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TWO-STEP ESTIMATION OF MODELS BETWEEN LATENT CLASSES AND

EXTERNAL VARIABLES

Abstract

We consider models which combine latent class measurement models for

categorical latent variables with structural regression models for the relationships

between the latent classes and observed explanatory and response variables. We

propose a two-step method of estimating such models. In its first step the

measurement model is estimated alone, and in the second step the parameters of

this measurement model are held fixed when the structural model is estimated.

Simulation studies and applied examples suggest that the two-step method is an

attractive alternative to existing one-step and three-step methods. We derive

estimated standard errors for the two-step estimates of the structural model which

account for the uncertainty from both steps of the estimation, and show how the

method can be implemented in existing software for latent variable modelling.

Key words: Latent variables; Mixture models; Structural equation models; Pseudo

maximum likelihood estimation
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1. Introduction

Latent class analysis is used to classify objects into categories on the basis of multiple

observed characteristics. The method is based on a model where the observed variables are

treated as measures of a latent variable which has some number of discrete categories or latent

classes (Lazarsfeld & Henry, 1968; Goodman, 1974; Haberman, 1979; see McCutcheon, 1987

for an overview). This has a wide range of applications in psychology, other social sciences,

and elsewhere. For example, latent class analysis was used to identify types of substance abuse

among young people by Kam (2011), types of music consumers by Chan and Goldthorpe

(2007), and patterns of workplace bullying by Einarsen, Hoel, and Notelaers (2009).

In many applications the interest is not just in clustering into the latent classes but in

using these classes in further analysis with more complex models. Such extensions include

using observed covariates (explanatory variables) to predict latent class membership, and

using the latent class as a covariate for other outcomes. For instance, in our illustrative

examples we examine how education and birth cohort predict tolerance for nonconformity as

classified by latent class analysis, and how latent classes of perceived psychological contract

between employer and employee predict the employee’s feelings of job insecurity.

Models like these have two main components: the measurement model for how the latent

classes are measured by their observed indicators, and the structural model for the

relationships between the latent classes and other explanatory or response variables. Different

approaches may be used to fit these models, differing in how the structural and measurement

models are estimated and whether they are estimated together or in separate steps. In this

article we propose a new “two-step” method of estimating such models, and show that it is an

attractive alternative to existing “one-step” and “three-step” methods.

In the one-step method of estimation both parts of the model are estimated at the same

time, to obtain maximum likelihood (ML) estimates for all of their parameters (see e.g. Clogg,

1981, Dayton & Macready, 1988, Hagenaars, 1993, Bandeen-Roche, Miglioretti, Zeger, &

Rathouz, 1997, and Lanza, Tan, & Bray, 2013; this is also known as Full Information ML, or

FIML, estimation). Although this approach is efficient and apparently natural, it also has

serious defects (see e.g. the discussions in Croon, 2002, Vermunt, 2010, and Asparouhov &

Muthén, 2014). These arise because the whole model is always re-fitted even when only one

part of it is changed. Practically, this can make the estimation computationally demanding,
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especially if we want to fit many models to compare structural models with multiple variables.

The more disturbing problem with the one-step approach, however, is not practical but

conceptual: every change in the structural model — for example adding or removing covariates

— affects also the measurement model and thus in effect changes the definition of the latent

classes, which in turn distorts the interpretation of the results of the analysis. This problem is

not merely hypothetical but can in practice occur to an extent which can render comparisons

of estimated structural models effectively meaningless. One of our applied examples in this

article, which is discussed in Section 4.1, provides an illustration of this phenomenon.

“Stepwise” methods avoid the problems of the one-step approach by separating the

estimation of the different parts of the model into distinct steps of the analysis. Most existing

applications of this idea to latent class analysis are different versions of the three-step method.

This involves (1) estimating the measurement model alone, using only data on the indicators

of the latent classes, (2) assigning predicted values of the latent classes to the units of analysis

based on the model from step 1, and (3) estimating the structural model with the assigned

values from step 2 in the role of the latent classes. The most common version of this is the

naive three-step method where the values assigned in step 2 are treated as known variables in

step 3. In this as in all the stepwise methods, the first-step modelling may even be done by

different researchers or with different data than the subsequent steps.

The naive three-step method has the flaw that the values assigned in its second step are

not equal to the true values of the latent classes as defined by the first step. This creates a

measurement error (misclassification) problem which means that the third step will yield

biased estimates of the structural model (Croon, 2002). The misclassification can be allowed

for and the biases corrected by using bias-adjusted three-step methods (Bolck, Croon, &

Hagenaars, 2004; Vermunt, 2010; Bakk, Tekle, & Vermunt, 2013; Asparouhov & Muthén,

2014) which have been developed in recent years and which are now also implemented in two

mainstream software packages for latent class analysis, Latent GOLD (Vermunt & Magidson,

2005, 2016) and Mplus (Muthén & Muthén, 2017). However, applied researchers who are

unfamiliar with the correction methods, or who are using other software packages, will still

most often be using the naive three-step approach.

In this paper we propose an alternative two-step method of estimation. Its first step is the

same as in the three-step methods, that is fitting the latent class measurement model on its
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own. In the second and final step, we then maximise the joint likelihood (i.e. the likelihood

which is also used in the one-step method), but with the parameters of the measurement

model and of exogenous latent variables (if any) fixed at their estimated values from the first

step, so that only the parameters of the rest of the structural model are estimated in the

second step. This proposal is rooted in the realization that the essential feature of a stepwise

approach is that the measurement model is estimated separately, not that there needs to be

an explicit classification step. This is especially important because the classification error of

the three-step method is introduced in its second step. So by eliminating this step, we

eliminate the circular problem of introducing an error that we then need to correct for later

on. As a result, the two-step method is more straightforward and easier to understand than

the bias-adjusted three-step methods.

This approach was suggested as a possibility already by Bandeen-Roche et al. (1997,

p. 1384). Xue and Bandeen-Roche (2002) developed it in full, in their case for structural

models with the latent class as the response variable, and motivated by applications where the

first step was based on a much larger sample than the second. It was also used by Bartolucci,

Montanari, and Pandolfi (2014) for latent Markov models for longitudinal data. We build on

and extent these previous proposals, and describe two-step modeling and its properties as a

general method for latent class analysis. As already noted by Xue and Bandeen-Roche (2002),

it can be motivated as an instance of two-stage pseudo ML estimation (Gong & Samaniego,

1981). The general theory of such estimation shows that the two-step estimates of the

parameters of the structural model are consistent, and it provides asymptotic variance

estimates which correctly allow also for the uncertainty in the estimates from the first step.

Software which can carry out one-step estimation can also be used to implement the two-step

method. Our simulations suggest that the two-step estimates are typically only slightly less

efficient than the one-step estimates, and a little more efficient than the bias-adjusted

three-step estimates.

Although we focus in this article on latent class models, the conceptual issues and the

methods that we describe apply also to other latent variable models (we discuss this briefly

further in Section 5). In particular, they are also relevant for structural equation models

(SEMs) where both the latent variables and their indicators are treated as continuous

variables (see e.g. Bollen, 1989). There the most commonly used methods are one-step
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(standard SEMs) and naive three-step estimation (using factor scores as derived variables).

For some models it is possible to assign factor scores in such a way that the bias of the naive

three-step approach is avoided (Skrondal & Laake, 2001; comparable methods have been

proposed for item response theory models by Lu & Thomas, 2008, and for latent class models

by Petersen, Bandeen-Roche, Budtz-Jørgensen, & Groes Larsen, 2012), and bias-corrected

three-step methods can also be developed (Croon, 2002; Devlieger, Mayer, & Rosseel, 2016),

but these approaches are less often used in practice. Another stepwise approach for SEMs is

two-stage least squares (2SLS) estimation, different versions of which have been proposed by

Jöreskog and Sörbom (1986), Lance, Cornwell, and Mulaik (1988) and Bollen (1996). It uses

the ideas of instrumental variable estimation, and is quite different in form to our two-step

method. In the closely related context of generalized linear models with continuous covariates

measured with error, Skrondal and Kuha (2012) proposed a two-step pseudo ML method

which is essentially analogous to the one which is described here for latent class models (it

uses a slightly different split of parameters between steps one and two).

