) will deliver

non-vanishing bias terms. The main intuition is as follows: as the number of covariates increases
relative to the sample size, the error in μ̂i −μi also increases and features in terms (3.10) and
(3.11). This, in turn, affects the finite sample performance of the usual asymptotic approximations,
delivering unreliable results in applications. To be specific, the term (3.10) contributes a leave-in
bias arising from using the same observation to estimate μi and later the parameter θ0, while
the term (3.11) contributes with a bias arising from averaging (non-linear) squared errors in the
estimation of μi.

The following theorem formalizes our main finding. The proof relies on several preliminary
results given in the Supplementary Appendix. Let Z=[z1,z2,··· ,zn]T be the first step included
covariates and �=Z(ZTZ)−ZT be the projection matrix with elements {πij :1≤ i,j≤n}.

Theorem 1 (Asymptotic Normality). Suppose Assumptions 1, 2 and 3 hold. If k =O(
√

n), then
(2.2) holds with

B=�0
1

n

n∑
i=1

E[Bi|Z], V = 1

n
�0

(
V[E[m(wi,μi,θ0)|Z]]+ 1

n

n∑
i=1

V[	 i|Z]
)

�0,

where

Bi =ṁ(wi,μi,θ0)(ri −μi)πii + 1

2
m̈(wi,μi,θ0)

n∑
j=1

(rj −μj)
2π2

ij ,

	 i =m(wi,μi,θ0)+
⎛
⎝ n∑

j=1

E[ṁ(wj,μj,θ0)|Z]πij

⎞
⎠(ri −μi).

Using well-known properties of projection matrices, it follows that B=OP(k/n) and non-
zero in general, and thus the distributional approximation in Theorem 1 will exhibit a first-order
asymptotic bias V −1/2B whenever k is “large” relative to the sample size (e.g., k ∝√

n). In turn,
this result implies that conventional inference procedures ignoring this first-order distributional
bias will be invalid, leading to over-rejection of the null hypothesis of interest and under-coverage
of the associated confidence intervals. Section 7 presents simulation evidence capturing this
phenomena.

To understand the implications of the above theorem, we discuss the two terms in Bi. The
first-term corresponds to the contribution from (3.10), because a first order approximation gives
m(wi,μ̂i,θ0)≈ṁ(wi,μi,θ0)(μ̂i −μi)≈ṁ(wi,μi,θ0)(

∑
jπij(rj −μj)). Because E[rj −μj|zj]=

0, this bias is proportional to the sample average of Cov[ṁ(wi,μi,θ0),ri −μi|zi]πii. Hence the
bias, due to the linear contribution of μ̂i, will be zero if there is no residual variation in the
sensitivity measure ṁ (i.e. V[ṁ(wi,μi,θ0)|zi]=0) or, more generally, the residual variation in
the sensitivity measure ṁ is uncorrelated with the first-step error term (i.e. Cov[ṁ(wi,μi,θ0),
ri −μi|zi]=0).

The second term in Bi captures the quadratic dependence of the estimating equation on the
unobserved μi, coming from (3.11). Because of the quadratic nature, this bias represents the
accumulated estimation error when μ̂i is overfitted. When i �= j, which is the main part of the bias,
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E[m̈(wi,μi,θ0)(rj −μj)2|zi,zj]=E[m̈(wi,μi,θ0)|zi]E[(rj −μj)2|zj], and hence this portion of
the bias will be non-zero unless an estimating equation linear in μi is considered or, slightly more
generally, E[m̈(wi,μi,θ0)|zi]=0. Intuitively, overfitting the first step does not give a quadratic
contribution if the estimating equation is not sensitive to the first step on average to the second
order.

The first bias can be manually removed by employing a leave-one-out estimator of μi.
However, the second bias cannot be removed this way. Furthermore, the leave-one-out estimator
μ̂

(i)
i usually has higher variability compared with μ̂i, hence the second bias will be amplified,

which is confirmed by our simulations.
Chernozhukov et al. (2018) introduced the class of locally robust estimators, which are a

generalization of doubly robust estimators (e.g. Bang and Robins, 2005) and the efficient influence
function estimators (e.g. Cattaneo, 2010, p. 142). These estimators can offer demonstrable
improvements in terms of smoothing/approximation bias rate restrictions and, consequently,
they offer robustness to “small” k (underfitting). See also Chernozhukov et al. (2018) and
Newey and Robins (2018) for related approaches. This type of estimators are carefully constructed
so that (3.10) is removed, but they do not account for (3.11). Because the “large” k bias is in part
characterized by (3.11), locally robust estimators cannot (in general) reduce the bias we uncover in
this article. Therefore, our methods complement locally robust estimation by offering robustness
to overfitting, that is, situations where the first-step estimate includes possibly many covariates.
Cattaneo and Jansson (2018) illustrate this fact in the context of kernel-based estimation.

Consider next the variance and distributional approximation. Theorem 1 shows that the
distributional properties of θ̂ are based on a double sum in general, and hence it does not
have an “influence function” or asymptotically linear representation. Nevertheless, after proper
Studentization, asymptotic normality holds as in (2.2). The following remark summarizes
the special case when the estimator, after bias correction, does have an asymptotic linear
representation.

Remark 2 (Asymptotic Linear Representation). Suppose the conditions of Theorem 1 hold.
If, in addition, E[|ζ i|2]=o(1), then

√
n(θ̂ −θ0 −B)=�0

1√
n

n∑
i=1

{
m(wi,μi,θ0)+E[ṁ(wi,μi,θ0)|zi](ri −μi)

}
+oP(1),

hence θ̂ is asymptotically linear after bias correction even when k/
√

n �→0. However, θ̂ is
asymptotically linear if and only if k/

√
n→0 in general. See Newey (1994) and Hahn and Ridder

(2013) for more discussion on asymptotic linearity and variance calculations.

In practice, one needs to estimate both the bias and the variance to conduct valid statistical
inference. Plug-in estimators could be constructed to this end, though additional unknown
functions would need to be estimated (e.g. conditional expectations of derivatives of the estimating
equation). Under regularity conditions, these estimators would be consistent for the bias and
variance terms. As a practically relevant alternative, we show in the upcoming sections that the
jackknife can be used to estimate both the bias and variance, and that a carefully crafted resampling
method can be used to conduct inference. The key advantage of these results is that they are fully
automatic, and therefore can be used for any model considered in practice without having to
re-derive and plug-in for the exact expressions each time.
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Remark 3 (Delta Method). Our results apply directly to many other estimands via the so-called
delta method. Let ϕ(·) be a possibly vector-valued continuously differentiable function of the
parameter θ0 with gradient ϕ̇(·). Then, under the conditions of Theorem 1,

(
ϕ̇(θ0)V ϕ̇(θ0)T

)−1/2(
ϕ(θ̂ )−ϕ(θ0)−ϕ̇(θ0)B

)
� Normal(0, I),

provided that ϕ̇(θ0) is full rank. Hence, the usual delta method can be used for estimation and
inference in our setting, despite the presence of potentially many covariates entering the first-step
estimate.

