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Two-step machine learning enables optimized nanoparticle

synthesis
Flore Mekki-Berrada1,9, Zekun Ren 2,9, Tan Huang1,9, Wai Kuan Wong1, Fang Zheng1, Jiaxun Xie1, Isaac Parker Siyu Tian 2,

Senthilnath Jayavelu 3, Zackaria Mahfoud 4, Daniil Bash 4, Kedar Hippalgaonkar4,5, Saif Khan 1, Tonio Buonassisi6,

Qianxiao Li7,8 and Xiaonan Wang 1✉

In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly and time-consuming.

In this study, we present a two-step framework for a machine learning-driven high-throughput microfluidic platform to rapidly

produce silver nanoparticles with the desired absorbance spectrum. Combining a Gaussian process-based Bayesian optimization

(BO) with a deep neural network (DNN), the algorithmic framework is able to converge towards the target spectrum after sampling

120 conditions. Once the dataset is large enough to train the DNN with sufficient accuracy in the region of the target spectrum, the

DNN is used to predict the colour palette accessible with the reaction synthesis. While remaining interpretable by humans, the

proposed framework efficiently optimizes the nanomaterial synthesis and can extract fundamental knowledge of the relationship

between chemical composition and optical properties, such as the role of each reactant on the shape and amplitude of the

absorbance spectrum.

npj Computational Materials            (2021) 7:55 ; https://doi.org/10.1038/s41524-021-00520-w

INTRODUCTION

In recent years, machine learning (ML) methods have been
applied to solve various problems in materials science, such as
drug discovery1,2, medical imaging3, material synthesis4,5, func-
tional molecules generation6,7, and materials degradation8. Since
the generation of experimental data in materials science is costly
and time-consuming, ML algorithms have been mainly developed
based on computational data or, when available, experimental
datasets gathered from the literature9. However, once material is
suggested by the ML algorithm, the material synthesis can turn
out to be difficult, or even impossible. The recent development of
microfluidic high-throughput experimental (HTE) platforms now
allows the generation of a large amount of experimental synthesis
data with small amounts of material10–13. The integration of the
ML algorithms in a loop with these flow chemistry platforms
would ensure that ML algorithms suggest only those materials
that can be synthesized. Such attempts have been made in
nanomaterial synthesis14,15. However, these studies are limited to
optimization problems and focus on sparse datasets, while large
datasets would be needed to extract knowledge on how the
chemical composition and process parameters influence the final
outcome16.
In this paper, we propose a two-step ML framework that can

drive an HTE platform from the very start of the screening process
(sparse dataset) to more resolved screening states (large dataset),
to target predetermined optical properties, and without any a
priori knowledge of the model complexity, extract knowledge on
how the chemical process impacts the optical properties of the
synthesized material. Wet chemical nanoparticle synthesis is
notoriously challenging to tune because of the intrinsic nonlinear
competition between nucleation of seed particles and growth of

pre-existing seeds in the solution17,18. Therefore, silver nanopar-
ticle (AgNP) synthesis was chosen to demonstrate the efficiency of
the framework. The AgNP synthesis is carried out using a droplet-
based microfluidic platform with five input variables, as shown in
Fig. 1 and detailed in “Methods”. Due to surface plasmon
resonances, AgNPs have a characteristic optical fingerprint in
the UV–Vis range that depends on their size and shape
distributions. In this study, we select as the optical target, the
theoretical absorbance spectrum of triangular nanoprisms with
50 nm long edges and 10 nm in height, calculated by plasmon
resonance simulation using discrete dipole scattering (DDSCAT).
Conventional Bayesian optimization (BO) is often chosen for

driving HTE loops because of its ability to efficiently explore the
parameter space and target specific material properties, even
when initiated with a sparse dataset5,19. However, BO does not
give general insights into the reaction process. Moreover, its
performance depends on the initial choice of model hyperpara-
meters and on the definition of the loss—usually a single-valued
output parameter into which the measured material properties are
reduced. To extract knowledge from the data, other studies use
neural networks to train a regression model and perform inverse
design from a fixed dataset16,20,21. While a neural network can
learn complex functions even from a full optical spectrum, it has
many hyperparameters and requires a large training dataset,
which makes it difficult to integrate into a machine-driven
experimental loop with limited initial data and expensive
evaluations, and is inefficient to use at the early stage of sampling
to explore the parameter space.
The proposed two-step framework (Fig. 1) combines the