The conceptual disadvantages of the one-step method were discussed in the context of

SEMs already by Burt (1976, 1973). He introduced the idea of “interpretational confounding”

which arises when the variables that a researcher uses to interpret a latent variable differ from

the variables which actually contribute to the estimation of its measurement model. As a way

of avoiding such confounding, Burt proposed a stepwise approach which was two-step

estimation in the same sense that we describe here. Subsequent literature has, however, made

little use of this proposal, even when it has drawn on Burt’s ideas otherwise. In particular,

stepwise thinking is now much more commonly applied to model selection rather than

estimation — in other words, the form of the measurement model is selected separately, but

the parameters of this measurement model and any structural models are then estimated

together using one-step estimation (Anderson & Gerbing, 1988). It is likely that in the large

SEM literature there are individual instances of the use of two-step estimation (one example is

Ping, 1996), but they are clearly not widespread. There appear to be no systematic

theoretical expositions of two-step estimation of the kind that is offered in this article.

The model setting and the method of two-step estimation are introduced in Section 2

below, followed in Section 3 by a simulation study where we compare it to the existing

one-step and three-step approaches. We then illustrate the method in two applied examples in
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Section 4, and give concluding remarks in Section 5.

2. Two-step estimation of latent class models with external variables

2.1. The variables and the models

Let X be a latent variable, Y = (Y1, . . . , YK) observed variables which are treated as

measures (indicators) of X, and Z = (Zp, Zo) observed variables where Zp are covariates

(predictors, explanatory variables) for X and Zo is a response variable to X and Zp. We take

X and Zo to be univariate for simplicity of presentation, but this can easily be relaxed as

discussed later. Here X is a categorical variable with C categories (latent classes)

c = 1, . . . , C, and each of the indicators Yk is also categorical, with Rk categories for

k = 1, . . . ,K. Suppose we have a sample of data for n units such as survey respondents, so

that the observed data consist of (Zi,Yi) for i = 1, . . . , n, while Xi remain unobserved.

We denote marginal density functions and probabilities by p(·) and conditional ones by

p(·|·). The measurement model for Xi for a unit i is given by

p(Yi|Xi,Zi) = p(Yi |Xi = c) =

K
∏

k=1

p(Yik|Xi = c) =

K
∏

k=1

Rk
∏

r=1

π
I(Yik=r)
kcr (1)

for c = 1, . . . , C, where πkcr are probability parameters and I(Yik = r) = 1 if unit i has

response r on measure k, and 0 otherwise. This is the measurement model of the latent class

model with K categorical indicator variables for C latent classes. It is assumed here that Yi

are conditionally independent of Zi = (Zpi, Zoi) given Xi (i.e. that Yi are purely measures of

the latent Xi and there are no direct effects from other observed variables Zi to Yi), and that

the indicators Yik are conditionally independent of each other given Xi. These are standard

assumptions of basic latent class analysis.

The structural model p(Zi, Xi) = p(Zpi)p(Xi|Zpi)p(Zoi|Zpi, Xi) specifies the joint

distribution of Zi and Xi. Then p(Zi, Xi,Yi) = p(Zi, Xi)p(Yi|Xi), and the distribution of the

observed variables is obtained by summing this over the latent classes of Xi to get

p(Zi,Yi) = p(Zpi)

C
∑

c=1

[

p(Xi = c|Zpi) p(Zoi|Zpi, Xi = c)

K
∏

k=1

p(Yik|Xi = c)

]

. (2)

This model thus combines a latent class measurement model for Xi with a structural model

for the associations between Xi and observed covariates Zpi and/or response variables Zoi.
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Substantive research questions typically focus on those parts of the structural model

which involve X, so the primary goal of the analysis is to estimate p(Xi|Zpi) and/or

p(Zoi|Zpi, Xi). The measurement model is then of lesser interest, but it too needs to be

specified and estimated correctly to obtain valid estimates for the structural model, not least

because the measurement model provides the definition and interpretation of Xi. The

marginal distribution p(Zpi) can be dropped and the estimation done conditionally on the

observed values of Zpi.

For simplicity of illustrating the methods in specific situations, we will focus on structural

models where either Zp or Zo is absent. These cases will be considered in our simulations in

Section 3 and the examples in Section 4. We thus consider first the case where there is no Zo

and the object of interest is p(Xi = c|Zpi), the model for how the probabilities of the latent

classes depend on observed covariates Zp. This is specified as the multinomial logistic model

p(Xi = c|Zpi) =
exp(β0c + βcZ

′
pi)

C
∑

s=1
exp(β0s + βsZ

′
pi)

(3)

for c = 1, . . . , C, and (β01,β1) = 0 for identifiability (and βc and Zpi are taken to be row

vectors). Second, we consider the case where there is no Zp and the object of interest is

p(Zoi|Xi), a regression model for an observed response variable Zo given latent class

membership. Here p(Xi = c|Zpi) = p(Xi = c), the explanatory variables in p(Zoi|Xi) are

dummy variables for the latent classes c = 2, . . . , C, and the form of this model depends on

the type of Zo. In our simulations and applied example Zo is a continuous variable and the

model for it is a linear regression model.

2.2. Existing approaches: The one-step and three-step methods

Let θ = (π,ψp,ψo) denote the parameters of the joint model, where π are the

parameters of the measurement model, ψp of the structural model for X given Zp (or just the

probabilities p(Xi = c), if there are no Zp), and ψo of the structural model for Zo (if any). If

the units i are independent, the log likelihood for θ is ℓ(θ) =
∑n

i=1 log p(Zoi,Yi|Zpi), obtained

from (2) by omitting the contribution from p(Zpi). Maximizing ℓ(θ) gives maximum likelihood

(ML) estimates of all of θ. These are the one-step estimates of the parameters. They are most

conveniently obtained using established software for latent variable modelling, currently in

particular Latent GOLD or Mplus. These software typically use the EM algorithm, a



Two-step estimation September 7, 2017 9

quasi-Newton method, or a combination of them, to maximize the log likelihood. They also

provide other estimation facilities which are important for complex latent variable models,

such as automatic implementation of multiple starting values.

Stepwise methods of estimation begin instead with the more limited log likelihood

ℓ1(ρ,π) =
∑n

i=1 log p(Yi), where

p(Yi) =

C
∑

c=1

[

p(Xi = c)

K
∏

k=1

p(Yik|Xi = c)

]

, (4)

π are the same measurement parameters (response probabilities) as defined above, and

ρ = (ρ1, . . . , ρC) with ρc = p(Xi = c) =
∫

p(Zpi)p(Xi = c|Zpi) dZpi; thus ρ are the same as ψp

if there are no covariates Zp but not otherwise. Expression (4) defines a standard latent class

model without covariates or response variables Z. In step 1 of all of the stepwise methods, we

maximize ℓ1(ρ,π) to obtain ML estimates of the parameters of this model. This step-1 log

likelihood can also be based on a partially or completely different set of observations than

ℓ(θ); this possibility is discussed further in Section 2.3.

Since the step-1 model gives estimates of p(Xi = c) and p(Yi|Xi = c), it also implies

estimates of the probabilities p(Xi = c|Yi) of latent class membership given observed response

patterns Yi. In step 2 of a three-step method, these conditional probabilities are used in some

way to assign to each unit i a value c̃i of a new variable X̃i which will be used as a substitute

for Xi. The most common choice is the “modal” assignment, where c̃i is the single value for

which p(Xi = c|Yi) is highest. In naive three-step estimation, step 3 then consists of using X̃i

as an observed variable in the place of Xi when estimating the structural models for the

associations between Xi and Zi, to obtain naive three-step estimates of the parameters of

interest ψp and/or ψo. These estimates are, however, generally biased, because of the

misclassification error induced by the fact that X̃i are not equal to Xi. It is important to note

that this bias arises not just from modal assignment but from any step-2 assignment whose

misclassification is not subsequently allowed for; this includes even methods where each unit is

assigned to every latent class with fractional weights which are proportional to p(Xi = c|Yi)

(Dias & Vermunt, 2008; Bakk et al., 2013).

Bias-adjusted three-step methods remove this problem of the naive methods. Their basic

idea is to use the estimated misclassification probabilities p(X̃i = c̃i|Xi = ci) of the values

assigned in step 2 to correct for the misclassification bias. The two main approaches for doing
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this are the “BCH” method proposed by Bolck et al. (2004) and extended by Vermunt (2010)

and Bakk et al. (2013), and the “ML” method proposed by Vermunt (2010) and extended by

Bakk et al. (2013) (see also Asparouhov & Muthén, 2014). Step 3 of the BCH method uses X̃i

explicitly in place of Xi, in the same way as in naive three-step estimation, but with weighting

used to adjust for the misclassification. In contrast, step 3 of the ML method involves

maximizing a log likelihood which has the same form as ℓ(θ), except that p(Yi|Xi) is replaced

with p(X̃i|Xi) and this fixed at its estimate from step 2 (it is thus closer in spirit to the

two-step method, whose second and final step will involve similar fixing, but applied directly

to p(Yi|Xi)). Both of these adjusted three-step methods are available in Latent GOLD and

Mplus, while in other software additional programming would be required.

