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Rasmus Waagepetersen†

Aalborg University, Aalborg, Denmark
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Summary.This paper is concerned with parameter estimation for inhomogeneous spatial point

processes with a regression model for the intensity function and tractable second order prop-

erties (K-function). Regression parameters are estimated using a Poisson likelihood score

estimating function and in a second step minimum contrast estimation is applied for the resid-

ual clustering parameters. Asymptotic normality of parameter estimates is established under

certain mixing conditions and we exemplify how the results may be applied in ecological studies

of rain forests.

1. Introduction

The results in this paper can be applied in many contexts in e.g. biology and spatial epi-
demiology. The original motivation is, however, studies of biodiversity in tropical rain forest
ecology. A question of particular interest is how the very high number of different rain forest
tree species continue to coexist, see e.g. Burslem et al. (2001) and Hubbell (2001). Conspe-
cific aggregation is hypothesized to promote diversity although the causes of aggregation
remain unclear (Seidler and Plotkin, 2006). One explanation is the so called niche assembly
hypothesis that different species benefit from different habitats determined e.g. by topogra-
phy or soil properties. However, the aggregation of conspecific trees may also be due to seed
dispersal. Hence it is of interest to quantify residual clustering after adjusting for possible
aggregation due to environmental covariates. In recent years huge amounts of data have
been collected in tropical rain forest plots in order to investigate the niche assembly and
other competing hypotheses (Losos and Leigh, 2004). The data sets consist of measure-
ments of soil properties, digital terrain models, and individual locations of all trees growing
in the plots.

In this paper we model the set of tree locations for a particular species as a realization
of a spatial point process X on R

2 with intensity function of the form

ρβ(u) = ρ(z(u)βT), u ∈ R
2,

where ρ is a positive strictly increasing differentiable function, z(u) is the covariate vector
associated with the spatial location u, and β is a regression parameter. Evidence of the
niche assembly hypothesis may be obtained by assessing the magnitudes of the components
of β.

†Address for correspondence: Rasmus Waagepetersen, Department of Mathematical Sciences,
Aalborg University, Fredrik Bajersvej 7G, DK-9220 Aalborg
E-mail: rw@math.aau.dk
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The second-order properties of X is determined by the so-called pair correlation function
g (see Section 3). Translation-invariance of g implies second-order intensity reweighted
stationarity (Baddeley et al., 2000) in which case the so-called K-function is well-defined
and given in terms of an integral involving g (cf. (2) in Section 3). A parametric model
gψ is often imposed for the pair correlation function and hypotheses regarding clustering
may be formulated in terms of ψ. Seidler and Plotkin (2006) e.g. relate estimates of ψ for
different species to classes of species determined by their modes of seed dispersal.

Suppose X is observed within a bounded observation windowW ⊂ R
2. If X is a Poisson

process, the maximum likelihood estimate of β is obtained by solving u(β) = 0 where u is
the Poisson score estimating function

u(β) =
∑

u∈X∩W

ρ
(1)
β (u)

ρβ(u)
−

∫

W

ρ
(1)
β (u)du (1)

where here and in the following, ρ
(l)
β denotes the l’th derivative with respect to β. If X is

not Poisson, likelihood-based inference may be carried out using Markov chain Monte Carlo
methods (Møller and Waagepetersen, 2003) but especially in case of Cox and cluster pro-
cesses, this can be computationally very hard. However, also for non-Poisson processes, an
estimate β̂ may be obtained using the estimating function (1). Consistency of β̂ was studied

in Schoenberg (2005) while Waagepetersen (2007) obtained asymptotic normality of β̂ for a
fixed observation window employing infinite divisibility of the inhomogeneous Neyman-Scott
processes considered in this paper. Guan and Loh (2007) instead established asymptotic
normality using increasing-domain asymptotics for suitably mixing point processes. Re-
garding ψ, Waagepetersen (2007) suggested a two-step estimation procedure where ψ is
estimated using minimum contrast estimation based on the theoretical K-function Kψ and
an estimate of Kψ depending on β. Waagepetersen (2007), however, did not provide a
theoretical study of this approach for estimating ψ.

In some cases, β is the parameter of main interest. Nevertheless, the asymptotic co-
variance matrix for β still depends on the second-order properties of X . Waagepetersen
(2007) suggested a plug-in approach where gψ̂ is plugged in for the unknown pair correlation

function while Guan and Loh (2007) suggested a block bootstrap procedure which avoids
the specification of a specific parametric model for the pair correlation.

It is not obvious that the second step of the two-step procedure produces useful esti-
mates of ψ since the estimate of the K-function is not unbiased when β̂ is plugged in for the
true value of β. Under certain mixing conditions however, we show that the parameter esti-
mate (β̂, ψ̂) in fact does enjoy the usual desirable properties of consistency and asymptotic

normality. Our results thus extend the results for β̂ in Waagepetersen (2007) and Guan

and Loh (2007) and the results for ψ̂ in Heinrich (1992) and Guan and Sherman (2007) who

considered stationary point processes. The asymptotic normality of ψ̂ both gives a theo-
retical basis for inference regarding ψ and also for the plug-in approach in Waagepetersen
(2007).

In section 2 we describe a data example previously considered in Waagepetersen (2007)
and Guan and Loh (2007). Some background concerning Cox and cluster point process
and their product densities are given and some basic assumptions stated in Section 3. The
two-step procedure for parameter estimation and its asymptotic properties are considered in
Section 4 and applied to the data example in Section 5. Section 5 also contains a simulation
study. A few open problems are discussed in Section 6.
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Fig. 1. Locations of Beilschmiedia pendula Lauraceae (left) and altitude (right).

2. A data example

The tropical tree data set considered in this section is extracted from a huge data set
collected in the 1000 by 500 meter Barro Colorado Island plot, see Condit et al. (1996),
Condit (1998), and Hubbell and Foster (1983). The left plot in Figure 1 shows all tree
positions in 1995 of the species Beilschmiedia pendula Lauraceae (3604 trees). The right
plot shows altitude on a 5 by 5 meter grid.

Letting z(u) = (1, z2(u), z3(u)) where z2 denotes altitude and z3 slope (the norm of
the altitude gradient), Waagepetersen (2007) and Guan and Loh (2007) fitted a log-linear
model

ρβ(u) = exp(z(u)βT)

and concluded that the intensity of the rain forest trees depends significantly on the slope.
Exploratory plots based on the K-function indicated that the assumption of an inhomo-
geneous Poisson process is not tenable due to clustering which may be due to e.g. un-
observed environmental covariates, seed dispersal, and competition due to other species.
Waagepetersen (2007) assumed that the data originated from a modified Thomas process
(see Section 3) while Guan and Loh (2007) used a block bootstrap to evaluate the variance

of β̂ without explicit assumptions regarding the nature of the clustering.
We return to this data set in Section 5 but expand the analysis by adding covariates on

pH and mineralized nitrogen, phosphorous and potassium contents in the soil and consid-
ering inference for the clustering parameters of the Thomas process as well as covariance
parameters in a log Gaussian Cox process model (Section 3).