optimization assets of BO with the regression ability of a deep
neural network (DNN). In a first step, after performing a first
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experimental run of 15 conditions using Latin HyperCube (LH)
sampling, the optimization process is initiated using a batch mode
BO with local penalization (LP)22,23. The BO algorithm with
Gaussian process (GP) as a surrogate model (see “Methods”) is
used to explore the parameter space, where boundaries are
initially set by the experimenter, and find the chemical conditions
that lead to the target spectrum. The definition of the loss
function (see Eq. (7) in “Methods”) takes into account both the
shape and the intensity of the absorbance spectrum. At each run,
the BO algorithm picks the next batch of 15 conditions to test,
based on a balance between minimizing loss (exploitation) and
minimizing uncertainty (exploration), as determined by the
decision-making policy (acquisition function). In parallel, an offline
DNN is trained using the experimental data generated by the BO
sampling. In a second step, starting from the sixth run, while the
BO continues suggesting 15 more conditions with the same
hyperparameters and feeding the DNN with more data around the
targeted spectrum, the DNN is used to produce the simulated
spectra for all the process variables on a parameter space grid. In
this way, the DNN is able to suggest 15 more conditions that
minimize the loss function by ranking the predicted values in the
grid. The DNN architecture and grid optimization are described in
“Methods”. The conditions suggested by both DNN and BO are
tested on the HTE platform. In the subsequent runs, only
experimental data generated by the BO sampling are used to
train the DNN, which allows a direct comparison between the BO
and the DNN performance. The ML-driven HTE loop is stopped
when the target spectrum has been optimized, either by the BO or
the DNN and when the DNN regression is sufficiently accurate and
stable to extract knowledge on the chemical synthesis. The
detailed data flow of the framework can be found in Supplemen-
tary Fig. 1.
Herein, we first demonstrate that the proposed two-step

algorithmic framework efficiently optimizes the nanomaterial
synthesis to get the desired plasmon resonance. The optimization

performance is validated experimentally by TEM imaging of the
synthesized AgNPs. Next, by extracting both BO and DNN
regression functions, we show how the optimization process
remains interpretable by humans. Lastly, once the stability and
accuracy of the DNN regression function are established, we use
the DNN to extract fundamental knowledge on how the chemical
composition and the spectral properties of the nanoparticles are
related.

RESULTS AND DISCUSSION

Optimization performance

To evaluate the optimization performance of the framework, we
follow the evolution of the loss over successive experimental runs.
Each run consists of 15 chemical conditions. For each condition,
the optical spectra of 20 droplet replicas are recorded and used to
update the algorithms, and the median loss of the 20 replicas is
calculated to handle the outliers. As the median loss is used to
update the BO, we define the condition leading to the lowest
median loss among all the conditions of a run as the best
performer. In Fig. 2a, we report the loss value obtained for each
replica, as well as the statistical distribution of the replicas for the
best performing condition. In the first step of the framework, the
median loss of the BO best performing condition quickly
decreases in the first runs, before reaching a plateau starting
from run 4.
The best conditions suggested by the BO accumulate at the

border of the parameter space (lower Qseed, higher QAgNO3
),

suggesting that better configurations may be found beyond the
parameter space boundaries. Active learning campaigns tradition-
ally fix the boundaries of the parameter space, which requires
prior expert knowledge on chemical synthesis. In our study, we
face the reality of an experimental campaign when exploring a
parameter space never explored before and the flexibility of a
parameter space expansion is essential for getting closer to the
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target spectrum. The framework is designed to be able to extend
the parameter space if the suggested conditions are too close to
the set boundaries for two successive runs. This situation occurs in
runs 4 and 5. Thus, starting from run 6, the flow rate constraints
are relaxed to the maximal values allowed by the equipment. No