2.3. The proposed two-step method

We propose a two-step method of estimation. Its first step is the same as in the three-step

methods, that is estimating the latent class model (4) without covariates or response variables

Z. Some or all of the parameter estimates from this model are then passed on to the second

step and treated as fixed there while the rest of the parameters of the full model are estimated.

Let θ = (θ1,θ2) denote the decomposition of θ into those parameters that will be

estimated in step 1 (θ1) and those that will be estimated in step 2 (θ2). There are two

possibilities regarding what we will include in θ1 (these two situations are also represented

graphically in Figure 1). If there are any covariates Zp, then θ1 = π, i.e. it includes only the

parameters of the measurement model (and estimates of ρ from step 1 will be discarded before

step 2). If there are no Zp, then θ1 = (π,ψp), i.e. it includes also the probabilities ψp = ρ of

the marginal distribution of X. The logic of this second choice is that if X is not a response

variable to any Zp, we can treat it as an exogenous variable whose distribution can also be

estimated from step 1 and then treated as fixed when we proceed in step 2 to the estimation

of models conditional on X. Thus θ2 includes either all the parameters (ψp,ψo) of the

structural model, or all of them except those of an exogenous X.

=========================

Insert Figure 1 about here

=========================



Two-step estimation September 7, 2017 11

Denoting the estimates of θ1 from step 1 by θ̃1, in step 2 we use the log likelihood

ℓ2(θ̃1,θ2), which is
∑n

i=1 log p(Zoi,Yi|Zpi) evaluated at θ1 = θ̃1 and treated as a function of

θ2 only. Maximizing this with respect to θ2 gives the two-step estimate of these parameters,

which we denote by θ̃2.

This procedure achieves the aims of stepwise estimation, because the measurement model

is held fixed when (all or most of) the structural model is estimated. If we change the

structural model, θ̃1 remains the same and only step 2 is done again (or even if we do run

both steps again, θ̃1 will not change). This would be the case, for example, if we wanted to

compare models with different explanatory variables Zp for the same latent class variable X.

Another useful aspect of separating the estimation of the measurement and structural

models is that the estimates θ̃1 and θ̃2 may be obtained using different samples. A common

example of this is that some observations which are used for step 1 may be omitted in step 2

because of missing data in Z. A more dramatic instance occurs when, because of resource

constraints, Z is measured for a subset of units only, so that step 1 is based on a much larger

sample (for example, this was a key motivation of two-step estimation in the application

considered by Xue & Bandeen-Roche, 2002). Conversely, we might sometimes decide to keep

θ̃1 unchanged even when new data on Z become available, so that step 2 may be based on a

larger sample (or even a completely different sample) than step 1. In all of these cases, the

two-step estimate θ̃2 will be consistent for θ2 as long as the data are such that one-step

estimates obtained from the step-2 sample would also be consistent (for example, that any

missing data there are ignorable for likelihood inference), and that even if the step-1 and step-2

samples are different they both represent populations where the true value of θ1 is the same.

Although we focus here on the case of a single X for simplicity, the idea of the two-step

method extends naturally also to more complex situations. For instance, suppose that there

are two latent class variables X1 and X2 with separate sets of indicators Y1 and Y2, and the

structural model is of the form p(X1)p(Z1|X1)p(X2|Z1, X1)p(Z2|X1, Z1, X2). In step 1 we

would then estimate two separate latent class models, one for X1 and one for X2 (and both

again without Z = (Z1, Z2)). The step-1 parameters θ1 would be the measurement

probabilities of X1 and X2 and the parameters of p(X1), and the step-2 parameters would be

those of the rest of the structural model apart from p(X1).
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2.4. Properties and implementation of two-step estimates

Two-step estimation in latent class analysis is an instance of a general approach to

estimation where the parameters of a model are divided into two sets and estimated in two

stages. The first set is estimated in the first step by some consistent estimators, and the second

set of parameters is then estimated in the second step with the estimates from the first step

treated as known. When the second step is done by maximizing a log likelihood, as is the case

here, this is known as pseudo maximum likelihood (PML) estimation (Gong & Samaniego,

1981). The properties of our two-step estimators can be derived from the general PML theory.

Such two-stage estimators are consistent and asymptotically normally distributed under

very general regularity conditions (see Gourieroux & Monfort, 1995, Sections 24.2.4 and

24.2.2). In our situation these conditions are satisfied because the one-step estimator θ̂ and

the step-1 estimator θ̃1 of the two-step method are both ML estimators, of the joint model

and the simple latent class model (4) respectively, and because the models are such that θ1

and θ2 can vary independently of each other.

Suppose that step 2 is based on n observations and step 1 on n1 observations (which may

be different, as discussed above). Let the Fisher information matrix for θ in the joint

(one-step) model be

I(θ∗) =





I11

I
′
12 I22





where θ∗ denotes the true value of θ and the partitioning corresponds to θ1 and θ2. The

asymptotic variance matrix of the one-step estimator θ̂ is thus VML = I
−1(θ∗)/n, which is

estimated by V̂ML = I
−1(θ̂)/n. Similarly, let Σ11/n1 be the asymptotic variance matrix of

the step-1 estimator θ̃1 of the two-step method, obtained from the Fisher information matrix

for model (4) and evaluated at the true values (ρ∗,π∗) of its parameters; this is estimated by

substituting the step-1 estimates for these parameters. The asymptotic variance matrix of the

two-step estimator θ̃2 is then V/n, where

V = I
−1
22 + I

−1
22 I12 [(n/n1)Σ11] I

′
12 I

−1
22 ≡ V2 +V1 (5)

where the (n/n1) adjusts for the possibly different sample sizes in the two steps (see Xue &

Bandeen-Roche, 2002). Here V2 describes the variability in θ̃2 if the step-1 parameters θ1

were actually known, and V1 the additional variability arising from the fact that θ1 are not
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known but estimated by θ̃1. Comparable methods for bias-adjusted three-step estimators,

which also allow for both of these sources of variation, have been proposed by Bakk, Oberski,

and Vermunt (2014a). V is estimated by V̂ = V̂2 + V̂1, obtained by substituting θ̃ = (θ̃1, θ̃2)

for θ∗ in I22 and I12 in (5), evaluated using the n observations used for step 2, and the

estimate from step 1 for Σ11. The estimated variance matrix V̂/n is then used to calculate

confidence intervals for the parameters in θ2, and Wald test statistics for them.

The standard errors that are routinely displayed by the software when we fit the step-2

model are based on V̂2 only. Because they omit the contribution from V̂1, these standard

errors will underestimate the full uncertainty in θ̃2. In the simulations of Section 3 we

examine the magnitude of this underestimation in different circumstances. The results suggest

that the contribution from the step-1 uncertainty can be substantial, and that it can be safely

ignored only if the measurement model is such that Y are very strong measures of X.

As noted in the previous section, if the joint model had more than one latent class

variable X, in the first step we would propose to estimate the latent class models for each of

these variables separately. Even then, the estimated parameters of these models would be

correlated, because they are estimated using data for the same units. An estimate which takes

this into account can be obtained from the theory of estimating equations, using only the

score functions and information matrices for the separate models (see e.g. Cameron & Trivedi,

2005, Section 5.4). A still simpler approach would be to approximate Σ11 by a block-diagonal

matrix, with the blocks being the variance matrices for the distinct latent class models. This

would ignore the correlations between these blocks of step-1 parameter estimates and would

thus imply some misspecification of the resulting form of V1, but we might expect the effect of

this misspecification to be relatively small.

In the appendix we outline how the quantities in (5) may be calculated. In practice,

however, it is typically best to implement these calculations using established software for

latent variable modelling. If we have software which can fit the full model using the one-step

approach, it can be adapted to produce also the point estimates and their variance matrix for

the two-step approach. First, θ̃1 and Σ̂11 are obtained by fitting the step-1 latent class model.

Second, θ̃2 and V̂2 are obtained by fitting a model which uses the same code as we would use

for one-step estimation, except that now the values of θ1 are fixed at θ̃1 rather than estimated.