3. Some basic background and assumptions

This section describes the specific examples of point processes considered in this paper and
gives some background on product densities for point processes.

3.1. Inhomogeneous Cox point processes

A Cox process X is defined in terms of a random intensity function Λ where given Λ = λ,
X is a Poisson process with intensity function λ. For a log Gaussian Cox process (LGCP),
log Λ is a Gaussian process. A Neyman-Scott process with Poisson numbers of offspring is
a union ∪c∈CXc where C is a ‘mother’ Poisson process of intensity κ > 0. Given C, Xc,
c ∈ C, are independent Poisson processes with intensity functions αk(· − c) where α > 0
is the expected number of offspring for each mother point and k(·) is a probability density
determining the spread of offspring around their mother. A so-called modified Thomas
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process is obtained when k is the density of a bivariate normal distribution N(0, ω2I). A
Neyman-Scott process can also be viewed as a Cox process with

Λ(u) = α
∑

c∈C

k(u− c)

and inhomogeneous Neyman-Scott processes are obtained by multiplying Λ(u) by e.g. a
log-linear term exp(z(u)βT) (Waagepetersen, 2007).

3.2. Product densities and basic assumptions

Let ρβ,n(u1, . . . , un) denote the nth order product density of X . For locations ui in in-
finitesimally small regions Ai of volumes dAi, i = 1, . . . , n, ρβ,n(u1, . . . , un)dA1 · · ·dAn is
the joint probability that X has a point in each Ai. The pair correlation function is

g(u, v) =
ρβ,2(u, v)

ρβ(u)ρβ(v)
.

Throughout the paper we assume without further notice the following:

B1 bounded covariates

‖z(u)‖ ≤ K1, u ∈ R
2, for some K1 <∞.

B2 the product densities ρβ,n are of the form

ρβ,n(u1, . . . , un) = ρn(u1, . . . , un)
n

∏

i=1

ρβ(ui)

where ρn is the nth order product density of a stationary point process on R
2.

B3 ρ2 and ρ3 are bounded and there is a K2 so that for all u1, u2 ∈ R
2,

∫

|ρ3(0, v, v +
u1) − ρ1(0)ρ2(0, u1)|dv < K2 and

∫

|ρ4(0, u1, v, v + u2) − ρ2(0, u1)ρ2(0, u2)|dv < K2.
B4 Wn = [an, nb]× [cn, dn] where b− a > 0 and d− c > 0.

The assumption B1 of bounded covariates is not a serious restriction from a practical point

of view and implies k1 ≤ ρβ(u), |ρ
(l)
β (u)| ≤ K3, l = 1, 2, . . . for constants k1 > 0 and

K3 < ∞. The assumption B2 e.g holds if X is an independent thinning of a stationary
point process with probability of retaining a point at u proportional to ρβ(u). Under B1,
both log Gaussian Cox processes and inhomogeneous Neyman-Scott processes fall into this
category. Note that stationarity implies ρn(u1, . . . , un) = ρn(0, u2 − u1, . . . , un − u1). In
the current setting, the pair correlation function g of X coincides with ρ2 and with a
convenient abuse of notation we write g(u, v) = g(v − u) where g(h) = ρ2(0, h). Moreover,
the K-function is given by

K(t) =

∫

‖h‖≤t

g(h)dh, t ≥ 0. (2)

If g is isotropic, g(h) can be recovered fromK(t) by differentiating: g(h) = K ′(‖h‖)/(2π‖h‖).
For a Thomas process the pair correlation function is

g(κ,ω)(h) = 1 + exp(−‖h‖2/(4ω2))/(4πω2κ), κ, ω > 0,
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while it is
gψ(h) = exp(cψ(h))

for a log Gaussian Cox process with covariance function cψ(h) for the Gaussian field. One
example of covariance function is the exponential

c(σ2,φ)(h) = σ2 exp(−‖h‖/φ), σ2, φ > 0,

where σ2 is the variance and φ is the correlation scale parameter.
The assumption B3 of weak dependence holds for many commonly applied point pro-

cesses including Poisson cluster processes and log Gaussian Cox processes with an absolutely
integrable correlation function, see Guan and Sherman (2007). Rectangular observation
windows B4 are assumed for ease of exposition and can be relaxed. It is important, though,
that for any h ∈ R

2, limn→∞ |Wn|/|Wn ∩Wn,h| = 1 where Wn,h is Wn translated by h.

4. The two-step estimation procedure

Suppose X is observed within Wn, β ∈ R
p, and ψ ∈ Ψ ⊆ R

q. We then first obtain β̂n by
solving un,1(β) = 0 where

un,1(β) =
∑

u∈X∩Wn

ρ
(1)
β (u)

ρβ(u)
−

∫

Wn

ρ
(1)
β (u)du.

Second, ψ̂n is obtained by minimizing mn(ψ) = mn,β̂n
(ψ) where

mn,β(ψ) =

∫ r

rl

(K̂n,β(t)
c −Kψ(t)c)2dt, (3)

rl, r, and c are user-specified constants, and

K̂n,β(t) =

6=
∑

u,v∈X∩Wn

1[‖u− v‖ ≤ t]

ρβ(u)ρβ(v)|Wn ∩Wn,u−v|
(4)

is an estimate (Baddeley et al., 2000) of the theoretical K-function Kψ(t). We denote by

β∗ and ψ∗ the true values of β and ψ and note that K̂n,β∗(t) is unbiased for Kψ∗(t). An
excellent account of practical aspects of minimum contrast estimation is given in Section 6.1
in Diggle (2003) where rl = 0. However, in Section 4.1 we for technical reasons need rl > 0
when c < 1.

4.1. Joint asymptotic normality of (β̂n, ψ̂n)
Let

un,2(β, ψ) = −|Wn|
dmn,β(ψ)

dψ
= |Wn|2c

∫ r

rl

(K̂n,β(t)
c −Kψ(t)c)Kψ(t)c−1K

(1)
ψ (t)dt

(assuming that Kψ is differentiable, cf. N2 below). Then the two-step estimating procedure
corresponds to solving

un(β, ψ) = (un,1(β), un,2(β, ψ)) = 0.
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By a Taylor-expansion, un,2(β
∗, ψ∗) can be approximated by

ũn,2(β
∗, ψ∗) = |Wn|2c

2

∫ r

rl

(K̂n,β∗(t) −Kψ∗(t))Kψ∗(t)
2c−2K

(1)
ψ∗ (t)dt

and we define
Σ̃n = |Wn|

−1
Var

(

un,1(β
∗), ũn,2(β

∗, ψ∗)
)

.