Plug-in consistent estimation of the appropriate GMM efficient weighting matrix is also
possible given our regularity conditions, but we do not give details here to conserve space.

4. JACKKNIFE BIAS CORRECTION AND VARIANCE ESTIMATION

We show that the jackknife is able to estimate consistently the many covariate bias and the
asymptotic variance of θ̂ , even when k =O(

√
n), and without assuming a valid asymptotic linear

representation for θ̂ .
The jackknife estimates are constructed by simply deleting one observation at the time and

then re-estimating both the first and second steps. To be more specific, let μ̂
(�)
i denote the first-

step estimate after the �th observation is removed from the dataset. Then, the leave-�-out two-step
estimator is

θ̂
(�) =argmin

θ

∣∣∣∣∣∣�1/2
n

n∑
i=1,i �=�

m(wi,μ̂
(�)
i ,θ )

∣∣∣∣∣∣, �=1,2,...,n.

Finally, the bias and variance estimates are constructed as in (2.4). This approach is fully data-
driven and automatic. In addition, another appealing feature of the jackknife in our case is that
it is possible to exploit the specific structure of the problem to reduce computational burden.
Specifically, because we consider a linear regression fit for the first step, the leave-�-out estimate
μ̂

(�)
i can easily be obtained by

μ̂
(�)
i = μ̂i + μ̂�−r�

1−π��
·πi�, 1≤ i≤n,

where recall that πi� is the (i,�)th element of the projection matrix for the first step �=
Z(ZTZ)−ZT. Since recomputing the first-step estimate can be time-consuming when k is large,
the above greatly simplifies the algorithm and reduces computing time.

To show the validity of the jackknife, we impose the following additional mild assumptions
on the possibly large dimensional covariates zi, captured through the projection matrix of the
first-step estimate.

Assumption 4 (Jackknife).

(i)
∑

1≤i≤nπ2
ii =oP(k).

(ii) max1≤i≤n1/(1−πii)=OP(1).

The first two conditions together correspond to “design balance”, which states that
asymptotically the projection matrix is not “concentrated” on a few observations. They are
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slightly weaker than max1≤i≤nπii =oP(1), which is commonly assumed in the literature on high-
dimensional statistics. In Section SA-2.4 of the Supplementary Appendix we give a concrete
example using sparse dummy covariates where max1≤i≤nπii �=oP(1), but the conditions (i) and
(ii) are satisfied. For more discussion on design balance in linear least squares models see, e.g.
Chatterjee and Hadi (1988). With these conditions, we obtain the following result.

Theorem 2 (Jackknife-Based Valid Inference). Suppose Assumptions 1, 2, 3, and 4 hold. If
k =O(

√
n), then (2.3) holds.

By showing the validity of the jackknife, one can construct confidence intervals and conduct
hypothesis tests using the jackknife bias and variance estimators, and the normal approximation.
In particular, bias correction will not affect the variance of the asymptotic distribution. On the
other hand, any bias correction technique is likely to introduce additional variability, which can
be non-trivial in finite samples. This is indeed confirmed by our simulation studies. In the next
section, we introduce a carefully crafted fully automatic bootstrap method that can be applied to the
bias-corrected Studentized statistic to obtain better finite sample distributional approximations.

Remark 4 (Delta Method). Consider the setup of Remark 3, where the goal is to conduct
estimation and inference for a (smooth) function of θ0. In this case, the estimator is ϕ(θ̂ ). There
are at least three ways to conduct bias correction: (1) plug-in method leading to ϕ(θ̂ −B̂), (2)
linearization-based method leading to ϕ(θ̂ )−ϕ̇(θ̂ )B̂, and (3) direct jackknife of ϕ(θ̂ ). The three
methods are asymptotically equivalent, and can be easily implemented in practice. The same
argument applies to the variance estimator when ϕ(θ0) is the target parameter.

5. BOOTSTRAP INFERENCE AFTER BIAS CORRECTION

In this section we develop a fast, automatic and specifically tailored bootstrap-based approach to
conducting post-bias-correction inference in our setting. The method combines the wild bootstrap
(first-step estimation) and the multiplier bootstrap (second-step estimation) to give an easy-to-
implement valid distributional approximation to the finite sample distribution of the jackknife-
based bias-corrected Studentized statistic in (2.3). See Mammen (1993) for a related result in
the context of a high-dimensional one-step linear regression model without any bias-correction,
and Kline and Santos (2012) for some recent higher-order results in the context of parametric
low-dimensional linear regression models.

Let ω�
i , i=1,2,··· ,n be i.i.d. bootstrap weights with E[ω�

i ]=1, V[ω�
i ]=1, E[(ω�

i −1)3]=0

and finite fourth moment. First, we describe the bootstrap construction of θ̂
�
. We employ the

wild bootstrap to obtain μ̂�
i , mimicking the first-step estimate (3.7): we regress r�

i on zi, where

r�
i = μ̂i +(ω�

i −1)(ri −μ̂i). Then, we employ the multiplier bootstrap to obtain θ̂
�
, mimicking the

second-step estimate (2.1):

θ̂
� =argmin

θ

∣∣∣�1/2
n

n∑
i=1

ω�
i m(wi,μ̂

�
i ,θ )

∣∣∣. (5.12)

Second, we describe the bootstrap construction of B̂ and V̂ ; that is, the implementation of the
jackknife bias and variance estimators under the bootstrap. Because we employ a multiplier
bootstrap, the jackknife estimates need to be adjusted to account for the effective number of
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observations under the bootstrap law. Thus, we have:

B̂� = (n−1)(θ̂
�,(·) − θ̂

�
), V̂ � = n−1

n

n∑
�=1

ω�
�(θ̂

�,(�) − θ̂
�,(·)

)(θ̂
�,(�) − θ̂

�,(·)
)T,

where θ̂
�,(·) =n−1∑n

�=1ω�
� θ̂

�,(�)
, and

θ̂
�,(�) = argmin

θ

∣∣∣∣∣�1/2
n

{
n∑

i=1

[
ω�

i −1(i=�)
]
m(wi,μ̂

�,(�)
i ,θ )

}∣∣∣∣∣, �=1,2,...,n.