After these steps, the only quantity that remains to be estimated is I12, the cross-parameter
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block of the information matrix I(θ∗). In some applications of PML estimation this can be an

awkward quantity which requires separate calculations. Here, however, it too is easily

obtained. This is because software which can fit the one-step model can also evaluate this part

of the information matrix. All that we need to do to trick the software into producing the

estimate of I12 that we need is to set up estimation of the one-step model with θ̃ = (θ̃1, θ̃2) as

the starting values, get the software to calculate the information matrix with these values (i.e.

before carrying the first iteration of the estimation algorithm), and extract from it the part

corresponding to I12. [The code included in the supplementary materials for this article shows

how this and the other parts of the two-step estimation can be done in Latent GOLD.]

3. Simulation studies

In this section we carry out simulation studies to examine the performance of the

two-step estimator and to compare it to the existing one-step and three-step estimators. The

simulations consider the two specific situations which were discussed in Section 2.3 and

represented in Figure 1, i.e. one with models where the latent class is a response variable and

one where it is an explanatory variable. The settings of the studies draw on those of previous

simulations by Vermunt (2010), Bakk et al. (2013) and Bakk et al. (2014a).

In all of the simulations there is one latent class variable X with C = 3 classes. It is

measured by six items Y = (Y1, . . . , Y6), each with two values which we label 0 and 1. The

more likely response is 1 for all six items in class 1, 1 for three items and 0 for three in class 2,

and 0 for all items in class 3. The probability of the more likely response is set to the same

value π for all classes and items. Higher values of π mean that the association between X and

Y is stronger, separation between the latent classes larger, and precise estimation of the latent

class model easier. We use for π the values 0.9, 0.8 and 0.7, and call them the high, medium

and low separation conditions respectively. Thus, the probabilities of the response 1 are, for

example, all 0.9 in class 1 in the high-separation condition, and (0.7, 0.7, 0.7, 0.3, 0.3, 0.3) in

class 2 in the low-separation condition. The association between X and Y can be summarised

by the entropy-based pseudo-R2 measure (see e.g. Magidson, 1981): here its value is 0.36, 0.65

and 0.90 in the low, medium and high-separation conditions respectively. We consider

simulations with sample sizes n of 500, 1000, and 2000, resulting in nine sample size-by-class

separation simulation settings in each of the two situations we consider.
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In the first simulations the structural model is the multinomial logistic model (3) where

the probabilities p(X = c|Zp) of the latent classes are regressed on a single interval-level

covariate Zp with uniformly distributed integer values 1–5. Class 1 is the reference level for X,

and the coefficients for classes 2 and 3 are β2 = −1 and β3 = 1. The intercepts were set to

values yielding equal class sizes when averaged over Zp. In the second set of simulations the

structural model is a linear regression model with X as the covariate for a continuous response

Zo which is normally distributed with residual variance of 1 (except in one simulation at the

end, where violations of this distributional assumption are considered). Omitting the intercept

term but including dummy variables for all three latent classes, the regression coefficients

β1 = −1, β2 = 1 and β3 = 0 are the expected values of Zo in classes 1, 2, and 3 respectively.

We compare the two-step estimates to ones from the one-step method, the naive

three-step method with modal assignment to latent classes in step 2, and the “BCH” and

“ML” methods of bias-adjusted three-step estimation. The models were estimated with Latent

GOLD Version 5.1, with auxiliary calculations done in R (R Core Team, 2016). In each

setting, 500 simulated samples were generated. In a small number of samples in the

low-separation condition (11 of the 500 when n = 500, and 4 when n = 1000) one or both of

the bias-adjusted three-step methods produced inadmissible estimates (the reasons for this are

discussed in Bakk et al., 2013), and these samples are omitted from the results for all

estimators. The two-step method produced admissible estimates for all of the samples.

=========================

Insert Table 1 about here

=========================

Results of the simulations where X is a response variable are shown in Tables 1 and 2.

For simplicity we report here only results for one of the regression coefficients, which had the

true value of β3 = 1 (the results for the other coefficient were similar). Table 1 compares the

performance of the different estimators of this coefficient in terms of their mean bias and root

mean squared error (RMSE) over the simulations. We note first that the one-step estimator is

essentially unbiased in all the conditions and has the lowest RMSE. The naive three-step

estimator is severely biased (and has the highest RMSE), with a bias which decreases with

increasing class separation but is unaffected by sample size. The bias-adjusted three-step
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methods remove this bias, except in cases with low class separation where some of the bias

remains. These results are similar to those found by Vermunt (2010).

The two-step estimator is comparable to the bias-adjusted three-step estimators, but

consistently slightly better than them. Its smaller RMSE suggests that there is a gain in

efficiency from implementing the stepwise idea in this way, avoiding the extra step of

three-step estimation. In the medium and high-separation conditions the two-step estimator

also performs essentially as well as the one-step estimator, suggesting that there is little loss of

efficiency from moving from full-information ML estimation to a stepwise approach.

The low-separation condition is the exception to these conclusions. There all of the

stepwise estimators have a non-trivial bias and higher RMSE than the one-step estimator

(although the two-step estimator is again better than the bias-corrected three-step ones). A

similar result was reported for the three-step estimators by Vermunt (2010) and (in

simulations where X was a covariate) by Bakk et al. (2013). They concluded that this

happens because the first-step estimates are biased for the true latent classes when the class

separation is low. They also observed that the level of separation in the low condition

considered here (where the entropy R2 is 0.36) would be regarded as very low for practical

latent class analysis, i.e. if the observed items Y were such weak measures of X they would

provide poor support for reliable estimation of associations between the latent class

membership and external variables. The one-step estimator performs better because the

covariate Zp in effect serves as an additional indicator of the latent class variable, and indeed

one which is arguably stronger than the indicators Y in the low-separation condition (for

example, the standard R2 for Zp given X is here 0.48).

=========================

Insert Table 2 about here

=========================

In Table 2 we examine the behaviour of the estimated standard errors of the two-step

estimators, obtained as explained in Section 2.4. We compare them to the one-step estimator

(for which the standard errors are obtained from standard ML theory and should behave

well), omitting the three-step estimators which are not the focus here (simulation results for

their estimated standard errors are reported by Vermunt, 2010 and Bakk et al., 2014a).
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The first three columns for each estimator in Table 2 show the simulation standard

deviation of the estimates of the parameter, the average of their estimated standard errors,

and the coverage proportion of 95% confidence intervals calculated using the standard errors.

Here the one-step and two-step estimators both behave well in the medium and high

separation conditions, in that the standard errors are good estimates of the sampling variation

and the confidence intervals have correct coverage or very close to it (with 500 simulations,

observed coverages between 0.932 and 0.968 are not significantly different from 0.95 at the 5%

level). The variability of the estimates is also comparable for the two methods, again

indicating that the two-step method is here nearly as efficient as the one-step method. An

exception is again the low-separation condition, where the variability of the two-step

estimators is higher. Even then their estimated standard errors correctly capture this

variability, so the undercoverage of the confidence intervals in the low-separation condition is

due to the bias in the two-step point estimator which was shown in Table 1.

The last two columns of Table 2 examine the performance of estimated standard errors of

the two-step estimators if they were based only on V2 in (5), i.e. if we ignored the

contribution from the uncertainty from the first step of estimation which is captured by V1.

The “C95(2)” column of the table shows the coverage of 95% confidence intervals if we do

this, and “SE%(2)” shows the percentage that the step 2-only standard errors contribute to

the full standard errors (this is calculated by comparing the simulation averages of these two

kinds of standard errors). It can be seen that in the low-separation conditions around half of

the uncertainty actually arises from the step-1 estimates, and ignoring this results in severe

underestimation of the true uncertainty and very poor coverage of the confidence intervals.

Even in the more sensible medium-separation condition the contribution from the step-1

uncertainty is over 10% and the coverage is non-trivially reduced, and it is only in the

high-separation condition that we could safely treat the step-1 estimates as known. These

results suggest that there is a clear benefit from using standard errors calculated from the full

variance matrix (5) derived from pseudo-ML theory.

=========================

Insert Table 3 about here

=========================
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=========================

Insert Table 4 about here

=========================

Tables 3 and 4 show the same statistics for the simulations where the latent class X is an

explanatory variable for a continuous response Zo. Here we again focus on just one parameter

in this model, with true value β2 = 1. The results of these simulations are very similar to the

ones where X was the response variable (and for the one-step and three-step estimators they

are also similar to the results in Bakk et al., 2013). The two-step estimator again performs a

little better than the three-step estimators and, except in situations with low class separation,

essentially as well as the one-step estimator.