From a mathematical point of view, ũn,2(β
∗, ψ∗) is easier to handle than un,2(β

∗, ψ∗) since

we avoid the exponent c for K̂n,β∗(t).
Define further

In,11 =
1

|Wn|

∫

Wn

(ρ
(1)
β∗ (u))Tρ

(1)
β∗ (u)

ρβ∗(u)
du,

In,12 = −2c2
∫ r

rl

Hn,β∗(t)K
2c−2
ψ∗ (t)K

(1)
ψ∗ (t)dt

where

Hn,β∗(t) = E
d

dβT
K̂n,β(t)|β=β∗ = −2

∫

W 2
n

1[‖u− v‖ ≤ t]

|Wn ∩Wn,u−v|

ρ
(1)
β∗ (u)

ρβ∗(u)
gψ∗(u− v)dudv

and

I22 = 2c2
∫ r

rl

Kψ(t)2c−2(K
(1)
ψ (t))TK

(1)
ψ (t)dt.

The following result is verified in Appendix A.

Theorem 1. Assume

N1 rl > 0 if c < 1; otherwise rl ≥ 0.
N2 ρβ and Kψ are twice continuously differentiable as functions of β and ψ.

N3 I22 is positive definite and lim infn→∞ min{λ̃n, λn,11} > 0 where λ̃n and λn,11 are the

smallest eigenvalues of Σ̃n and In,11, respectively.
N4 ρ4+2δ(u1, · · · , u4+2δ) <∞ for some positive integer δ.
N5 for some a > 8r2,

αa,∞(m) = O(m−d) for some d > 2(2 + δ)/δ (5)

where, following Politis et al. (1998), the mixing coefficient αa1,a2
(m) is

αa1,a2
(m) ≡ sup{|P (A1 ∩A2) − P (A1)P (A2)| : A1 ∈ F(E1),

A2 ∈ F(E2), |E1| ≤ a1, |E2| ≤ a2, d(E1, E2) ≥ m, E1, E2 ∈ B(R2}

and B(R2) denotes the set of Borel sets in R
2, d(E1, E2) is the minimal distance

between E1 and E2, and F(Ei) is the σ-algebra generated by X ∩ Ei, i = 1, 2.

Then there is a sequence {(β̂n, ψ̂n)}n≥1 for which un(β̂n, ψ̂n) = 0 with a probability tending
to one and where

|Wn|
1/2[(β̂n, ψ̂n) − (β∗, ψ∗)]InΣ̃−1/2

n
d
→ N(0, I) (6)

with

In =

[

In,11 In,12
0 I22

]

. (7)

In the following two sections 4.2 and 4.3 we discuss in more detail the practical use of this
result and the conditions for it.
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4.2. Practical issues

Often un(β, ψ) = 0 has a unique solution which then coincides with (β̂n, ψ̂n). The practical

implication of (6) is that for a given n, (β̂n, ψ̂n) is approximately normal with mean (β∗, ψ∗)
and covariance matrix (IT

n )−1Σ̃nI
−1
n (by N3, I−1

n exists for large enough n). The upper block
Σ̃n,11 in Σ̃n is the sum of In,11 and

1

|Wn|

∫

W 2
n

(ρ
(1)
β∗ (u))Tρ

(1)
β∗ (v)(gψ∗(u− v) − 1)dudv.

The more complicated expressions defining Σ̃n,12 = Σ̃T

n,21 and Σ̃n,22 are discussed in Ap-

pendix B. Due to the basic assumptions, the entries in Σ̃n are bounded below and above.
We obtain consistent estimates În and Σ̂n by replacing β∗ and ψ∗ in In and Σ̃n with β̂n
and ψ̂n. The integrals in În are evaluated using numerical quadrature. For ease of imple-
mentation we evaluate the integrals in Σ̂n using Monte Carlo simulations under the fitted
model given by β̂n and ψ̂n. Alternatively one might use numerical quadrature. Regarding
In,12 the following approximation

Hn,β∗(t) ≈ −
2Kψ∗(t)

|Wn|

∫

Wn

ρ
(1)
β∗ (u)

ρβ∗(u)
du

is useful. The matrix Σ̃n is mainly used for mathematical convenience and in Section 5 we
also consider the alternative

Σn = |Wn|
−1

Varun(β
∗, ψ∗).

The approximate covariance for ψ̂n is of the form

I−1
22

[

(In,12)TΣ̃n,11I
n,12 − Σ̃T

n,12I
n,12 − (In,12)TΣ̃n,12 + Σ̃n,22

]

I−1
22

where In,12 = I−1
n,11In,12. The sum of matrices within the parenthesis corresponds to the

variance of ũn,2(β̂n, ψ
∗) which (at least in our examples) is less than the variance Σ̃n,22 of

ũn,2(β
∗, ψ∗) due to the effect of of plugging in β̂n rather than β∗ in (4). This is related to

the observation (Dietrich Stoyan, personal communication) that a more precise estimate of
the K-function is obtained in the stationary case when using an estimated intensity rather
than the true value of the intensity. As a curious consequence, the variance for ψ̂n becomes
smaller when β̂n is used in the minimum contrast estimation rather than the true value β∗.

4.3. Discussion of conditions for asymptotic normality

The condition N1 is needed for technical reasons so that we can apply Lemma 2 (Ap-
pendix D) with d < 0 in the proofs of Lemma 4 and Lemma 5 in Appendix D. In practice
we approximate the integrals from rl to r using right endpoint Riemann sums in which
case specifying rl = 0 is unproblematic. Condition N2 is satisfied for many examples of
Neyman-Scott and log Gaussian Cox processes but exclude the well-known Matérn cluster

process. Regarding N3, the matrix I22 is positive definite if K
(1)
ψ (ti), i = 1, . . . , q, are lin-

early independent for distinct rl < t1 < t2 < · · · < tq < r. It is hard to say something

general about the condition on the eigenvalues of Σ̃n and In,11 since they depend on the

behaviour of the covariates on all of R
2. However, the condition seems reasonable since Σ̃n
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and In,11 are both covariance matrices (In,11 is the covariance matrix of un,1(β
∗) if X is a

Poisson process). The condition N4 of bounded product densities is not restrictive.
Condition N5 requires that the dependence between parts of the point process observed

in two distinct sets decays at a polynomial rate as a function of the inter-set distance m. In
the nonstationary case, it follows from (1’) at page 3 in Doukhan (1994) that N5 is satisfied if
the process can be regarded as an independent thinning of a stationary process satisfying N5.
By the same result, N5 holds for Cox processes if the condition is satisfied for the random
intensity function Λ. For many examples of stationary Neyman-Scott processes including
the modified Thomas process, N5 can be verified directly, see Appendix E. Regarding
stationary LGCPs, simple conditions for mixing of stationary Gaussian fields are provided
in Corollary 2 in Doukhan (1994) but are restricted to fields on Z

d, d ≥ 1. From a practical
point of view, however, we can approximate a continuous Gaussian field (Ys)s∈R2 arbitrarily
well by step functions with step heights Ys for s on a fine grid {ǫ(i, j) : (i, j) ∈ Z

2}, ǫ > 0,
see also Waagepetersen (2004).