Here μ̂
�,(�)
i is obtained by regressing r�

i on zi, without using the �th observation. Equivalently, the
jackknife deletes the �th observation in the first-step wild bootstrap, and reduces the �th weight
ω�

� by 1 in the second-step multiplier bootstrap.
Our resampling approach employs the wild bootstrap to form μ̂�

i , which is very easy and
fast to implement and does not require recomputing the possibly high-dimensional projection
matrix �, and then uses the same bootstrap weights to construct θ̂

�
via a multiplier resampling

approach. It is possible to use the multiplier bootstrap for both estimation steps, which would
give a more unified treatment, but such an approach is harder to implement and does not
utilize efficiently (from a computational point of view) the specific structure of the first-step
estimate. To be more specific, employing the multiplier bootstrap in the first-step estimation
leads to μ̂�

i =zT
i (ZTW�Z)−ZTW�R, where R=[r1,r2,...,rn]T and W� is a diagonal matrix

with diagonal elements {ω�
i }1≤i≤n, which requires recomputing the projection matrix for each

bootstrap replication. In contrast, our bootstrap approach leads to μ̂�
i =zT

i (ZTZ)−ZTR�, where
R� =[r�

1,r�
2,...,r�

n]T. As discussed before, this important practical simplification also occurs
because we are employing a linear regression fit in the first step. Employing the standard non-
parametric bootstrap may also be possible, but additional (stronger) regularity conditions would
be required. Last but not least, we note that combining the jackknife with the multiplier bootstrap
naïvely (i.e. deleting the �th observation with its weight ω�

� altogether in the second step) does
not deliver a consistent variance estimate; see the Supplementary Appendix for details.

Only two additional mild, high-level conditions on the bootstrap analogue first-step and
second-step estimators are imposed as follows.

Assumption 5 (Bootstrap).

(i) max1≤i≤n |μ̂�
i −μ̂i|=oP(1).

(ii) |θ̂�− θ̂ |=oP(1).

The following theorem summarizes our main result for inference employing the bootstrap
after jackknife bias and variance estimation.

Theorem 3 (Bootstrap Validity). Suppose Assumptions 1, 2, 3, 4, and 5 hold. If k =O(
√

n), then
(2.5) holds.

It is common to assume the bootstrap weights ω�
i to have mean 1 and variance 1. For the

jackknife bias and variance estimator to be consistent under the bootstrap distribution, we also
need that the third central moment of ω�

i is zero. Examples include ω�
i =1+e�

i with e�
i following

the Rademacher distribution or the six-point distribution proposed in Webb (2014).
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For inference, consider for example the one dimensional case: dim(θ0)=1. The bootstrap
percentile-t bias-corrected (equal tail) confidence interval for θ0 is[

θ̂ −B̂− q̂1−α/2 ·
√

V̂ , θ̂ −B̂− q̂α/2 ·
√

V̂

]
,

where q̂α = inf{t ∈R : F̂(t)≥α} is the empirical αth quantile of {T �
b :1≤b≤B}, with F̂(t)=

1
B

∑B
b=11[T �

b ≤ t] and T �
b denoting the bootstrap statistic in (2.5) in bth simulation.

6. EXAMPLES

We now apply our results to two examples: production function estimation, which is an IO
application with multidimensional partially linear first-step estimation, and marginal treatment
effect estimation, which relates to IV methods with heterogeneous treatment effects and many
covariates/instruments. The Supplementary Appendix analyses several other examples in applied
microeconomics. For each example, besides the general form of the bias in Theorem 1, we show
that it is possible to further characterize the nature and source of the many covariates bias by
utilizing corresponding identification assumptions in each of the examples.

6.1. Production function

As a first substantive application of our results to empirically relevant problems in applied
microeconomics, we consider production function estimation. For a review of this topic, including
an in-depth discussion of its applicability to industrial organization and other fields in Economics,
see Ackerberg et al. (2007). For concreteness, here we focus on the setting introduced by
Olley and Pakes (1996), and propose new estimation and inference methods for production
functions allowing for possibly many covariates in the first-step estimation. To apply our methods
to this problem, two extensions mentioned previously (multidimensional and partially linear
first-step estimation) are needed, and therefore the results below are notationally more involved.

We use i to index firms (i.e. observations) and t for time. The production function takes the
form:

Yi,t =βLLi,t +βK Ki,t +βAAi,t +Wi,t +Ui,t, (6.13)

where Y ,L,K and A represent (log) output, labour input, capital input and aging effect,
respectively. W is the firm-specific productivity factor, and is a (generalized) fixed effect. The
error term U is either measurement error or a shock that is unpredictable with time-t information,
hence has zero conditional mean (given the right-hand side variables). Since the productivity
factor W is unobserved, (6.13) cannot be used directly to estimate the production function.

Now we discuss briefly the decision process of a firm in each period. First, the firm compares
continuation value to salvage (liquidation) value, and decides whether or not to exit the market.
Upon deciding to stay in business, the firm chooses simultaneously the labour input Li,t and
investment Ii,t , given its private knowledge about productivity Wi,t . Finally, capital stock follows
the classical law of motion.

The first crucial assumption for identification is that there is a one-to-one relationship between
the firm-level decision variable Ii,t and the unobserved state variable Wi,t , which allows inverting
the investment decision and writing Wi,t =ht(Ii,t,Ki,t,Ai,t), with ht unknown and possibly time-
dependent. Then, (6.13) can be written as

Yi,t =βLLi,t +φi,t +Ui,t, φi,t =βK Ki,t +βAAi,t +ht(Ii,t,Ki,t,Ai,t). (6.14)
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The above equation can be used to estimate the labour share βL flexibly using a partially linear
regression approach. The capital share βK and the effect of aging βA, however, are not identified.

To identify βK and βA, Olley and Pakes (1996) use information embedded in the firm’s exit
decision, which is shown as χi,t =1[Wi,t ≥Wt(Ai,t,Ki,t)], where χi,t =1 represents the firm
staying in business, and Wt is a threshold function. Then, we decompose Wi,t+1 into

Wi,t+1 =E[Wi,t+1|Wi,t,χi,t+1 =1]+Vi,t+1.