It is also of interest to consider to what extent the different estimators may be sensitive to

misspecifications of different parts of the models. In a further simulation, for which the point

estimates are shown in Table 5, we examine this with respect to violations of the assumptions

about the distribution of a continuous outcome Zo. Here the settings are the same as in the

medium-separation condition with the sample size of 1000 in Table 3, except that the true

distribution of the residuals in the model for Zo given X differs in one of three ways from the

homoscedastic normal distribution which is assumed by the estimators. In the first case, it is a

mixture of the normal distributions N(−0.5, 0.15) and N(0.75, 1.3375), with weights 0.6 and

0.4 respectively; this has variance 1 but is positively skewed, with an index of skewness of 1.16

(roughly the same as that of the χ2
6 distribution). In the second, it is a mixture of N(0.9, 0.19)

and N(−0.9, 0.19) with equal weights; this is symmetric with variance 1, but is very clearly

bimodal. In the third case, the residual distribution is normal but heteroscedastic, in that its

variance is 1 in two of the latent classes but 5 in one of them.

=========================

Insert Table 5 about here

=========================

We may anticipate that the BCH and naive three-step methods should be robust in this

respect, because in step 3 they use standard linear regression (weighted or unweighted) for Zo

given assigned values of X, which does not rely on parametric assumptions about the residual

distribution. Table 5 shows that this is indeed the case, and for these estimators the results are
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essentially the same as in Table 3. In contrast, the one- and two-step methods and the 3-step

ML method each use in their last step a log-likelihood which involves a distribution for Zo.

Their estimates may then become biased when the fitted model tries to reconcile the assumed

homoscedastic normal distribution of Zo with the observed data, and for one-step estimates

this bias may be further increased because the method allows the latent classes themselves to

be affected by the observed distribution of Zo. Here these effects are, however, small in the

cases with skewed or bimodal distributions. For them, the two-step and one-step estimates

remain comparable in RMSE, and somewhat better than the adjusted three-step estimates.

In the case of a heteroscedastic residual distribution, the lowest RMSEs are achieved by

the BCH estimates. All the other estimates have some bias, which affects different

class-specific mean parameters differently (and for one of them has a very large bias for the

one-step estimates). This case suggests that the one- and two-step methods may be most

sensitive when the violations of the distributional assumptions vary by latent class; for

one-step estimates, results for such situations are also reported by Bakk and Vermunt (2016)

and Asparouhov and Muthén (2015), from simulations which use class-specific and severely

bimodal residual distributions. It should be noted, however, that these model violations are of

a kind which should in practice not go unobserved by the data analyst, but would be easily

detectable even from a preliminary analysis with naive three-step estimation.

4. Empirical examples

4.1. Latent class as a response variable: Tolerance toward nonconformity

In this first applied example we consider a latent class analysis of items which measure

intolerance toward different groups of others. The substantive research question is whether

different levels and patterns of intolerance are associated with individuals’ education and birth

cohort. We use data from the 1976 and 1977 U.S. General Social Surveys (GSS) which was

first analyzed by McCutcheon (1985) using the naive three-step method with modal

assignment of latent classes to individuals. Bakk et al. (2014a) re-analyzed the data using the

one-step and bias-corrected three-step methods, thus showing how McCutcheon’s original

estimates are affected when the misclassification from the second-step class allocation is taken

into account. We examine how two-step estimates compare with these previously proposed

approaches in this example.
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For the definitions of variables and for the first-step latent class modelling we follow the

choices made by the previous authors (data and code for the analysis of Bakk et al., 2014a is

given in Bakk, Oberski, & Vermunt, 2014b[, and for our analysis in [final] supplementary

materials for this article]). The original survey measured a respondent’s tolerance of

communists, atheists, homosexuals, militarists and racists, using three items for each of these

groups. The items asked if the respondent thought that members of a group should be allowed

to make speeches in favour of their views, teach in a college, and have books written by them

included in a public library (the wordings of the questions are given in McCutcheon, 1985).

Thus “tolerance” here essentially means willingness to grant members of a group public space

and freedom to disseminate their views. McCutcheon recoded the data into five dichotomous

items, one for each group, by coding the attitude toward a group as tolerant if the respondent

gave a tolerant answer to all three items for that group, and intolerant otherwise.

The first-step latent class analysis is carried out on a sample of 2689 respondents who had

an observed value for all five items. This complete-case analysis was used to match that of

McCutcheon (1985). It is not essential, however, and all of the estimators can also

accommodate observations with missing values in some of the items (we will do that in our

second example in Section 4.2). There were further 21 respondents who are excluded from

estimation of the structural model because they had missing values for the covariates.

We use the same four-class latent class model for the tolerance items which was also

employed by the previous authors. Its estimated parameters are shown in Table 6. The upper

part of the table gives the estimated parameters of the measurement model, that is the

probabilities πkc1 = P (Yik = 1|Xi = c) that a respondent i who belongs to latent class c gives

a response which is coded as tolerant of group k. Using the labels introduced by McCutcheon,

the class in the first column is called “Tolerant” since respondents in this class have a high

probability of being tolerant of all five groups. The ”Intolerant of Right” class is intolerant of

groups such as racists and militarists and the ”Intolerant of Left” class particularly intolerant

of communists, while the ”Intolerant” have a low probability of a tolerant response for all five

groups. The entropy-based pseudo-R2 measure is here 0.72, placing the separation of these

classes between the medium and high-separation conditions in our simulations in Section 3.

The last row of the table gives the estimated probabilities ρ of the latent classes; these show

that the intolerant class is the largest, with a probability of 0.56.
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=========================

Insert Table 6 about here

=========================

The structural models are multinomial logistic models (3) for these latent classes given a

respondent’s education and birth cohort (which in these cross-sectional data is

indistinguishable from age). Educational attainment was coded into three categories, based on

years of formal education completed: less than 12 (“Grade school”), 12 (“High school”) or

more than 12 years (“College”). Birth cohort was coded by McCutcheon into four categories:

those born after 1951 (and thus aged 17–23 in 1976), in 1934–51 (24–42), 1915–33 (43–61), or

before 1915 (62 or older). Here we treat this variable as continuous for simplicity of

presentation, with values 1–4 respectively.

=========================

Insert Table 7 about here

=========================

The estimates of the structural model are shown in Table 7, in the form of estimated

coefficients for being in the other three classes relative to the Tolerant class. Consider first the

estimates from the stepwise approaches, which are here all fairly similar to each other. The

overall Wald tests show that both education and birth cohort have clearly significant

associations with membership of the different tolerance classes. People from the older cohorts

are more likely to be in the Intolerant of Left and (especially) the Intolerant classes, but there

is no significant cohort effect on being in the Intolerant of Right rather than Tolerant class.

Having college education rather than either of the two lower levels of education is very

strongly associated with lower probabilities of all of the three intolerant classes, and the same

is true for high school vs. grade school education in the comparison of Intolerant and

Intolerant of Left against the Tolerant class (the latter contrast is significant only for the

two-step and naive three-step estimates).

=========================

Insert Table 8 about here

=========================
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The one-step estimates in Table 7 are rather more different from all the stepwise

estimates. This difference arises from a deeper discrepancy than just that of different

estimates for the same parameters. Here the parameters are in fact not the same, because the

one-step estimates are effectively coefficients for a different response variable. This point is

demonstrated in Table 8. It shows the estimated measurement probabilities and marginal

class sizes of the latent class model from one-step estimation with different choices of the

covariates in the structural model. The first column for each class shows the results when no

covariates are included, so it is the same as the model in Table 6 (with the classes there

numbered here 1–4 in the same order). We refer to this pattern and interpretation of the

classes as “pattern A”. The estimates from one-step estimation follow this pattern also if the

structural model includes only the birth cohort, or the cohort plus education included as years

completed rather than in the grouped form. In other words, in these cases the one-step

estimates of the measurement probabilities of the latent classes are sufficiently similar from

one model to the next so that the interpretation (and labelling) of the classes remains

unchanged, even though the exact values of these probabilities still change between models.

In other models, however, the estimated measurement model changes so much that the

latent classes themselves change. We refer to these cases in Table 8 as “pattern B” (nearest

matches from the two patterns are shown under the same number of class in the table). In

this pattern the Tolerant class maintains its interpretation and estimated size, but the other

three classes are re-arranged so that we end up with two classes (numbers 2 and 4) with

slightly different patterns of low tolerance and one class (3) with a probability of a tolerant

response around 50% for all the groups. This pattern emerges when the structural model

includes education alone in either years completed or in the grouped form. It also emerges

when the covariates are cohort and the grouped education, which was the model we considered

in Table 7. The one-step model there is thus a model for latent classes of pattern B (with the

measurement probabilities shown in the second column for each class in Table 8), whereas all

the stepwise models are for classes of pattern A.