5. Data examples and simulation studies

Returning to the data example from Section 2, Waagepetersen (2007) considered an inho-
mogeneous Thomas process with log linear intensity function and covariates altitude and
slope. Using c = 0.25 and r = 100 he obtained minimum contrast estimates 8×10−5 and 20
for κ and ω. Since then covariates regarding soil properties have been made available and
in addition to altitude and slope we now include pH, mineralized nitrogen, phosphorous,
and potassium covariates. The solid line in Figure 2 shows the difference between the re-
sulting estimate (4) of the K-function and the K-function for a Poisson process. Even after
adjusting for the soil variables considerable extra-Poisson clustering remains.

0 20 40 60 80 100

−
1

0
0

0
0

1
0

0
0

3
0

0
0

5
0

0
0

tFig. 2. Solid, dashed, dotted lines: estimate of K-function minus respectivelyK-function for Poisson

process, K-function for fitted inhomogeneous Thomas process, and K-function for fitted LGCP.

Considering an inhomogeneous Thomas process with both topographical and soil co-
variates, minimum contrast parameter estimates 2.2×10−4 and 13 are obtained for κ and ω.
Note that smaller κ and ω yields less clustering. A comparison with the previous estimates
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of κ and ω thus illustrates how the addition of the soil variables has decreased the amount of
residual clustering. Using the results from Section 4.1 we can now add confidence intervals
to these estimates. Since κ and ω are positive parameters we reparameterize and apply
the asymptotic result to ψ1 = log κ and ψ2 = logω. The approximate confidence intervals
(1.2×10−4;3.9×10−4) and (10;17) for σ2 and φ are obtained by exponentiating approximate
95% confidence intervals based on the asymptotic normality of the estimates of ψ1 and ψ2.
Following Section 4.2 we also evaluated the asymptotic covariance matrix replacing Σ̃n with
Σn and obtained very similar results.

We also consider a LGCP with an exponential covariance function for the Gaussian field.
Proceeding as for the inhomogeneous Thomas process we obtain estimates 1.66 and 21 and
confidence intervals (1.0;2.7) and (12;38) for σ2 and φ. In this case we obtain somewhat
different confidence intervals (1.2;2.3) and (13;33) when using Σn. Empirical standard errors
of simulated estimates of log σ2 and logφ obtained from 1000 simulations of the fitted LGCP
model were 0.14 and 0.30. This indicates that both the asymptotic standard errors 0.18
and 0.24 obtained with Σn and the standard errors 0.24 and 0.30 obtained with Σ̃n are
inaccurate. More simulation results are given in the next Section 5.1.

The two models are qualitatively quite different with the LGCP providing the best
fit to the estimated K-function, see Figure 2. Using the so-called J-summary statistic
(Lieshout and Baddeley, 1996) for model assessment indicates that neither of the models
are completely satisfactory since the inhomogeneous Thomas process is too tightly clustered
while the LGCP has too many isolated points compared with the data.

5.1. Simulation study

To check how the asymptotic results apply in finite-sample settings we consider simulation
studies for an inhomogeneous Thomas process and an LGCP with exponential correlation
function. The set-up for the simulation study is similar to the one in Waagepetersen (2007)
with observation plot and altitude and slope covariates as in Section 2 and with the altitude
and slope parameters β∗

2 and β∗
3 given by the parameter estimates in Waagepetersen (2007).

In the case of the Thomas process we let ψ = (log κ, logω) while ψ = (log σ2, logφ) for the

LGCP. In the simulation study we focus on the asymptotic normality of ψ̂, the asymptotic
standard errors for ψ̂, and the coverage properties of approximate confidence intervals based
on the asymptotic normality of the parameter estimates.

In the case of an inhomogeneous Thomas process we vary (κ∗, ω∗) and the expected
number of points µ∗ to reflect varying degrees of clustering and tree abundance. We let
ω∗ equal to 10 or 20 while κ∗ is 1×10−4 or 5×10−4 corresponding to expected numbers 50
or 250 of mother points within the plot and recall that larger κ∗ and ω∗ results in less
clustering. The expected number µ∗ of simulated points is either 200 or 800 corresponding
to “sparse” and “moderately abundant” point patterns. For each combination of κ∗, ω∗,
and µ∗ we generate 1000 synthetic data sets and obtain simulated parameter estimates by
applying our estimation procedure with r = 100 and c = 0.25. We compute the empirical
standard deviation of the simulated parameter estimates and we evaluate for each simulation
the asymptotic covariance matrix by plugging in the corresponding simulated parameter
estimate. Approximate 95 % confidence intervals are constructed using standard errors
extracted from the the estimated asymptotic covariance matrices. We only report results
obtained with Σ̃n since similar results are obtained with Σn.

Except for the 7th row, the simulation results in Table 5.1 shows fine agreement between
the empirical standard errors and the median asymptotic standard errors for the simulated
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Table 1. Columns 4-6: standard deviation for ψ̂1 = log κ̂ estimated

from simulations, median of standard deviations obtained from es-

timated asymptotic covariance matrices, coverage of nominal 95 %

approximate confidence intervals. Columns 7-9: as columns 4-6 but

for ψ̂2 = log ω̂.

κ∗ ω∗ µ∗ sd1 ŝd1 cvrg
1

sd2 ŝd2 cvrg
2

1×10−4 10 200 0.28 0.28 0.94 0.15 0.16 0.96
1×10−4 10 800 0.25 0.24 0.94 0.12 0.12 0.96
1×10−4 20 200 0.39 0.38 0.95 0.19 0.2 0.96
1×10−4 20 800 0.30 0.30 0.94 0.12 0.13 0.96
5×10−4 10 200 0.47 0.48 0.98 0.30 0.32 0.95
5×10−4 10 800 0.25 0.24 0.94 0.14 0.14 0.96
5×10−4 20 200 1.72 2.24 1.00 0.72 1.44 1.00
5×10−4 20 800 0.43 0.43 0.95 0.22 0.23 0.96

Table 2. Columns 4-6: standard deviation for ψ̂1 = log σ̂2 estimated from sim-

ulations, median of standard deviations obtained from estimated asymptotic

covariance matrices using Σn (and Σ̃n in parentheses), coverage of nominal

95 % approximate confidence intervals. Columns 7-9: as columns 4-6 but for

ψ̂2 = log φ̂.