preliminary screening of the extended parameter space is
performed. Both BO and DNN-based grid optimization use their
knowledge on the initial parameter space to start exploring the
extended space. This extension allows a further decrease in the
median loss of the best performing conditions obtained by BO
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sampling. DNN sampling is introduced from run 6. Interestingly,
the median loss of the best performing condition obtained by the
DNN in run 8 is significantly lower than the one of BO (see Fig. 2a).
To justify our two-step approach, we looked at the optimization

performance of the DNN when we let it sample the space by itself
using grid search, instead of using BO sampled conditions.
Starting from the same set of initial conditions at run 1, we show
that the DNN does not manage to find lower loss conditions as
quickly as the BO (see Supplementary Discussion 2 for more
details). Furthermore, we demonstrate the non-triviality of the BO
approach in the first step of the framework by comparing its
performance to random sampling (RS) (see Fig. 2a): one can
observe on run 2 that RS performs better than BO. But on run 3,
BO outperforms RS and clearly starts converging towards lower
loss values, while RS still picks high loss values.
The optimization is further validated by the convergence of the

BO and DNN best-performing absorbance spectra towards the
target spectrum. For the BO samples (Fig. 2b), the main
absorbance peak quickly shifts to reach the target value
(645 nm), while the intensity of the absorbance below 600 nm
decreases. The evolution of the measured spectra towards the
target spectrum validates the efficiency of the loss function
definition used in this study. Figure 2c reports at each run
the measured spectra of the DNN best performers, as well as the
spectra predicted by the DNN before sampling. While the
predicted spectra in run 6 are noisy due to insufficient training
in a region that just became accessible, the spectral predictions
tend to be smoother in the following runs, even if the DNN is still
doing extrapolation at the location of the sampled conditions.
The best performing samples were imaged by TEM (see “TEM

imaging and analysis”). Two nanoparticle shapes were mainly
synthesized: nanospheres and triangular nanoprisms, with a wide
heterogeneity in size for both shapes. The percentage of triangular
shapes stays around 30% for the different runs. Furthermore, the
triangular nanoprisms edge length (Fig. 2b, c) and the nano-
spheres diameter (see Supplementary Figure 3) both increase over
the runs, for both BO and DNN best performances. The shift of the
absorbance spectra with the runs goes along with a shift of the
size distribution of the synthesized triangular nanoprisms towards
the desired triangular edge length. The size distribution of the
triangular AgNPs synthesized by the BO (Fig. 2b) and the DNN
(Fig. 2c) gets narrower with the runs, the triangle edge converging
towards 65 nm, which is 30% larger than the simulated
nanoparticle size that produces the target spectrum. This shift
can be explained by an increase in the thickness of the triangular
prisms: using TEM measurements, the prism thickness was
estimated around 13 nm. In fact, the absorbance peak position
is determined by the aspect ratio between the prism edge length
and its thickness24.
It is worth noting that the approach developed in this study

uses the full optical absorbance spectrum. In previous studies14,15,
the optimization process was performed using only certain
attributes of the absorbance spectrum, such as peak wavelength,
full width at half maximum (FWHM), and peak intensity. While
using limited spectral features can be a good choice for fast
optimization problems, it would reduce the spectral information
used for training the DNN in the case of a regression problem.
Since the shape and size heterogeneity of the AgNP leads to the
superposition of the absorbance peaks, the whole spectrum
contains information on the full size and shape distribution of the
nanoparticles. While the 1D reduction of the spectrum into a
single loss value allows the BO to remain efficient, the full spectral
resolution can be used by the DNN to get both an efficient
optimization and allow the DNN to accurately predict the AgNP
colours. This full spectral approach has two additional advantages.
First, it does not require adaptation of the DNN architecture to the
number of features detected, in the event that the number of
features evolves during the screening of the parameter space.

Second, it would make the framework robust to a change of
spectral target during the optimization process, since the loss

function does not need to be adapted to the absorbance target.