This example illustrates the inherent property of one-step estimation that every change in

the structural model will also change the measurement model. Sometimes these changes are

small, such as those between the different versions of pattern A in Table 8, but sometimes

they are so large, such as the jumps between patterns A and B, that they effectively change
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the meaning of the latent class variable. There is no reason even to expect that the possible

patterns would be limited to two as here, so in analyses with a larger number of covariates

still more patterns could appear. In practical analysis it could happen that the analyst failed

to notice these changes and hence to realise that comparisons between some structural models

were effectively meaningless. Even if the analyst did pay attention to this feature, there is

nothing they could really do about it within one-step estimation. This is because the method

provides no entirely coherent way of forcing the measurement model to remain the same. In

contrast, all stepwise methods achieve this by definition, because their key feature is that the

measurement model is fixed before any structural models are estimated.

4.2. Latent class as an explanatory variable: Psychological contract types and job insecurity

Our second example draws on the Dutch and Belgian samples of the Psychological

Contracts across Employment Situations project (PSYCONES, 2006). These data were used

by Bakk et al. (2013) to compare the one-step and bias-adjusted three-step approaches, and

we follow their choices for the models and variables. The goal is to examine the association

between an individual’s perceived job insecurity and their perception of their own and their

employee’s obligations in their current employment (the “psychological contract”). Job

insecurity is measured on a scale used by the PSYCONES project (originally from De Witte,

2000), treated as a continuous variable. Psychological contract types are measured by eight

dichotomous survey items. Four of them refer to perceived obligations (promises given) by the

employer and four to obligations by the employee, and in each group of four, two items refer to

relational and two to transactional obligations. The labels in Table 9 give an idea of the items’

content, and their full wordings are given by De Cuyper, Rigotti, Witte, and Mohr (2008) who

also analysed these items (for a different sample) with latent class analysis. We derive a

classification of psychological contract types from a latent class model and use it as a covariate

in the structural model which is a linear regression model for perceived job insecurity.

There are 1431 respondents who answered at least one of the eight items, and all of them

are used for the first-step latent class modelling. In general, all of the methods considered here

can accommodate units of analysis which have missing data in some of the items. For

estimation steps which employ a log-likelihood of some kind (such as one-step estimation and

both steps of two-step estimation) this is done by defining it in such a way that all observed
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variables contribute to the log-likelihood for each unit, and for the second step of the

three-step methods it is achieved by calculating the conditional probability of latent classes

given all the observed items for each unit. Four respondents for whom the measure of job

insecurity was not recorded are omitted when the structural model is estimated.

=========================

Insert Table 9 about here

=========================

The step-1 model is a four-class latent class model, for which the parameter estimates are

given in Table 9. The first class, which consists of an estimated 52% of the individuals and is

labelled the class of “Mutual High” obligations, is characterised by a high probability of

thinking that both the employer and the employee have given obligations to each other. The

“Under-obligation” class (10%) are likely to perceive that obligations were given by the

employer but not the employee, the opposite is the case in the “Over-obligation” class (29%),

and the “Mutual Low” class (9%) have a low probability of perceiving that any obligations

have been given or received. The entropy-based R2 for this model is 0.71, which is again

between the medium and high-separation conditions in our simulation studies.

=========================

Insert Table 10 about here

=========================

Estimated coefficients of the structural model are shown in Table 10. Here the naive

three-step estimates are the most different, in that they are closer to zero than are the other

estimates. The rest of the estimates are similar, and the one-step ones are now also comparable

to the rest because their estimated measurement model (not shown) implies essentially the

same latent classes as the first-step estimates used by the stepwise approaches. The estimated

coefficients show that the expected level of perceived job insecurity is similar (and not

significantly different) in the Mutual High and Under-obligation classes, and significantly

higher in the Overobligation and Mutual Low classes (which do not differ significantly from

each other). In other words, employees tend to feel more secure in their job whenever they

perceive that the employer has made a commitment to them, whereas an employee’s

perception of their own level of commitment has no association with their insecurity.
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5. Discussion

The stepwise approaches that we have explored in this article are motivated by the

principle that definitions of variables should be separated from the analyses that use them.

This is natural and goes unmentioned in most applications where variables are treated as

directly observable, where they are routinely defined and measured first and only then used in

analysis. Things are not so straightforward in modelling with latent variables, where these

variables are defined by their estimated measurement models. One-step methods of modelling

do not follow the stepwise principle but estimate simultaneously both the measurement

models and the structural models between variables. As a result, the interpretation of the

latent variables may change from one model to the next, possibly dramatically so. Stepwise

methods of modelling avoid this problem by fixing the measurement model at its value

estimated from their first step. In naive three-step estimation this incurs a bias because the

derived variables used in its third step are erroneous measures of the variables defined in the

first step. This bias is removed by the bias-adjusted three-step and the two-step methods. In

this article we have argued that the two-step method that we have proposed is the more

straightforward of them, and has somewhat better statistical properties.

Other properties of the two-step method remain to be studied further. These include, for

example, its robustness to violations of assumptions in different parts of the joint model. In

Section 3 we examined this briefly with respect to distributional assumptions about a

continuous response variable, with results which suggested that two-step estimates are fairly

robust in this respect, somewhat more so than one-step estimates but less so than some

three-step estimates. The conclusions may be different for other parts of the structural and

measurement models. A particularly important question of this kind is the assumption that

the measurement model depends only on the latent class X but not on other variables Z. This

is the assumption of measurement equivalence (absence of differential item funtioning), which

may be violated in many applications. Here observing that one-step estimates change when

variables in the structural model are changed may itself be a sign that the measurement model

is misspecifed in this respect. Questions of interest about non-equivalence of measurement are

not limited to the sensitivity of estimates if it is wrongly ignored, but include also how

two-step estimation could be used to detect non-equivalence and to estimate models which

allow for it. This is an important topic for future research on the two-step approach.
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We have focused on latent class analysis, but both the methods and the principles that

we have described apply also more generally. They could be extended to models with other

kinds of latent variables, such as linear structural equation models (SEMs) where both the

latent variables and their measures are treated as continuous. In this context, the one-step

method (conventional SEMs) and the naive three-step method (using factor scores as derived

variables) are routinely used, while other stepwise methods are not fully developed. There too

the one-step approach has the property that the measurement models of the latent factors do

not remain fixed, although it could be that the consequences of this are less dramatic than

they can be for the categorical latent variables in latent class analysis. Two-step estimation

can be defined and implemented for models with continuous latent variables in the same way

as described in this article for latent classes, in effect by making the appropriate changes to

the distributions defined in our Section 2. The behaviour of the two-step approach in this

context remains to be investigated.
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Appendix: Score functions and information matrices for latent class models

Consider first in general terms a model which involves a latent class variable X with a

total of C latent classes (here X may also represent all combinations of the classes of several

latent class variables). Suppose that the model depends on parameters θ (in this appendix we

take all vectors to be column vectors, the opposite of the practice in Section 2 where they were

row vectors for simplicity of notation). The log likelihood contribution for a single unit i is

then li = logLi = log
∑C

c=1 Lic, where Lic = exp(lic) is the term in Li which refers to latent

class c = 1, . . . , C. The contribution of unit i to the score function is then

ui = ∂li/∂θ = hi/Li where hi = ∂Li/∂θ =
∑

c Licuic and uic = ∂lic/∂θ, and the contribution

to the observed information matrix is

Ji = −
∂2li
∂θ∂θ′

= −
1

L2
i

{

Li

[

∑

c

Lic

(

uicu
′
ic − Jic

)

]

− hih
′
i

}

.

where Jic = −∂2lic/(∂θ∂θ
′).

Suppose that observations for different units i = 1, . . . , n are independent. Point

estimation of θ is easiest with the EM algorithm (Dempster, Laird, & Rubin, 1977). For this,

let l∗i be the same expression as lic but now regarded as a function of c. At the E-step of the

(t+ 1)th iteration of EM we calculate Q(t+1) =
∑

i E[l
∗
i |D,θ(t)] =

∑

i

(

∑

c π
(t)
ic lic

)

where

π
(t)
ic = p(Xi = c|D,θ(t)), D denotes all the observed data and θ(t) is the estimate of θ from the

tth iteration. At the M-step, Q(t+1) is maximized with respect to θ to produce an updated

estimate θ(t+1). This is relatively straightforward because ∂Q(t+1)/∂θ =
∑

i

∑

c

(

π
(t)
ic uic

)

and

−∂2Q(t+1)/∂θ∂θ′ =
∑

i

∑

c

(

π
(t)
ic Jic

)

, i.e. these are the score function and observed

information matrix for a model where X is known, fitted to pseudodata of n× C observations

with fractional weights π
(t)
ic .