σ2,∗ φ∗ µ∗ sd1 ŝd1 cvrg
1

sd2 ŝd2 cvrg
2

0.5 15 800 0.34 0.34 (0.34) 0.96 0.39 0.41 (0.42) 0.97
0.5 30 800 0.24 0.25 (0.26) 0.97 0.35 0.36 (0.37) 0.95
1.5 15 800 0.17 0.20 (0.23) 0.98 0.21 0.23 (0.25) 0.96
1.5 30 800 0.18 0.19 (0.23) 0.95 0.24 0.24 (0.28) 0.92

parameter estimates. The coverages of the confidence intervals are also fairly close (in
general within 1%) to the nominal coverages of 95%. The problems in row 7 is probably
due to that the parameter values κ∗ = 5×10−4 and ω∗ = 20 corresponds to the least clustered
case and with only 200 simulated points on average it may often be hard to distinguish the
estimated K-function from that of a Poisson process. This leads to rather extreme values of
the parameter estimates and for 3% of the simulated point patterns for row 7, the minimum
contrast procedure did in fact not converge.

Quantile plots based on the simulated parameter estimates are shown in Figure 3 and
Figure 4. The distributions of the parameter estimates are in general fairly close to normal.
Bivariate scatter plots (omitted) of (log κ̂, log ω̂) indicate that the joint distribution is well
approximated by a bivariate normal and that log κ̂ is strongly negatively correlated with
log ω̂. However, for reasons discussed in the above paragraph, the case κ∗ = 5×10−4,
ω∗ = 20, and µ∗ = 200 is an exception where the distributions of both log κ̂ and log ω̂ are
very heavy tailed.

For the LGCP we restrict attention to the case µ∗ = 800 and values of σ2,∗ = 0.5, 1.5 and
φ∗ = 15, 30. Proceeding as for the Thomas process we obtain Table 5.1. The asymptotic
results work rather well for σ2,∗ = 0.5. For σ2,∗ = 1.5 the asymptotic standard errors
tend to overestimate the true standard errors and this is especially so for the asymptotic
standard errors obtained with Σ̃n. The quantile plots in Figure 5 show some deviations from
normality both when σ2,∗ = 0.5 and σ2,∗ = 1.5 but the deviations seem rather modest.
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Fig. 3. Empirical quantiles of the simulated parameter estimates for log κ against quantiles for a

standard normal distribution. Upper row, κ∗ = 1×10−4, lower row: κ∗ = 5×10−4. First two columns:

ω∗ = 10 and second two columns: ω∗ = 20. First and third column: µ∗ = 200, second and fourth

column: µ∗ = 800.
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Fig. 4. Empirical quantiles for the simulated parameter estimates for log ω against quantiles of a

standard normal distribution. Upper row, κ∗ = 1×10−4, lower row: κ∗ = 5×10−4. First two columns:

ω∗ = 10 and second two columns: ω∗ = 20. First and third column: µ∗ = 200, second and fourth

column: µ∗ = 800.
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Fig. 5. Empirical quantiles for simulated parameter estimates of log σ2 (upper row) and log φ
(lower row) against quantiles of a standard normal distribution. From left to right: (σ,2,∗, φ∗) =
(0.5, 15), (0.5, 30), (1.5, 15), (1.5, 30).

6. Discussion

The asymptotic result in Section 4.1 is applicable to a wide range of mixing inhomogeneous
spatial point processes. In Section 5 we considered the spefic examples of an inhomogeneous
Thomas process and an LGCP with exponential correlation function. The simulation study
suggests that inference based on asymptotic normality is generally quite reliable with a
possible exception when σ2 is large for an LGCP. If one prefers a parametric bootstrap the
OP (|Wn|−1/2) consistency implied by (6) is still a useful result.

A drawback of the minimum contrast estimation method is the need to specify r and
c. The values r = 100 and c = 0.25 used in the data example and the simulation studies
were taken from Waagepetersen (2007) who chose these values on basis of rules of thumbs
from Diggle (2003). For the Beilschmiedia data and the Thomas process for example, we
obtained estimates and confidence intervals 2.2×10−4 (1.2×10−4;3.9×10−4) and 13 (10;17) for
κ and ω. Changing r from 100 to 50 or c from 0.25 to 1 on the other hand yields 3.2×10−4

(2.1×10−4;4.7×10−4) and 9.6 (8.4;11.1) respectively 1.7×10−4 (0.8×10−4;3.9×10−4) and 20.1
(12.9;31.2). Hence quite different parameter estimates and estimates of uncertainty are
obtained. The large sensitivity to r and c may partly be caused by the strong negative
correlation between κ̂ and ω̂. The product κ̂ω̂ is e.g. not strongly affected by the choice
of r and c. Similarly, estimated standard errors for β̂ do not differ much when plugging in
the different estimates of (κ, ω). For the LGCP, the parameter estimates are less sensitive
as we obtain estimates (1.66,20.8), (1.82,17,4), and (1.40,24.7) for (σ2, φ) using respectively
(r, c) = (100, 0.25), (r, c) = (50, 0.25), and (r, c) = (100, 1).

Simulation studies in Guan (2006) shows in concordance with Diggle (2003) that using
c = 0.25 for aggregated point patterns generally works well. Regarding the choice of r,
plots of the empirical pair correlation function (e.g. (4.21) in Møller and Waagepetersen,
2003) may be helpful. Typically, the pair correlation function converges to one and it is
not helpful to use an r so that the pair correlation function becomes very close to one for a
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range of values in [0, r]. For the Beilschmiedia data, inspection of the empirical correlation
function suggests a value of r around 70.
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A. Proof of joint asymptotic normality of (β̂n, ψ̂n)

Below we first establish the existence of a consistent sequence {(β̂n, ψn)}n≥1 such that

un(β̂n, ψ̂n) = 0 with a probability tending to one and |Wn|1/2
(

(β̂n, ψ̂n)−(β∗, ψ∗)
)

is bounded

in probability (i.e. for each ǫ > 0 there exists a d such that P (|Wn|1/2‖(β̂n, ψ̂n)−(β∗, ψ∗)‖ >
d) ≤ ǫ for n sufficiently large). Asymptotic normality then follows from Lemma 4 and
Lemma 5 in Appendix D, the boundedness of the entries in Σ̃n (Appendix B), and the
Taylor expansion

|Wn|
−1/2un(β̂n, ψ̂n)Σ̃

−1/2
n =

|Wn|
−1/2un(β

∗, ψ∗)Σ̃−1/2
n + |Wn|

1/2
(

(β̂n, ψ̂n) − (β∗, ψ∗)
)Jn(β̃, ψ̃)

|Wn|
Σ̃−1/2
n (8)

where

Jn(β, ψ) = −
d

d(β, ψ)T
un(β, ψ) =

[

d
dβTun,1(β) d

dβTun,2(β, ψ)

0 d
dψTun,2(β, ψ)

]

=

[

Jn,11(β, ψ) Jn,12(β, ψ)
0 Jn,22(β, ψ)

]

(9)

and (β̃, ψ̃) is between (β̂n, ψ̂n) and (β∗, ψ∗).