Conditioning on survival at time t+1 (i.e. χi,t+1 =1) is the same as conditioning on Wi,t , and
hence the conditional expectation in the above display is an unknown function of Wi,t and Wi,t .
The second crucial assumption for identification is that the survival probability, defined as

Pi,t =Pt(Ii,t,Ki,t,Ai,t)=E[χi,t+1|Ii,t,Ki,t,Ai,t], (6.15)

is a valid proxy for Wi,t . Therefore, with the time index progressed by one period, we rewrite
(6.13) as

Yi,t+1 −βLLi,t+1 =βK Ki,t+1 +βAAi,t+1 +g(Pi,t, Wi,t)+Vi,t+1 +Ui,t+1

=βK Ki,t+1 +βAAi,t+1 +g(Pi,t, φi,t −βK Ki,t −βAAi,t)+Vi,t+1 +Ui,t+1. (6.16)

Here we make an important remark on the two error terms and why labour input has been moved to
the left-hand side, which also sheds light on the estimation strategy. Ui,t+1 is either a measurement
error or the conditional expectation error of Yi,t+1 on contemporaneous variables, hence is
orthogonal to time-t+1 information. On the other hand, Vi,t+1 is the conditional expectation error
of χi,t+1 on time-t variables, hence is only orthogonal to time-t information. It is uncorrelated
with Ki,t+1 and Ai,t+1 since they are predetermined, but in general correlated with Li,t+1. This
is the endogeneity problem underlying (6.16), and shows why it cannot be used for estimation
without βL being estimated in a first step.

Now we describe the estimation strategy. For simplicity we make two assumptions: (1) there
are only two periods t =1,2, and (2) the function g is known up to a finite dimensional parameter
λ0. First, we rely on (6.14) to estimate βL and φi,1 with a partially linear regression, which gives
β̂L and φ̂i,1. Second, we use (6.15) to obtain the estimated probability of staying, P̂i,1. These
are the two first-step estimates in this application. Finally, given the preliminary estimates, βK ,
βL and the nuisance parameter λ0 are jointly estimated in the second step. The entire two-step
estimation approach is summarized as follows:

⎡
⎣ β̂K

β̂A

λ̂

⎤
⎦=argmin

βK ,βA,λ

n∑
i=1

[
Yi,2 −β̂LLi,2 −βK Ki,2 −βAAi,2 −g(P̂i,1,φ̂i,1 −βK Ki,1 −βAAi,1,λ)

]2
,

φ̂i,1 =ZT
i,1γ̂ 1, [β̂L,γ̂ T

1 ]T =argmin
β,γ

n∑
i=1

(
Yi,1 −βLi,1 −ZT

i,1γ
)2

,

P̂i,1 =ZT
i,1γ̂ 2, γ̂ 2 =argmin

γ

n∑
i=1

(
χi,2 −ZT

i,1γ
)2

,

with Zi,1 being series expansion based on the variables (Ii,1,Ki,1,Ai,1), in addition to perhaps
other variables.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/86/3/1095/5101315 by U

niversity of M
ichigan user on 01 M

ay 2019



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[19:34 2/4/2019 OP-REST180083.tex] RESTUD: The Review of Economic Studies Page: 1112 1095–1122

1112 REVIEW OF ECONOMIC STUDIES

The estimation problem does not fit into our basic framework for three reasons. First, we
have two estimating equations in the first step, one for (βL,φi,1) and the other for Pi,1. Second,
the model features a parameter (βL) estimated in the first step and then plugged into the second
step estimating equation. Third, φ̂i,1 is no longer a conditional expectation projection, but is
instead obtained from a partially linear regression. As mentioned above, Section SA-4 in the
Supplementary Appendix discusses extensions of our framework that enable us to handle this
application in full generality.

Applying Theorem 1, properly extended using the results in Section SA-4 of the
Supplementary Appendix, we have the following results on bias and variance for the estimator

[β̂K ,β̂A,λ̂
T]T.

Corollary 1 (Asymptotic Normality: Production Function). Assume the assumptions of
Theorem 1 and the example-specific additional regularity conditions summarized in the
Supplementary Appendix hold. Then,

Bi =
(

b1,i +b2,i

)
πii +

n∑
j=1

(
b3,ij +b4,ij +b5,ij

)
π2

ij , 	 i =	1,i +	2,i +	3,i,

where

b1,i =
⎡
⎣Ki,1g22,i

Ai,1g22,i
−g23,i

⎤
⎦Ui,1Vi,2, b2,i =

⎡
⎣Ki,1g12,i

Ai,1g12,i
−g13,i

⎤
⎦(χi,2 −Pi,1)Vi,2

b3,ij =
⎛
⎝−
⎡
⎣Ki,1g22,i

Ai,1g22,i
−g23,i

⎤
⎦g2,i − 1

2

⎡
⎣Ki,1g2,i −Ki,2

Ai,1g2,i −Ai,2
−g3,i

⎤
⎦g22,i

⎞
⎠U2

i,1,

b4,ij =
⎛
⎝−
⎡
⎣Ki,1g12,i

Ai,1g12,i
−g13,i

⎤
⎦g1,i − 1

2

⎡
⎣Ki,1g2,i −Ki,2

Ai,1g2,i −Ai,2
−g3,i

⎤
⎦g11,i

⎞
⎠(χj,2 −Pj,1)2,

b5,ij =
⎛
⎝
⎡
⎣Ki,1g22,i

Ai,1g22,i
−g23,i

⎤
⎦g1,i +

⎡
⎣Ki,1g12,i

Ai,1g12,i
−g13,i

⎤
⎦g2,i +

⎡
⎣Ki,1g2,i −Ki,2

Ai,1g2,i −Ai,2
−g3,i

⎤
⎦g12,i

⎞
⎠(χj,2 −Pj,1)Uj,1,

	1,i =
⎡
⎣Ki,1g2,i −Ki,2

Ai,1g2,i −Ai,2
−g3,i

⎤
⎦(Vi,2 +Ui,2

)

	2,i =−
⎡
⎣Ki,1g2,i −Ki,2

Ai,1g2,i −Ai,2
−g3,i

⎤
⎦g2,iUi,1 −

⎡
⎣Ki,1g2,i −Ki,2

Ai,1g2,i −Ai,2
−g3,i

⎤
⎦g1,i

(
χi,2 −Pi,1

)

	3,i = 1

E[V[Li,1|Zi,1]]0

(
Li,1 −E[Li,1

∣∣∣Zi,1]
)

Ui,1.