Interpretability

To understand how the BO proceeds to make decisions in each

successive run, the Pearson correlation matrix is calculated.
Supplementary Fig. 4 shows the corresponding correlation
coefficient of the shape and amplitude of the spectra pertaining
to the total loss. From run 1 to run 5, the shape has a higher

correlation coefficient (−0.93), compared to that of amplitude
(−0.55). Thus, the spectral shape is mainly optimized in the initial
parameter space, relative to the spectral amplitude. However,
from run 6 to run 8, the correlation coefficient for the shape

(−0.63) becomes smaller than that for the amplitude (−0.95),
showing that the amplitude of the absorbance spectrum is mainly
optimized during the second step of the framework.
In the following, we investigate the reasons for the good

optimization performance of the DNN during the second step,

while the dataset remains sparse in the extended parameter
space. In the second step of the framework, both algorithms are
refining their extrapolation accuracy. As the DNN is only trained
with the data obtained by the BO sampling, we can compare its

surrogate function with the BO’s surrogate function obtained with
a GP for each run. Using SHAP (SHapley Additive exPlanations), we
can rank the process variables according to their importance:
QAgNO3

and Qseed are identified as the most important, followed by

QTSC, Qtotal and QPVA (see Supplementary Fig. 5). The {QAgNO3
,

Qseed} space is thus chosen to project the minimum loss obtained
by the regression function over the three other process variables.

The minimum loss projection obtained at the end of run 8 is
shown in Fig. 3 for three different functions: the raw experimental
data fitted with a Gaussian distribution, the BO regression function
and the DNN regression function. Both the BO and the DNN

suggested conditions converge to a similar region in the {QAgNO3
,

Qseed} space (Fig. 3a). The position of the global minimum is
similar for both algorithms. However, the BO regression function is

found to have fewer features than the DNN one (Fig. 3b, c). We
report in Supplementary Movie 1 the evolution of the BO
regression function from run 1 to 8, with the position of the next
suggested conditions at each run. We observe that the suggested

conditions are not clustered, as expected since the jitter value was
chosen for BO to perform in both exploration and exploitation
mode. Furthermore, we observe a lack of experimental points
between the global and secondary minima due to the sudden

expansion of the parameter space. This could explain the
reminiscence of the local minimum observed on the projection
of the BO regression function in Fig. 3b. This second minimum is

not observed on the DNN regression, confirming the better ability
of the DNN to fit the parameter space.
To further understand why the BO was outperformed by the

DNN, we examine the minimum loss projections of the BO
surrogate and the DNN in the {QTSC, Qtotal} space over the three
other dimensions. Striped features appear in the BO projection,

while the DNN performs correctly in the same subspace (see
Supplementary Fig. 6). The BO is unable to properly fit the Qtotal

dimension, due to the ten times higher resolution in this
dimension compared to the other ones since the parameters are

unnormalized before the BO training. Parameter normalization for
BO surrogate leads to a better projection in the {QTSC, Qtotal} space
but we choose not to normalize that to enable more flexibility in

the event of a parameter space extension. While the non-
normalization of the parameter highly affects the BO performance,
the DNN performs well on the Qtotal dimension.
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Knowledge extraction

The complexity of the relation between chemical composition and
optical performance can be explored by performing a principal
component analysis (PCA). It is found that neither a linear nor a
kernel PCA can help in reducing the parameter space (see
Supplementary Discussion 3). This indicates that there are complex
nonlinear relationships between the chemical parameters and the
optical spectrum. Some information though can be extracted from
the SHAP analysis: we observe that high QAgNO3

, low Qseed, low QTSC

and high Qtotal values have a negative correlation with the final
loss. This gives information not only about the future directions for
designing the experimental setup but also about the region where
the target spectrum could be reached.
The correlation matrix can also help to understand how the flow

rate ratios QAgNO3
/Qseed and QTSC/QAgNO3

affect the spectral
outcome (see Supplementary Fig. 4). While the ratio between
silver nitrate and silver seed flowrates—and therefore concentra-
tions in the droplets—has a greater impact on the spectral
amplitude, the ratio between trisodium citrate and silver nitrate
concentration has a greater influence on the shape of the
absorbance spectrum. This extracted insight is non-trivial and in

agreement with the prior literature on the role of trisodium citrate
on anisotropic growth in AgNPs synthesis25.
To go further and determine which colour palette can be