The information matrix I for the model can be estimated by n−1
∑

i Ji or n
−1

∑

i uiu
′
i.

Together with ui, these could also be used to implement other estimation algorithms than EM.

When evaluated at the final estimate of θ, they give estimates of the I22 and I12 which are

needed for the two-step variance matrix (5). An estimate of the Σ11 that is also needed there

is obtained similarly from the estimated information matrix for the step-1 latent class model.

What then remains to be done for any specific model is to evaluate lic, uic and (if used)

Jic for it. As an example, consider the model with covariates Zp, one latent class variable X,

and a response variable Zo which was considered in Section 2.1. The Li for it is given by (2)
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with p(Zpi) omitted. Then

lic = log p(Xi = c|Zpi) + log p(Zoi|Zpi, Xi = c) +
∑

k log p(Yik|Xi = c) ≡ l
(x)
ic + l

(z)
ic +

∑

k l
(yk)
ic . If

the parameters for the different components of the model are distinct, which should be the

case for most sensible models, we only need to consider the separate derivatives of the terms

in this sum. Suppose that Xi given Zpi is given by the multinomial logistic model (3), writing

it now as p(Xi = c|Zpi) ≡ π
(x)
ic = exp(α′

cZ
∗
i )/

C
∑

s=1
exp(α′

sZ
∗
i ) for c = 1, . . . , C, with α1 = 0,

αc = (β0c,β
′
c)

′ for c 6= 1, and Z∗
i = (1,Z′

pi)
′. Then l

(x)
ic = log π

(x)
ic ,

∂l
(x)
ic /∂αr = (I(r = c)− π

(x)
ir )Z∗

i , and ∂2l
(x)
ic /∂αr∂α

′
s = −(I(s = r)π

(x)
ir − π

(x)
ir π

(x)
is )Z∗

iZ
∗′
i for

r, s = 2, . . . , C. The measurement models for the items Yik can also be formulated as

multinomial logistic models, by writing them as

p(Yik = r|Xi = c) ≡ π
(yk)
icr = exp(γ ′

krX
∗
ic)/

∑Rk

s=1 exp(γ
′
ksX

∗
ic) for r = 1, . . . , Rk, with

X∗
ic = (I(c = 1), . . . , I(c = C))′ and γk1 = 0. Then l

(yk)
ic =

∑Rk

r=1 I(Yik = r) log π
(yk)
icr , and if the

parameters for different items k are also distinct, the terms in
∑

k l
(yk)
ic can be differentiated

separately. Their derivatives are ∂l
(yk)
ic /∂γr = (I(Yik = r)− π

(yk)
icr )X∗

ic and

∂2l
(yk)
ic /∂γr∂γ

′
s = −(I(s = r)π

(yk)
icr − π

(yk)
icr π

(yk)
ics )X∗

icX
∗′
ic for r, s = 2, . . . , Rk. For l

(z)
ic , suppose for

example that Zoi is normally distributed with mean µi = δ
′Z∗∗

i and variance τ−1, where

Z∗∗
i = (X′

ic,Z
′
pi)

′. Defining ei = Zoi − µi, then l
(z)
ic = (log τ − τe2i )/2, ∂l

(z)
ic /∂δ = τeiZ

∗∗
i ,

∂l
(z)
ic /∂τ = (1/τ − e2i )/2, ∂

2l
(z)
ic /∂δ∂δ′ = −τ(Z∗∗

i )(Z∗∗
i )′, ∂2l

(z)
ic /∂2τ = −1/(2τ2), and

∂2l
(z)
ic /∂δ∂τ = eiZ

∗∗
i . The formulas for the situations considered in our simulations and

examples are obtained from these results by setting Z∗
i = 1 for the case with no Zpi, and

omitting l
(z)
ic for the case with no Zoi. Finally, doing both of these things gives the formulas

for the basic latent class model which is estimated in step 1 of the two-step method.
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Figure 1.

Graphical representation of the two-step method of latent class analysis with latent class variable X measured
by indicators Y1, Y2, . . . , YK . Two specific structural models are represented, (A) with only covariates Zp for X

and (B) with only response variables Zo for it. In Step 2, the dashed lines represent those parts of the model
which are held fixed at their estimates from Step 1.
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Tables

Table 1.

Mean bias and root mean squared error (RMSE) of one regression coefficient (with true value β3 = 1) over
500 simulated data sets from a model where a latent class variable X is a response variable for an observed
explanatory variable Zp, under different specifications for the separation between the latent classes and the
sample size (please see the main text for more details on the simulation specifications). The results are shown for
the proposed two-step estimator and for one-step, naive three-step (with modal assignment) and two bias-adjusted
three-step (“BCH” and “ML”) estimators.

Mean bias RMSE

Class Sample 3-step: 3-step:

separation size 1-step 2-step Naive BCH ML 1-step 2-step Naive BCH ML

Low 500 .04 -.24 -.59 -.25 -.27 .25 .38 .60 .48 .42
1000 .03 -.16 -.60 -.16 -.20 .19 .32 .62 .45 .35
2000 .01 -.09 -.60 -.11 -.12 .12 .22 .61 .36 .24

Medium 500 .01 -.05 -.40 -.03 -.06 .17 .20 .41 .30 .22
1000 .01 -.01 -.37 .02 -.02 .11 .13 .38 .24 .14
2000 -.01 -.01 -.37 .01 -.01 .08 .09 .38 .15 .10

High 500 .02 .01 -.11 .02 .01 .13 .13 .17 .16 .14
1000 .01 .01 -.12 .01 .01 .09 .09 .15 .10 .10
2000 .00 .00 -.12 .01 .00 .07 .07 .13 .07 .07

Table 2.

Results on estimated sampling variability in the same simulations (and for the same estimated parameter) as in
Table 1. Here only the two-step and one-step estimators are compared. The table shows the simulation standard
deviation of the point estimates of the parameter (SD), mean of their estimated standard errors (m(SE)) and
coverage percentage of 95% confidence intervals (C95). For the two-step estimators, also shown are coverage of
95% confidence intervals when the estimated standard errors include only the uncertainty from the second step
of estimation (C95-2), and the average percentage that this standard error contributes to the full standard error
(SE%-2).

Class Sample 1-step estimator 2-step estimator

separation size SD m(SE) C95 SD m(SE) C95 SE%-2 C95-2

Low 500 .25 .25 .96 .30 .31 .77 60 .59
1000 .18 .17 .95 .27 .28 .86 48 .63
2000 .12 .12 .95 .20 .24 .93 42 .66

Medium 500 .17 .16 .94 .19 .18 .92 80 .85
1000 .11 .11 .95 .13 .12 .94 86 .90
2000 .08 .08 .95 .09 .09 .96 88 .92

High 500 .13 .13 .96 .13 .13 .96 98 .96
1000 .09 .09 .95 .09 .09 .95 99 .94
2000 .06 .07 .96 .06 .06 .95 99 .95
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Table 3.

Simulation results for point estimates of one regression coefficient (with true value β2 = 1) over 500 simulated
data sets from a model where a latent class variable X is an explanatory variable for an observed response variable
Zo. The table shows the same quantities as Table 1.

Mean bias RMSE

Class Sample 3-step: 3-step:

separation size 1-step 2-step Naive BCH ML 1-step 2-step Naive BCH ML

Low 500 .01 -.32 -.66 -.38 -.36 .19 .44 .70 .50 .47
1000 .01 -.16 -.60 -.22 -.20 .12 .30 .63 .37 .33
2000 .00 -.08 -.58 -.12 -.11 .08 .21 .59 .27 .23

Medium 500 .00 -.03 -.31 -.03 -.03 .11 .13 .33 .16 .13
1000 .00 -.01 -.29 .01 -.01 .08 .09 .30 .12 .09
2000 .00 .01 -.29 .00 .00 .05 .07 .29 .09 .07

High 500 .00 .00 -.08 .00 .00 .08 .09 .12 .09 .09
1000 .01 .01 -.07 .01 .01 .06 .06 .10 .07 .06
2000 .00 .00 -.08 .00 .00 .04 .04 .09 .05 .04

Table 4.

Results on estimated sampling variability in the same simulations (and for the same estimated parameter) as in
Table 3. The table shows the same quantities as Table 2.