We use the abbreviation gi =g(Pi,1,Wi,1,λ0), and further subscripts 1, 2, and 3 of gi are used to
denote its partial derivatives with respect to the first, second and third argument, respectively.
Exact formulas of �0 and 0 are available in the Supplementary Appendix (Section SA-4.2 and
SA-5.7).

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/86/3/1095/5101315 by U

niversity of M
ichigan user on 01 M

ay 2019



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[19:34 2/4/2019 OP-REST180083.tex] RESTUD: The Review of Economic Studies Page: 1113 1095–1122

CATTANEO ET AL. MANY INCLUDED COVARIATES 1113

Some bias terms can be made to zero with additional assumptions. First consider the scenario
that Ui,t is classical measurement error. Then it should be independent of other error terms, which
implies b1,i and b5,ij are zero after taking conditional expectations. Sometimes it is assumed that
all firms survive from time-1 to time-2 (i.e. there is no sample attrition), or the analyst focuses on
a subsample (in which case the parameters have to be reinterpreted). Then χi,2 =Pi,1 =1, hence
b2,i and b4,ij are zero. The variance term 	 i,2 also simplifies.

6.2. Marginal treatment effect

Originally proposed by Björklund and Moffitt (1987), and later developed and popularized by
Heckman and Vytlacil (2005) and Heckman et al. (2006), the marginal treatment effect (MTE)
is an important parameter of interest in programme evaluation and causal inference. Not only it can
be viewed as a limiting version of the local average treatment effect (LATE) of Imbens and Angrist
(1994) for continuous instrumental variables (c.f. Angrist et al., 2000), but also it can be used to
unify and interpret many other treatment effects parameters such as the average treatment effect
or the treatment effect on the treated. Another appealing feature of the MTE is that it provides a
description of treatment effect heterogeneity.

To describe the MTE, we adopt a potential outcomes framework under random sampling.
Suppose (Yi,Ti,Xi,Zi), i=1,2,...,n, is i.i.d., where Yi is the outcome of interest, Ti is a treatment
status indicator, Xi ∈R

dx is a dx-variate vector of observable characteristics, and Zi ∈R
k is k-

variate vector of “instruments” (which may include Xi and transformations thereof). The observed
data is generated according to the following switching regression model, also known as potential
outcomes or the Roy model,

Yi =TiYi(1)+(1−Ti)Yi(0), Yi(1)=g1(Xi)+U1i, Yi(0)=g0(Xi)+U0i, (6.17)

Ti =1[Pi ≥Vi], Pi =P(Zi)=E[Ti|Zi], Vi|Xi ∼Uniform[0,1], (6.18)

where Yi(1) and Yi(0) are the potential outcomes when an individual receives the treatment or not,
(U1i,U0i,Vi) are unobserved error terms, and Pi is the propensity score or probability of selection.
The selection equation (6.18) is taken essentially without loss of generality to be of the single
threshold-crossing form (see Vytlacil, 2002, for more discussion), though this representation may
affect the interpretation of the unobserved heterogeneity.

The (conditional on Xi) MTE at level a is defined as

τMTE(a|x)=E[Yi(1)−Yi(0)|Vi =a,Xi =x].
The MTE will be constant in a if either (1) the individual treatment effect Yi(1)−Yi(0) is constant,
or (2) there is no selection on unobservables, that is, the error terms of the outcome equation (6.17)
are unrelated to that of the selection equation (6.18). The parameter τMTE(a|x) is understood as
the treatment effect for the subpopulation where an infinitesimal increase in the propensity score
leads to a change in participation status. Note that for a close to 1, the MTE measures the treatment
effect in a subpopulation that is very unlikely to be treated. Other treatment and policy effects can
be recovered using the MTE.

Two assumptions are made to facilitate identification. First, the collection of instruments Zi
is non-degenerate and independent of the error terms (U1i,U0i,Vi) conditional on the covariates
Xi. Second, 0<P[Ti =1|Xi]<1, so that conditional on the covariates, both treated and untreated
individuals are observable in the population. It can then be shown that, for any limit point a in
the support of the propensity score, τMTE(a|x) is

τMTE(a|x)= ∂

∂a
E[Yi|Pi =a,Xi =x].
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This representation shows that the MTE is identifiable, and could in principle be estimated by
standard non-parametric techniques (once Pi is estimated). In practice, however, non-parametric
methods for estimating τMTE(a|x) and functionals thereof are often avoided because of the curse
of dimensionality, the negative impact of smoothing and tuning parameters, and efficiency
considerations. A flexible parametric functional form can be used instead: E[Yi|Pi,Xi]=
e(Xi,Pi,θ0), where e(·) is a known function up to some finite dimensional parameter θ0.

Therefore, the MTE estimator is often constructed as follows:

τ̂MTE(a|x)= ∂

∂a
e(x,a,θ̂ ), θ̂ =argmin

θ

n∑
i=1

(
Yi −e(Xi,P̂i,θ )

)2
,

P̂i =ZT
i β̂, β̂ =argmin

β

n∑
i=1

(
Ti −ZT

i β
)2

.

Identification and estimation of the MTE, as well as other policy-relevant parameters based
on it, require exogenous variation in the treatment equation (6.18) induced by instrumental
variables. In practice, researchers induce this variation by (1) employing many instruments,
possibly generating them using power expansions and interactions, and (2) including interactions
with the “raw” or expanded instruments. Employing a flexible, high-dimensional specification for
the probability of selection is also useful to mitigate misspecification errors. These observations
have led researchers to employ many covariates/instruments in the probability of selection, that
is, have a “large” k relative to the sample size. In this article, we show that flexibly modelling
the probability of selection can lead to a first-order bias in the estimation of the MTE and related
policy-relevant estimands, even when the outcome equation is modeled parametrically and low-
dimensional. Furthermore, we provide automatic bias-correction and inference procedures based
on resampling methods.

The following result characterizes the asymptotic properties of the estimated MTE.