Regarding |Wn|1/2(β̂n− β∗), we apply Theorem 2 and Remark 1 in Appendix C to un,1
with Vn = (|Wn|Σ̃n,11)1/2 and cn = |Wn|. The conditions G2-G4 hold by Lemma 3-5 in

Appendix D. It thus follows that there exists a sequence {β̂n}n≥1 where |Wn|1/2‖β̂n − β∗‖

is bounded in probability and un,1(β̂n) = 0 with a probability tending to one.

We proceed in a similar manner for |Wn|1/2(ψ̂n − ψ∗). Using a Taylor expansion,

|Wn|
−1/2un,2(β̂n, ψ

∗)Σ̃
−1/2
n,22 =

|Wn|
−1/2un,2(β

∗, ψ∗)Σ̃
−1/2
n,22 + |Wn|

−1/2(β̂n − β∗)Jn,12(β̃, ψ
∗)Σ̃

−1/2
n,22

where ‖β̃ − β∗‖ ≤ ‖β̂n − β∗‖. Letting Vn = (|Wn|Σ̃n,22)1/2 it follows that un,2(β̂n, ψ
∗)V −1

n

is bounded in probability. Applying Theorem 2 in Appendix C to un,2(β̂n, ψ) it follows

as for un,1 that there exists a sequence {ψ̂n}n≥1 where |Wn|1/2‖ψ̂n − ψ∗‖ is bounded in

probability and un,2(β̂n, ψ̂n) = 0 with a probability tending to one.
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B. The matrices Σ̃n,12 and Σ̃n,22

Note that we may rewrite ũn,2(β
∗, ψ∗) as

|Wn|

6=
∑

u,v∈X∩Wn

f(u, v)

|Wn ∩Wn,u−v|
− |Wn|2c

2

∫ r

rl

Kψ∗(t)
2c−1K

(1)
ψ∗ (t)dt

where

f(u, v) =
2c2

∫ r

max{rl,‖u−v‖}
Kψ∗(t)

2c−2K
(1)
ψ∗ (t)dt

ρβ∗(u)ρβ∗(v)
.

Hence we can compute Σ̃n,22 = |Wn|−1
Varũn,2(β

∗, ψ∗) using the expansion (12) in Ap-

pendix D. Similarly, letting h(u) = ρ
(1)
β∗ (u)/ρβ∗(u),

Σ̃n,12 =|W−1
n |Eun,1(β

∗)Tũn,2(β
∗, ψ∗)

=

∫

W 3
n

h(w)
f(u, v)

|Wn ∩Wn,u−v|
[ρβ∗,3(w, u, v) − ρβ∗(w)ρβ∗,2(u, v)]dwdudv

+ 2

∫

W 2
n

h(u)
f(u, v)

|Wn ∩Wn,u−v|
ρβ∗,2(u, v)dudv.

The boundedness of the entries in Σ̃n,12 and Σ̃n,22 follows from f(u, v) = 0 if ‖u − v‖ > r
and the basic assumptions B1-B4.

C. A general asymptotic result

The following result is inspired by unpublished lecture notes by Professor Jens L. Jensen,
University of Aarhus. Consider a parameterized family of probability measures Pθ, θ ∈ R

p,
and a sequence of estimating functions un : R

p → R
p, n ≥ 1. The distribution of {un(θ)}n≥1

is governed by P = Pθ∗ where θ∗ denotes the ‘true’ parameter value. For a matrix A = [aij ],
‖A‖M = maxij |aij | and we let Jn(θ) = − d

dθTun(θ).

Theorem 2. Assume that there exists a sequence of invertible symmetric matrices Vn
such that

G1 ‖V −1
n ‖ → 0.

G2 There exists a l > 0 so that P (ln < l) tends to zero where

ln = inf
‖φ‖=1

φV −1
n Jn(θ

∗)V −1
n φT.

G3 For any d > 0,

sup
‖(θ−θ∗)Vn‖≤d

‖V −1
n [Jn(θ) − Jn(θ

∗)]V −1
n ‖M = γnd → 0

in probability under P .
G4 The sequence un(θ

∗)V −1
n is bounded in probability (i.e. for each ǫ > 0 there exists a d

so that P (‖un(θ∗)V −1
n ‖ > d) ≤ ǫ for n sufficiently large).
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Then for each ǫ > 0, there exists a d > 0 such that

P (∃θ̃n : un(θ̃n) = 0 and ‖(θ̃n − θ∗)Vn‖ < d) > 1 − ǫ (10)

whenever n is sufficiently large.

Remark 1. Suppose that there is a sequence {cn}n≥1 and matrices In so that Jn(θ
∗)/c2n−

In tends to zero in probability. In condition G2 we can then replace V −1
n Jn(θ

∗)V −1
n by

(Vn/cn)
−1In(Vn/cn)

−1. Let θ̂n = 0 if un(θ) has no solution and otherwise the root closest

to θ∗. Then by (10), with a probability tending to one θ̂n is a root and (θ̂n−θ∗)Vn is bounded
in probability.

Proof. The event

{∃θ̂n : un(θ̂n) = 0 and ‖(θ̂n − θ∗)Vn‖ < d}

occurs if un(θ
∗+φV −1

n )V −1
n φT < 0 for all φ with ‖φ‖ = d since this implies un(θ

∗+φV −1
n ) =

0 for some ‖φ‖ < d (Lemma 2 in Aitchison and Silvey, 1958). Hence we need to show that
there is a d such that

P ( sup
‖φ‖=d

un(θ
∗ + φV −1

n )V −1
n φT ≥ 0) ≤ ǫ

for sufficiently large n. To this end we write

un(θ
∗ + φV −1

n )V −1
n φT = un(θ

∗)V −1
n φT − φ

∫ 1

0

V −1
n Jn(θ(t))V −1

n dtφT

where θ(t) = θ∗ + tφV −1
n . Then

P ( sup
‖φ‖=d

un(θ
∗ + φV −1

n )V −1
n φT ≥ 0) ≤

P ( sup
‖φ‖=d

un(θ
∗)V −1

n φT ≥ inf
‖φ‖=d

φ

∫ 1

0

V −1
n Jn(θ(t))V

−1
n dtφT) ≤

P (‖un(θ
∗)V −1

n ‖ ≥ d inf
‖φ‖=1

[φV −1
n Jn(θ

∗)V −1
n φT/2]− pγnd]) ≤

P (‖un(θ
∗)V −1

n ‖ ≥ dln/2) + P (pγnd > ln/2)

The first term can be made arbitrarily small by picking a sufficiently large d and letting n
tend to infinity. The second term converges to zero as n tends to infinity.