achieved with this chemical process and establish a map for the
accessible colours, we use the trained DNN to generate spectra in
the parameter space. Before extracting any information from the
DNN, the accuracy and stability of the DNN regression should be
quantified. While neural networks usually use a fixed dataset
which is generally separated in two for training and validation
purposes, the two-step framework integrates the DNN in the HTE
loop, with a dataset that expands at each run. The DNN is trained
online with the data previously sampled by the BO and the
validation step is performed with the data selected by the grid
optimization for the following experimental run. Thus, the
accuracy of the DNN can be investigated by comparing the
absorbance spectra predicted by the DNN to the spectra
measured in the following run. One way to qualitatively represent
the prediction accuracy of the DNN is to report the cosine
similarity between the measured and the target spectrum as a
function of the cosine similarity between the DNN-predicted and
the target spectrum (Fig. 4a). The data points gather around the
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diagonal, meaning that the DNN predictions are as close to the
target as the measured spectra. The accuracy can also be
quantitatively estimated for each condition in two different ways:
the cosine similarity between the predicted and measured spectra
determines the accuracy of the shape of the absorbance
spectrum, while the mean squared error (MSE) gives an estimation
of the error in the absorbance amplitude at each wavelength.
Figure 4b shows, from run 6 to run 8, a slight improvement of the
cosine similarity and a more significant decrease in the mean MSE
values. The DNN prediction becomes progressively more accurate
in terms of spectral amplitude and in terms of spectral noise. In
run 8, the MSE between predicted and measured spectra becomes
lower than our target value, arbitrarily fixed to 0.02, and the HTE
loop is stopped.
The stability of the DNN with respect to the variations among

the runs can be investigated by tracking the evolution of the
regression function in the {QAgNO3

, Qseed} space from run 1 to run 8
(Supplementary Fig. 7). Whereas the BO projection changes
gradually even when the parameter space is expanded (run 5), the
DNN mapping changes drastically for the first 5 runs. This shows
that DNN is not stable with a small training dataset. The stability of
the DNN regression function is evaluated by measuring the cosine
similarity between two successive runs of DNN on the {QAgNO3

,
Qseed} plane of the parameter space, while the QTSC, Qtotal and
QPVA values of the DNN are fixed to the best performance
conditions in run 8 (see Supplementary Fig. 8). In both initial and
extended spaces, we observe a clear increase of the stability
within the runs.
Once the stability and the accuracy of the DNN are established,

a final DNN is trained with all the data generated during the
experimental runs. This DNN surrogate model is used to generate
spectra over the whole parameter space. A software was
developed to navigate continuously in the parameter space and
display the predicted absorbance spectra obtained at a specific
condition (see Supplementary Movie 2). Furthermore, using the
CIE 1931 colour spaces, each absorbance spectrum can be
converted to the colour that the human eye would see while
observing the generated droplets of nanoparticles. Figure 5 shows
the colours seen by the DNN surrogate model on the {QAgNO3

,
Qseed} plane of the parameter space. For four different regions of
the parameter space, the absorbance spectra predicted by the
DNN are compared to experimental spectra obtained for similar
conditions to illustrate the relevance of this representation. The

diversity of colours obtained reflects the complex link between
the absorbance spectrum and droplet chemical composition.

Discussion on ML initialization

Recently, a number of studies on active-learning guided synthesis
have demonstrated the ability of BO to explore a large parameter
space with continuous and/or discrete variables14,15,26 and
accelerate materials discovery. Using a similar HTE platform as in
the present study, Bezinge et al.14 incorporated a Kriging-based
algorithm in the loop to optimize towards certain optical
properties and managed to extract some knowledge on the
spectral amplitude and FWHM at a targeted emission wavelength.
However, their proposed method uses a large data set of 40
experimental points for a 3D parameter space to initialize the ML
algorithm, which is far above ten times the dimensionality of their
parameter space. Ref. 27 is another recent example of successful
optimization for the synthesis of metal halide perovskite materials
in which a large initial experimental data set of more than 8000
conditions obtained by RS is used to train support vector
machines and neural networks. How much experimental data is
necessary to accurately train a DNN or any other regressor remains
an open question in ML. Since the complexity of the experimental
parameter space is unknown at the start of an experimental
campaign, one cannot predict the number of experimental data
required to accurately train a regressor. Our present work
proposes an experimental approach to bypass this initialization
problem by using BO to continue feeding the DNN while the DNN
is not trained enough for doing inverse design.