Corollary 2 (Asymptotic Normality: MTE). Suppose the assumptions of Theorem 1 and the
example-specific additional regularity conditions summarized in the Supplementary Appendix
hold. Then, for θ̂ ,

Bi = ∂2e(Xi,Pi,θ0)

∂Pi∂θ

[
(1−Pi)·E[TiYi(1)|Zi]−Pi ·E[(1−Ti)Yi(0)|Zi]

]
πii

+ 1

2

n∑
j=1

[
∂2e(Xi,Pi,θ0)

∂Pi∂θ
τMTE(Pi|Xi)+ 1

2

∂e(Xi,Pi,θ0)

∂θ

∂τMTE(Pi|Xi)

∂Pi

]
Pj(1−Pj)π

2
ij ,

	 i = ∂e(Xi,Pi,θ0)

∂θ

(
Yi −e(Xi,Pi,θ0)

)
−
⎛
⎝ n∑

j=1

∂e(Xj,Pj,θ0)

∂θ
τMTE(Pj|Xj)πij

⎞
⎠(Ti −Pi),

and �0 is given in the Supplementary Appendix (Section SA-5.4).

The above result gives a precise characterization of the asymptotic possibly first-order bias
and variance of θ̂ via the results in Theorem 1. To obtain the corresponding result for the
estimated MTE, τ̂MTE(a|x), the delta method is employed and an extra multiplicative factor
∂2e(x,a,θ0)/∂a∂θT shows up. As a result, both the bias and variance for the estimated MTE
will depend on the evaluation point (x|a). We give the details in the Supplementary Appendix
Section SA-5.4.
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To understand the implications of the above corollary, we consider the bias terms. Note that
the factor associated with πii essentially captures treatment effect heterogeneity (in the outcome
equation) and self-selection. To make it zero, one needs to assume there is no heterogeneous
treatment effect and that the agents do not act on idiosyncratic characteristics that are unobservable
to the analyst. For the second bias term associated with π2

ij , note that it involves both the level
of the MTE and its curvature. Hence the second bias is related not only to treatment effect
heterogeneity captured through the shape of the MTE, but also to the magnitude of the treatment
effect. Thus, aside from the off chance of these terms canceling each other, the many instruments
bias will be zero only when there is neither heterogeneity nor self-selection, and the treatment
effect is zero. Since these conditions are unlikely to hold in empirical work, even in randomized
controlled trials, we expect the many instruments bias to have a direct implication in most practical
cases. Therefore, conventional estimation and inference methods that do not account for the many
instruments bias will be invalid, even in large samples, when many instruments are included in
the estimation.

The results above take the conditional expectation function e(Xi,Pi,θ0) as low-dimensional,
but in practice researchers may want to include many covariates also in the second estimation
step. In Section SA-4.3 of the Supplementary Appendix, we study a generalization of Theorem 1
for the special case when E[Yi|Pi,Xi,Wi]=e(Xi,Pi,θ0)+WT

i γ 0, where Wi contains additional
conditioning variables (possibly including Xi) and the nuisance parameter γ 0 is potentially high-
dimensional. If non-linear least-squares is used to estimate the second-step as above, we find that
additional terms now contribute to the many covariates bias due to the possibly high-dimensional
estimation of γ 0 in the second-step, but the same general results reported in this article continue
to hold. Specifically, the many covariates bias remains of order k/

√
n and needs to be accounted

for in order to conduct valid inference whenever k/
√

n is not negligible.

7. NUMERICAL EVIDENCE

We provide numerical evidence for the methods developed in this article. First, we offer a Monte
Carlo experiment constructed in the context of MTE estimation (Section 6.2), which highlights the
role of the many covariates bias and showcases the role of jackknife bias correction and bootstrap
approximation for estimation and inference. Second, also in the context of MTE estimation and
inference, we offer an empirical illustration following the work of Carneiro et al. (2011). Section
SA-8 of the Supplementary Appendix contains more results and further details omitted here to
conserve space.

7.1. Simulation study

We retain the notation and assumptions imposed in Section 6.2, and set the potential
outcomes to Yi(0)=U0i and Yi(1)=0.5+U1i. We assume there are many potential instruments
Zi =

[
1,Z1,i,Z2,i,...,Z199,i

]
, with Z�,i ∼Uniform[0,1] independent across �=1,2,...,199. The

selection equation is assumed to take a very parsimonious form: Ti =1
[
0.1+Z1,i +Z2,i +

Z3,i +Z4,i ≥Vi
]
. In this case Assumption 2 holds automatically without misspecification error,

but in the Supplementary Appendix we explore other specifications of the propensity score
where approximation errors are present. Finally, the error terms are distributed as Vi|Zi ∼

Uniform[0,1], U0i|Zi,Vi ∼Uniform[−1,1] and U1i|Zi,Vi ∼Uniform[−0.5,1.5−2Vi]. Because
additional covariates Xi do not feature in this data generating process, the treatment effect
heterogeneity and self-selection are captured by the correlation between U1i and Vi.

It follows that E[Yi|Pi =a]=a− a2

2 , and the MTE is τMTE(a)=1−a. Given a random sample
index by i=1,2,...,n, the second-step regression model is set to E[Yi|Pi]=θ1 +θ2 ·Pi +θ3 ·P2

i
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TABLE 1
Simulation: marginal treatment effects

Conventional Bias-Corrected

k k/n k/
√

n bias sd
√

mse coverage length bias sd
√

mse coverage length

Panel (a) n=1000
5 0.00 0.16 0.14 4.72 4.73 0.95 18.51 −0.21 4.93 4.93 0.93 18.28
20 0.02 0.63 1.73 4.11 4.46 0.93 16.11 0.18 5.26 5.27 0.94 19.81
40 0.04 1.26 3.08 3.54 4.69 0.86 13.88 1.03 5.11 5.22 0.94 19.67
60 0.06 1.90 3.96 3.22 5.11 0.77 12.63 1.75 5.02 5.32 0.93 19.27
80 0.08 2.53 4.61 3.00 5.50 0.66 11.76 2.28 4.91 5.41 0.92 18.67
100 0.10 3.16 5.10 2.83 5.83 0.56 11.08 2.65 4.78 5.46 0.90 18.28
120 0.12 3.79 5.55 2.67 6.16 0.46 10.48 2.96 4.66 5.51 0.89 17.80
140 0.14 4.43 5.97 2.54 6.49 0.35 9.98 3.24 4.57 5.60 0.87 17.46
160 0.16 5.06 6.35 2.45 6.81 0.26 9.59 3.46 4.43 5.62 0.86 17.15
180 0.18 5.69 6.69 2.33 7.09 0.18 9.13 3.58 4.35 5.63 0.86 16.97
200 0.20 6.32 7.03 2.23 7.38 0.12 8.75 3.81 4.22 5.69 0.84 16.75