D. Auxiliary results

In this appendix we collect a number of lemmas used in the previous appendices. Recall
that we always assume that the basic assumptions B1-B4 hold.

Lemma 1. The variance

Var

6=
∑

u,v∈X∩Wn

1[‖u− v‖ ≤ t]f(u, v)

|Wn|ρβ∗(u)ρβ∗(v)
(11)

is O(|Wn|−1) for any bounded function f(u, v).
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Proof. Let φ(u, v) = 1[‖u−v‖≤bnt]f(u,v)
|Wn|ρβ∗ (u)ρβ∗ (v) . Then by the Campbell formulae, (11) is equal

to

2

∫

W 2
n

φ(u, v)2ρ
(2)
β∗ (u, v)dudv + 4

∫

W 3
n

φ(u, v)φ(v, w)ρ
(3)
β∗ (u, v, w)dudvdw+

∫

W 4
n

φ(u, v)φ(w, z)(ρ
(4)
β∗ (u, v, w, z) − ρ

(2)
β∗ (u, v)ρ

(2)
β∗ (w, z))dudvdwdz. (12)

It then follows from straightforward calculations that each of the three terms is O(|Wn|−1).

Lemma 2. For any d ∈ R,

sup
rl≤t≤ru

|K̂d
n,β∗ −Kψ∗(t)

d|

is oP (1) for any 0 < rl < ru <∞. If d ≥ 0 we may take rl = 0.

Proof. By Lemma 1, K̂n,β∗(t) tends to Kψ∗(t) in probability for each t ≥ 0. Using the

monotonicity of K̂n,β∗(t)
d and Kψ∗(t)

d, the result follows by arguments as in the proof of
the Glivenko-Cantelli theorem (e.g. page 266 in Van der Vaart, 1998).

Lemma 3. Assume N3. Then lim infn→∞ min{ln,11, ln,22} > 0 where

ln,11 = inf
‖φ1‖=1

φ1Σ̃
−1/2
n,11 In,11Σ̃

−1/2
n,11 φ

T

1 and ln,22 = inf
‖φ2‖=1

φ2Σ̃
−1/2
n,22 I22Σ̃

−1/2
n,22 φ

T

2 .

Proof. For a symmetric matrix A with eigen values λi and a vector φ it follows from
the spectral decomposition that there exists another vector φ̃ where ‖φ‖ = ‖φ̃‖ and φAφT=
∑

i φ̃
2
iλi. This implies that that the eigen values of Σ̃n,11 and Σ̃n,22 are bounded by the

maximal eigenvalue λ̃n,max of Σ̃n and that λ̃n,max < λ̃max for some λ̃max < ∞ (since

the entries in Σ̃n are bounded). Hence, the eigenvalues of Σ̃−1
n,11 are greater than 1/λ̃max,

‖φ1Σ̃
−1/2
n,11 ‖2 ≥ 1/λ̃max, and ln,11 ≥ λn,11/λ̃max. Similarly, ln,22 ≥ λ22/λ̃max where λ22 is the

smallest eigen value of I22.

Lemma 4. Assume N1-N2 and define Jn(β, ψ) as in (9) in Appendix A.

(a) For any d > 0,

sup
(β,ψ):‖((β,ψ)−(β∗,ψ∗))|Wn|1/2‖≤d

‖Jn(β, ψ)/|Wn| − Jn(β∗, ψ∗)/|Wn|‖

tends to zero in probability.
(b) |Wn|−1Jn(β

∗, ψ∗) − In converges to zero in probability where In is given in (7).

Proof. The result (a) follows easily by arguments involving continuity of ρβ and Kψ

and their derivatives. Regarding (b), we consider the blocks in Jn and In one at a time.

|Wn|
−1Jn,11(β

∗, ψ∗) − In,11 =

1

|Wn|

∑

u∈X∩Wn

(ρ
(1)
β∗ (u))Tρ

(1)
β∗ (u)

ρβ∗(u)2
− In,11 −

1

|Wn|

∑

u∈X∩Wn

ρ
(2)
β∗ (u)

ρ∗β(u)
+

1

|Wn|

∫

Wn

ρ
(2)
β∗ (u)du.
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By the Campbell formulae |Wn|−1Jn,11(β
∗, ψ∗)−In,11 has mean zero and varianceO(|Wn|−1).

Hence |Wn|−1Jn,11(β
∗, ψ∗)−In,11 tends to zero in probability. The matrix |Wn|−1Jn,12(β

∗, ψ∗)
is

−2c2
∫ r

rl

(K̂n,β∗(t)
c−1 −Kψ∗(t)

c−1)Kψ∗(t)
c−1K

(1)
ψ∗ (t)

d

dβT
K̂n,β(t)|β=β∗dt+

−2c2
∫ r

rl

Kψ∗(t)
2c−2K

(1)
ψ∗ (t)

d

dβT
K̂n,β(t)|β=β∗dt.

where the first term tends to zero in probability by Lemma 2 and Lemma 1. The last term
minus In,12 is

−2c2
∫ r

rl

Kψ∗(t)
2c−2K

(1)
ψ∗ (t)[

d

dβT
K̂n,β(t)|β=β∗ −Hn,β∗(t)]dt

which tends to zero by Lemma 1. Regarding Jn,22(β
∗, ψ∗),

|Wn|
−1Jn,22(β

∗, ψ∗) = In,22+

2c

∫ r

rl

(K̂n,β∗(t)
c −Kψ∗(t)

c)[(c− 1)Kψ∗(t)
c−2(K

(1)
ψ∗ (t))TK

(1)
ψ∗ (t) +Kψ∗(t)

c−1K
(2)
ψ∗ (t)]dt

where the last term converges to zero in probability by Lemma 2.

Lemma 5. Assume N1-N5. Then |Wn|−1/2
(

un,1(β
∗), un,2(β

∗, ψ∗)
)

Σ̃
−1/2
n is asymptoti-

cally standard normal.