Class Sample 1-step estimator 2-step estimator

separation size SD m(SE) C95 SD m(SE) C95 SE%-2 C95-2

Low 500 .19 .16 .89 .30 .31 .77 46 .43
1000 .12 .11 .94 .25 .27 .88 40 .47
2000 .08 .08 .94 .19 .20 .88 32 .52

Medium 500 .11 .11 .95 .12 .12 .93 76 .88
1000 .08 .07 .95 .09 .08 .94 74 .85
2000 .05 .05 .95 .07 .06 .95 73 .85

High 500 .09 .08 .94 .09 .09 .95 99 .94
1000 .06 .06 .95 .06 .06 .96 99 .95
2000 .04 .04 .95 .04 .05 .95 99 .94
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Table 5.

Simulation results for point estimates of three regression coefficients over 500 simulated data sets from a model
where a latent class variable X is an explanatory variable for an observed response variable Zo. The simulation
settings are the same as in the case with Medium separation and sample size 1000 in Table 3, except that here
the residual distribution of Zo is not normal and homoscedastic but skewed, heteroscedastic or bimodal (see the
main text for how these are specificed). The results are shown for all three regression coefficients (βs) in the
model for Zo (which have true values of −1, 1, and +1).

Mean bias RMSE

Residual Value 3-step: 3-step:

distribution of β 1-step 2-step Naive BCH ML 1-step 2-step Naive BCH ML

Skewed −1 -.05 -.01 .23 .01 -.03 .09 .09 .25 .11 .10
0 -.05 -.02 .07 .00 -.08 .09 .09 .09 .08 .12

+1 .03 .02 -.29 .00 .06 .08 .10 .30 .12 .11

Bimodal −1 .02 .03 .24 .01 .04 .07 .09 .25 .11 .10
0 .01 .02 .07 .00 .01 .07 .07 .09 .08 .08

+1 -.02 -.03 -.29 .00 -.04 .08 .10 .30 .12 .11

Hetero- −1 .12 .12 .23 .00 .13 .14 .15 .24 .11 .16
scedastic 0 -.45 -.03 .06 .01 -.06 .83 .17 .14 .15 .22

+1 -.03 -.10 -.29 .00 -.09 .14 .15 .30 .13 .15
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Table 6.

Estimated probability parameters for the four-class latent class model for survey items on tolerance toward
different groups. Here ‘Class size’ refers to probabilities ρc = P (X = c) of the latent classes, and the other
numbers in the table are the probabilities of giving a tolerant response to an item given the membership of a
latent class.

Latent class:

“Tolerant” “Intolerant
of Right”

“Intolerant
of Left”

“Intolerant”

Probability of Tolerance for...
Atheists .98 .41 .61 .03
Communists .95 .59 .27 .02
Militarists .92 .34 .38 .05
Racists .90 .02 .81 .08
Homosexuals .96 .72 .56 .13

Class size: .23 .11 .10 .56

Table 7.

Estimated coefficients (with estimated standard errors in parentheses) of the multinomial logistic structural
model in the example in Section 4.1, for the latent class of tolerance toward different groups given a respondent’s
education and birth cohort.

Estimator
Latent class 3-step:
(vs. Tolerant) Covariate 2-step 1-step† Naive BCH ML
Intolerant of Education
Right High school 0.12 (0.36) 0.38 (0.44) -0.12 (0.21) -0.04 (0.31) -0.08 (0.30)

College -1.07 (0.39) -1.12 (0.46) -1.23 (0.20) -1.31 (0.31) -1.29 (0.29)
Cohort 0.07 (0.13) 0.87 (0.10) 0.12 (0.09) -0.01 (0.14) -0.04 (0.15)

Intolerant of Education
Left High school -0.65 (0.29) -0.35 (0.23) -0.45 (0.21) -0.53 (0.31) -0.41 (0.31)

College -2.06 (0.30) -1.69 (0.23) -1.55 (0.22) -1.80 (0.32) -1.75 (0.31)
Cohort 0.36 (0.16) 0.23 (0.09) 0.42 (0.10) 0.44 (0.14) 0.42 (0.14)

Intolerant Education
High school -0.77 (0.19) -1.83 (0.38) -0.61 (0.15) -0.76 (0.19) -0.72 (0.19)
College -2.33 (0.19) -3.75 (0.49) -1.94 (0.14) -2.25 (0.18) -2.22 (0.17)

Cohort 0.97 (0.08) 1.14 (0.13) 0.82 (0.06) 0.96 (0.08) 0.96 (0.08)

p-values of overall Wald tests of the covariates:
Education (df = 6) < .001 < .001 < .001 < .001 < .001

Cohort (df = 3) < .001 < .001 < .001 < .001 < .001
† Note: The latent classes implied by the 1-step estimates are not really the same as for the other methods.
Please see Table 8 for the measurement model of this model, and the discussion in the text.
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Table 8.

Estimated class sizes and probabilities of giving a tolerant response toward different groups, in four-class latent
class models estimated as part of one-step estimation with different covariates for the latent class variable included
(+) or not included (−) in the model. The first model, with no covariates, is the model obtained from step 1 of
stepwise approaches and shown also in Table 6. The second model, with cohort and grouped education variable,
is the measurement model from the 1-step estimation in Table 7. Two broad patterns of the latent classes appear
here, labelled in the table as patterns A and B.

Covariates:

Cohort − + − + − + − + − + − +
Education (grouped) − + + − − − − + + − − −
Education (years) − − − − + + − − − − + +

Class pattern: A B B A B A A B B A B A

Class 1: Class 2:

Atheists .98 1.00 1.00 .99 1.00 .99 .41 .01 .02 .40 .02 .36
Communists .95 .94 .95 .95 .95 .95 .59 .10 .10 .46 .11 .46
Militarists .92 .94 .94 .92 .95 .93 .34 .04 .04 .30 .03 .28
Racists .90 .91 .91 .89 .91 .89 .02 .00 .00 .00 .00 .00
Homosexuals .96 .96 .96 .96 .96 .95 .72 .22 .23 .60 .25 .62

Class size:† .23 .21 .21 .23 .21 .22 .11 .28 .28 .16 .25 .16

Class 3: Class 4:

Atheists .61 .55 .56 .62 .57 .63 .03 .02 .03 .02 .04 .02
Communists .27 .42 .44 .30 .45 .32 .02 .00 .01 .03 .02 .03
Militarists .38 .37 .38 .38 .39 .39 .05 .07 .07 .05 .08 .05
Racists .81 .42 .45 1.00 .45 .96 .08 .16 .16 .09 .15 .09
Homosexuals .56 .63 .66 .58 .68 .60 .13 .05 .05 .13 .05 .12

Class size:† .10 .23 .22 .09 .22 .09 .56 .27 .29 .53 .32 .52

† Obtained by averaging conditional class probabilities over the sample distribution of the covariates
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Table 9.

Estimated probability parameters for the four-class latent class model for survey items on perceived psychological
contract of employment. Here ‘Class size’ refers to probabilities of the latent classes, and the other numbers in
the table are the conditional probabilities (given each latent class) of believing that a particular type of obligation
has been given by the employer or the employee.

Latent class:

“Mutual
High”

“Over-
obligation”

“Under-
obligation”

“Mutual
Low”

Employer’s obligations:

Secure job .90 .37 .87 .21
Advancement .89 .30 .84 .17
Good pay .87 .29 .75 .27
Safe work environment .98 .55 .73 .29

Employee’s obligations:

Loyalty .96 .73 .37 .08
Volunteering .96 .83 .37 .17
Being on time .98 .96 .38 .18
Good performance 1.00 .97 .77 .28

Class size: .53 .29 .09 .09

Table 10.

Estimated coefficients for a linear regression model for perceived job insecurity given latent classes of types of
psychological contract. Here the class of “Mutual High” obligation is the reference category. The p-value in the
last column is for the Wald test (with 3 degrees of freedom) that the coefficients for the other three classes are
all zero.

Coefficient (with s.e.) of latent class
(vs. Mutual High):

Over- Under- Mutual
Estimator obligation obligation Low p-value†

2-step 0.51 (0.08) -0.11 (0.12) 0.45 (0.11) < .001

1-step 0.55 (0.08) -0.16 (0.12) 0.48 (0.11) < .001
3-step:
Naive 0.39 (0.06) -0.06 (0.09) 0.37 (0.10) < .001
BCH 0.49 (0.08) -0.11 (0.12) 0.43 (0.11) < .001
ML 0.51 (0.08) -0.11 (0.10) 0.43 (0.12) < .001

† For the Wald test (with df = 3) that all three coefficients are zero.