Panel (b) n=2000
5 0.00 0.11 0.13 4.85 4.85 0.95 19.00 −0.12 4.95 4.95 0.93 18.21
20 0.01 0.45 1.42 4.47 4.69 0.94 17.51 0.06 5.16 5.16 0.94 19.31
40 0.02 0.89 2.73 4.17 4.99 0.90 16.36 0.54 5.35 5.38 0.94 19.72
60 0.03 1.34 3.78 3.95 5.47 0.84 15.47 1.18 5.44 5.57 0.93 19.75
80 0.04 1.79 4.62 3.74 5.95 0.76 14.67 1.82 5.43 5.73 0.91 19.59
100 0.05 2.24 5.27 3.55 6.35 0.68 13.91 2.33 5.37 5.86 0.90 19.31
120 0.06 2.68 5.77 3.37 6.68 0.59 13.22 2.74 5.27 5.94 0.90 19.04
140 0.07 3.13 6.27 3.20 7.03 0.49 12.53 3.21 5.11 6.04 0.88 18.85
160 0.08 3.58 6.67 3.07 7.35 0.41 12.03 3.53 5.05 6.16 0.87 18.66
180 0.09 4.02 7.07 2.95 7.65 0.32 11.54 3.87 4.95 6.28 0.85 18.40
200 0.10 4.47 7.42 2.83 7.94 0.26 11.11 4.13 4.84 6.36 0.85 18.22

The marginal treatment effect is evaluated at a=0.5. Panel (a) and (b) correspond to sample size n=1000 and 2000,
respectively. Statistics are centered at the true value. k =5 is the correctly specified model. k: number of instruments
used for propensity score estimation; bias: empirical bias (scaled by

√
n); sd: empirical standard deviation (scaled by√

n);
√

mse: empirical root-MSE (scaled by
√

n); coverage: empirical coverage of a 95% confidence interval. Without
bias correction, it is based on normal approximation and simulated sampling variability of the estimator (i.e. the oracle
standard error). With bias correction, the test is based on the percentile-t method, where the bias-corrected and Studentized
statistic is bootstrapped 500 times (Rademacher weights); length: the average confidence interval length (scaled by

√
n).

and therefore the estimated MTE is τ̂MTE(a)= θ̂2 +2a · θ̂3 with (θ̂1,θ̂2,θ̂3)′ denoting the least-
squares estimators of (θ1,θ2,θ3)′. We consider the quantity

√
n
(
τ̂MTE(a)−τMTE(a)

)
at a=0.5,

with and without bias correction, for two sample sizes n=1,000 and n=2,000, and across 2,000
simulation repetitions. To estimate the propensity score, we regress Ti on a constant term and
{Z�,i} for 1≤�≤k−1, where the number of covariates k ranges from 5 to 200. Note that k =5
corresponds to the most parsimonious model which is correctly specified.

For inference, we consider two approaches. In the conventional approach, the many
instruments bias is ignored, and hypothesis testing is based on a normal approximation to the t-
statistic, where the standard error comes from the simulated sampling variability of the estimator
(i.e. the oracle standard error, which is infeasible). That is, this benchmark approach considers the
infeasible statistic (τ̂MTE−τMTE)/

√
V[τ̂MTE], with V[τ̂MTE] denoting the simulation variance of

τ̂MTE, and employs standard normal quantiles. The other approach, which follows the results in this

article, utilizes both the jackknife and the bootstrap: the feasible statistic (τ̂MTE−B̂−τMTE)/
√

V̂
is constructed as in Section 4 and inference is conducted using the bootstrap approximation as in
Section 5.

The results are collected in Table 1. The bias is small with small k, as the most parsimonious
model is correctly specified. With more instruments added to the propensity score estimation, the
many instruments bias quickly emerges, and without bias correction, it leads to severe empirical
undercoverage (conventional 95% confidence is used). Interestingly, the finite sample variance
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shrinks at the same time. Therefore for this particular DGP, incorporating many instruments not
only leads to biased estimates, but also gives the illusion that the parameter is estimated precisely.
With jackknife bias correction, there is much less empirical size distortion, and the empirical
coverage rate remains well-controlled even with 200 instruments used in the first step. Moreover,
the jackknife bias correction also (partially) restores the true variability of the estimator.

Although the focus here is on inference and, in particular, empirical coverage of associated
testing procedures, it is also important to know how the bias correction will affect the Standard
Deviation (SD) and the Mean Squared Error (MSE) of the point estimators. Recall that the model
is correctly specified with five instruments, hence it should not be surprising that incorporating
bias correction there increases the variability of the estimator and the MSE—although the impact
is very small. As more instruments are included, however, the MSE increases rapidly without bias
correction, while the MSE of the bias corrected estimator remains relatively stable. In particular,
this finding is driven by a sharp reduction in bias that more than compensates the increase in
variability of the estimator. A larger variance of the bias-corrected estimator is expected, as
additional sampling variability is introduced by the bias correction. All in all, the bias-corrected
estimator seems to be appealing not only for inference, but also for point estimation because it
performs better in terms of MSE when the number of instruments is moderate or large.

In the Supplementary Appendix, we report results from two other data-generating processes.
In particular, we consider cases when (1) the true propensity score is non-linear and fundamentally
misspecified; and (2) the true propensity score is non-linear and low-dimensional, and one employs
basis expansion to approximate the true propensity score. The exact magnitude of the bias changes
in different settings, but the same pattern emerges: as the number of included instruments/basis
elements increases, the asymptotic distribution is no longer centered at the true parameter due
to the bias uncovered in this paper (Theorem 1). Moreover, the jackknife continues to provide
excellent bias correction (Theorem 2), and the bootstrap performs very well in approximating the
finite sample distribution (Theorem 3).

7.2. Empirical illustration

In this section, we consider estimating the marginal returns to college education following the
work of Carneiro et al. (2011, CHV hereafter) with MTE methods, employing the notation and
assumptions imposed in Section 6.2. The data consist of a subsample of white males from the 1979
National Longitudinal Survey of Youth (NLSY79), and the sample size is n=1,747. The outcome
variable, Yi, is the log wage in 1991, and the sample is split according to the treatment variable
Ti =0 (high school dropouts and high school graduates), and Ti =1 (with some college education
or college graduates). The dataset includes covariates on individual and family background
information, and four “raw” instrumental variables: presence of four-year college, average tuition,
local unemployment and wage rate, measured at age 17 year of the survey participants.