Proof. Note
un,2(β

∗, ψ∗) = ũn,2(β
∗, ψ∗) + Vn,2(β

∗, ψ∗)

where

Vn,2(β
∗, ψ∗) =

2c2|Wn|

∫ r

rl

(K̂n,β∗(t) −Kψ∗(t))(K̃n(t)c−1 −Kψ∗(t)
c−1)Kψ∗(t)

c−1K
(1)
ψ∗ (t)dt

and |K̃n(t)−Kψ∗(t)| ≤ |K̂n,β∗(t)−Kψ∗(t)|. The term |Wn|
−1/2Vn,2(β

∗, ψ∗) tends to zero in

probability since (K̃n(t)
c−1−Kψ∗(t)

c−1) tends to zero uniformly in t by Lemma 2 and since

Var|Wn|1/2rK̂n,β∗(r) is O(1). Hence |Wn|−1/2un(β
∗, ψ∗)Σ̃

−1/2
n has the same weak limit as

|Wn|
−1/2

(

un,1(β
∗), ũn,2(β

∗, ψ∗)
)

Σ̃
−1/2
n .

For the asymptotic normality of |Wn|
−1/2

(

un,1(β
∗, ψ∗), ũn,2(β

∗, ψ∗)
)

, let s =
√

4r2 + ǫ/2−
2r where ǫ = a− 8r2 > 0, cf. N5. For (i, j) ∈ Z

2, let Aij = [is, (i+ 1)s) × [js, (j + 1)s) be
the s× s box with lower right corner at (is, js) and define

Xij =
∑

u∈X∩Aij

ρ
(1)
β (u)

ρβ(u)
−

∫

Aij

ρ
(1)
β (u)

whereby

|Wn|
−1/2un,1(β) = |Wn|

−1/2
∑

(i,j)∈Z2:Aij⊆Wn

Xij + oP (1).
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Regarding ũn,2 we replace K̂n,β∗(t) by

1

|Wn|

∑

u∈X∩Wn

∑

v∈X

1[0 < ‖u− v‖ ≤ t]

ρβ∗(u)ρβ∗(v)

and define

Yij = 2c2
∑

u∈X∩Aij

∫ r

rl

∑

v∈X

1[0 < ‖u− v‖ ≤ t]

ρβ∗(u)ρβ∗(v)
Kψ∗(t)

2c−2K
(1)
ψ∗ (t)dt

− 2c2s2
∫ r

rl

Kψ∗(t)
2c−1K

(1)
ψ∗ (t)dt

whereby

|Wn|
−1/2ũn,2(β

∗, ψ∗) = |Wn|
−1/2

∑

(i,j)∈Z2:Aij⊆Wn

Yij + oP (1).

Let x = (x1, · · · , xp) and y = (y1, · · · , yq) be two arbitrary non-zero vectors and define

Zij = Xijx
T + Yijy

T.

Asymptotic normality of |Wn|−1/2
∑

(i,j)∈Z2 Zij now implies the asymptotic normality of

|Wn|−1/2
(

un,1(β
∗), ũn,2(β

∗, ψ∗)
)

. Let |Λ| denote cardinality of a subset Λ ⊆ Z
2 and F(Z,Λ)

the σ-algebra generated by {Zij : (i, j) ∈ Λ}. Define the mixing coefficient

αp1,p2(m;Z) = sup{|P (A1 ∩A2) − P (A1)P (A2)| : Ai ∈ F(Z,Λi), |Λi| ≤ pi,

Λi ⊆ Z2, i = 1, 2, d(Λ1,Λ2) ≥ m}.

Since the random field Z = {Zij : (i, j) ∈ Z
2} inherits the mixing properties of X we can

now invoke the central limit Theorem 3.3.1 in Guyon (1991) which is an extension to the
nonstationary case of Bolthausen (1982)’s central limit theorem. Specifically, we need for
some δ > 0,

(a) lim infn→∞ |Wn|−1(x, y)Var
(

(un,1(β
∗), ũn,2(β

∗, ψ∗)
)

(x, y)T > 0,
(b) supij E(|Zij |2+δ) <∞

(c)
∑

m≥1mα2,∞(m;Z)δ/(2+δ) <∞,

These conditions hold due to N3, N4, and N5, respectively. Note in particular regarding
the last condition that Yij and hence Zij only depends on X through X ∩ Aij ⊕ r where
Aij ⊕ r = [is− r, i(s+ 1) + r) × [js− r, j(s+ 1) + r) whose area equals a/2.

E. A sufficient condition for mixing for Neyman-Scott processes

Recall the definition in Section 3 of a Neyman-Scott process X = ∪c∈CXc where the Xc

are independent offspring Poisson processes with intensity functions αk(· − c) and k is the
dispersal density for the offspring. Below we verify that a sufficient condition for mixing is
that

∫

R2\[−m,m]2
k(v − w)dv is O(m−d−2) (13)

whenever the distance from w to R
2 \ [−m,m]2 is bigger than m/2.
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Consider regions E1 = [−h, h]2, and E2 = R
2 \ [−m,m]2 where m = 2n > h. Let

X1 = ∪c∈C∩[−n,n]2Xc and X2 = X\X1. Then X1 andX2 are independent cluster processes.
Let Ai = {X∩Ei ∈ Gi}, i = 1, 2, where G1 and G2 are sets of point configurations. Further
let B1 = {X1 ∩ E2 = ∅}, B2 = {X2 ∩ E1 = ∅} and B = B1 ∩B2. Then

P (A1 ∩A2) = P (A1 ∩A2 ∩B) + P (A1 ∩A2 ∩B
c)

where

P (A1 ∩A2 ∩B) = P (X1 ∩E1 ∈ G1, X1 ∩ E2 = ∅)P (X2 ∩ E2 ∈ G2, X2 ∩ E1 = ∅).

Similarly,

P (A1)P (A2)

= P (X1 ∩ E1 ∈ G1, X1 ∩ E2 = ∅)P (X2 ∩ E2 ∈ G2, X2 ∩ E1 = ∅)P (B)

+ P (A1 ∩B)P (A2 ∩B
c) + P (A1 ∩B

c)P (A2 ∩B) + P (A1 ∩B
c)P (A2 ∩B

c).

Thus,
|P (A1 ∩A2) − P (A1)P (A2)| ≤ 5P (Bc) ≤ 5P (Bc1) + 5P (Bc2)

Let n(X1 ∩ E2) denote the cardinality of X1 ∩ E2. Then

P (Bc1) ≤ En(X1 ∩ E2) = ακ

∫

[−n,n]2

∫

R2\[−m,m]2
k(u− c)dudc

and

P (Bc2) ≤ En(X2 ∩ E1) = ακ

∫

[−h,h]2

∫

R2\[−n,n]2
k(u− c)dcdu.

Both of these are O(m−d) if (13) holds.
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