We normalize the estimates by the difference of average education level between the two
groups, so that the estimates are interpreted as the return to per year of college education. We
make the same assumption as in CHV that the error terms are jointly independent of the covariates
and the instruments. Then, τMTE(a|x)=∂E[Yi|Pi =a,Xi =x]/∂a with

E[Yi|Pi =a,Xi =x]=xTγ 0 +a ·xTδ0 +φ(a)Tθ0,

where Pi =P[Ti =1|Zi] is the propensity score, and φ is some fixed transformation. The
covariates Xi include (1) linear and square terms of corrected AFQT score, education of mom,
number of siblings, permanent average local unemployment rate and wage rate at age 17; (2)
indicator of urban residency at age 14; (3) cohort dummy variables; and (4) average local
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unemployment rate and wage rate in 1991, and linear and square terms of work experience
in 1991. For the selection equation, the instruments Zi include (1), (2) and (3) described
earlier, as well as (5) the four raw instruments as well as their interactions with corrected
AFQT score, education of mom and number of siblings. To make the functional form of the
propensity score flexible, we also include interactions among the variables described in (1),
and interactions between the cohort dummies and corrected AFQT score, education of mom
and number of siblings. To conserve space, we leave summary statistics to the Supplementary
Appendix.

We are employing the same covariates, instruments, and modelling assumptions as in CHV, but
our estimation strategy is different than theirs. For the first step, the selection equation (propensity
score) is estimated using a linear probability model with k =66 as more interaction terms are
included (which implies k/

√
n=1.58), while CHV employ a Logit model with k =35. Thus, our

estimation approach reflects Assumption 2 in the sense that we assume away misspecification
errors from using a flexible (high-dimensional) linear probability model, while CHV assume
away misspecification errors from using a lower dimensional Logit model. For the second step,
while the specification of E[Yi|Pi =a,Xi =x] coincides, we estimate the partially linear model
(i.e. the φ(a) component) using a flexible polynomial in Pi while CHV employ a kernel local
polynomial approach with a bandwidth of about 0.30 over the support [0,1]. To be specific,
we implement the second step estimation by using least-squares regression with a fourth-order
polynomial of the estimated propensity score φ(P̂i)=[P̂i,P̂2

i ,P̂3
i ,P̂4

i ]T. Here the dimension of
Xi is 23, so the second step model can be regarded as either “flexible” parametric or high
dimensional. In the latter case, the results reported in Section SA-4.3 of the Supplementary
Appendix can be used, together with standard results from high-dimensional linear regression
(see Cattaneo et al., 2018a,b, and references therein), to show that a many covariate bias continues
to be present in this setting, thereby justifying the usefulness of our fully automatic bias-correction
and bootstrap-based methods. Finally, also in the Supplementary Appendix, we give results for
other specifications of the selection and outcome equations.

We summarize the empirical findings in Figure 1, where we plot the estimated MTE evaluate
at the sample average of Xi. In the upper panel of this figure, we plot the estimated MTE together
with 95% confidence intervals (solid and dashed line), using conventional two-step estimation
methods (i.e. without bias correction and employing the standard normal approximation). These
empirical results are quite similar to those presented by CHV, both graphically and numerically.
In particular, for individuals who are very likely to enroll in college, the per year return can be
as high as 30%, while the return to college can also be as low as −20% for people who are very
unlikely to enroll. Integrating the estimated MTE gives an estimator of the average treatment
effect, which is roughly 9%.

The upper panel of Figure 1 also depicts the bias-corrected MTE estimator (dash-dotted line).
The average treatment effect corresponding to the bias-corrected MTE is 8%, quite close to the
previous estimate. On the other hand, the bias-corrected MTE curve has a much steeper slope,
implying a wider range of heterogeneity for returns to college education. This bias-corrected MTE
curve lies close to the boundary of the confidence intervals constructed using the conventional two-
step method, hinting at the possibility of a many instruments/covariate bias in the conventional
estimate.

The lower panel of Figure 1 plots the bias corrected MTE estimator, together with the
confidence intervals constructed using our proposed bootstrap-based method, which takes into
account the extra variability introduced by bias correction. Not surprisingly, the new confidence
intervals are wider than the conventional ones.
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Figure 1

Estimated marginal treatment effects. The marginal treatment effect, τ̂MTE(a|X̄), is evaluated at mean value of the

covariates. Bootstrap is used to construct the confidence interval, with 500 repetitions. Top: Estimated MTE without

bias correction (solid line), together with 95% confidence interval (dashed line). Also included is the bias-corrected

MTE (dash-dotted line). Bottom: Bias-corrected MTE, together with 95% confidence interval, taking into account the

effect of bias correction.
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8. CONCLUSION

We studied the distributional properties of two-step estimators, and functionals thereof, when
possibly many covariates are used to fit the first-step estimate (e.g. a propensity score, generated
regressors or control functions). We show that overfitting in the first step estimation leads to a
first-order bias in the distributional approximation of the two-step estimator. As a consequence,
the limiting distribution is no longer centered at zero and usual inference procedures become
invalid, possibly exhibiting severe empirical size distortions in finite samples. We considered a
few extensions of our basic framework and illustrated our generic results with several applications
in treatment effect, programme evaluation and other applied microeconomic settings. In particular,
we presented new results for estimation and inference in the context of production function and
marginal treatment effects estimation. The latter application, along with the one on local average
response functions discussed in the Supplementary Appendix, give new results in the context of
IV models with treatment effect heterogeneity and many instruments, previously unavailable in
the literature.

As a remedy for the many covariates bias we uncover, we develop bias correction methods
using the jackknife. Importantly, this approach is data-driven and fully automatic, and does
not require additional resampling beyond what would be needed to compute the jackknife
standard error, which we show is also consistent in our setting even when many covariates are
used. Therefore, implementation is straightforward and is available in any statistical computing
software. Furthermore, to improve finite sample inference after bias-correction, we also establish
validity of an appropriately modified bootstrap for the jackknife-based bias-corrected Studentized
statistic. We demonstrate the performance of our estimation and inference procedures in a
comprehensive simulation study and an empirical illustration.

From a more general perspective, our main results give one additional contribution. They
shed new light on the ultra-high-dimensional literature: one important implication is that typical
sparsity assumptions imposed in that literature cannot be dropped in the context of non-linear
models, since otherwise the effective number of included covariates will remain large after
model selection, which in turn will lead to a non-vanishing first-order bias in the distributional
approximation for the second-step estimator. It would be interesting to explore whether resampling
methods are able to successfully remove this many selected or included covariates bias in
ultra-high-dimensional settings, where model selection techniques are also used as a first-step
estimation device.
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