Sequential or batch optimization?

Only one experimental run is required to start the proposed two-
step algorithm. The batch size of an experimental run was chosen
to minimize the experimental cost. By increasing the batch size to
15, the time and solvents required during the cleaning process of
our HTE platform were significantly reduced (see Supplementary
Discussion 4). To avoid the clustering of data points in the same
batch, we selected LP as the acquisition function, as it iteratively
penalizes the points in the neighbourhood of those already picked
by the acquisition function. Gonzalez et al.22 have demonstrated
that LP outperforms a wide range of baselines in batch BO. With
such an acquisition function, the computational cost for evaluat-
ing the loss in the whole parameter space is similar for a batch size
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of 15 points or for a batch size of 1 data point. The presented two-
step approach can be adapted to other HTE platforms by choosing
the appropriate batch size.

Incorporating DNN in a HTE loop

The neural network was chosen for its regression ability when the
dataset is large enough. Neural networks have shown their
potential to help extract fundamental knowledge from the
literature28 and from experimental data29. Umehara et al.29

demonstrated the ability for CNN-gradient analysis to extract a
list of observations on optimization and composition-property
relationships in large parameter space with high dimensionality.
Our workflow is an attempt to incorporate this DNN ability to
extract knowledge in a loop with an HTE platform that rapidly
samples the parameter space. Epps et al.30 recently proposed a
similar approach by incorporating an ensemble of 500 neural
networks in the HTE loop. This approach allows testing the DNN
hyperparameters during the HTE loop. Its efficiency was demon-
strated for a simple DNN architecture (3 output parameters, 2
layers and up to 25 nodes). However, using such an ensemble of
neural networks to predict full absorbance spectra would
dramatically increase the computation time. The solution that
we proposed, consisting of a single DNN with an architecture
adapted to the full optical spectral resolution, attempts to get a
good compromise between the computation cost to find the best
choice of hyperparameters and the regression accuracy.

Experimental uncertainty

In this study, the simulated target spectrum is not expected to be
reachable because of the nanoparticles polydispersity, since we
deliberately chose a chemistry route that is not optimal for
producing monodisperse nanoparticles. Thus, a lot of information
is hidden in the full absorbance spectrum and we chose to use the
whole spectrum to train our algorithms.
The uncertainty in the experimental data was carried into both

BO and DNN algorithms by individually using the absorbance
spectra of each droplet replicates to train both algorithms. The
surrogate model used for BO is a GP model which produces a
probabilistic estimate for the loss values. Although the DNN is
trained with all droplet replicates, there is no probabilistic method
for the DNN.

Choice of the surrogate model and of the acquisition function

In the proposed two-step approach, BO was chosen for its
efficiency at handling sparse datasets, as well as for its simplicity,
since it requires little hyperparameters tuning. GP performance is
not necessarily the best choice to learn complex systems30 but it
allows a quick optimization in our case, while the DNN takes the
role of learning the complexity of the parameter space.
Other approaches have been recently proposed for similar

optimization and regression problems. Williams et al.31 conducted
a study similar to this work, in which the regression algorithm was
trained with a full-factor grid search and different regressors were
ranked on their accuracy, showing in their case a better
performance with random forest. For the chemical synthesis
considered in our study, the use of BO to sample the space for
DNN seems to allow a more accurate prediction of the position of
the lowest loss than using a pure grid search approach (see
Supplementary Discussion 2). Another study from Häse et al.32

reported the efficiency of Bayesian neural networks (BNN) to
optimize nonlinear chemical reaction networks. However, BNNs
usually require a larger set of data than GP to become stable.
Some other studies suggest that BO with an adaptive kernel might
discover finer regression features33. However, most prior work
focuses on either optimization which lacks interpretability and

transferability when the target changes5 or inverse design using
regression which uses a static dataset20.
Since each parameter space has its own complexity, there is no

single optimal choice of algorithm for all experimental systems.
However, once the two-step algorithmic approach has been
performed, one could use the experimental data to compare
different types of regressor and acquisition functions and
determine which combination would have performed the best
in terms of accuracy of the localization of the best performer and
in terms of accuracy of the regression around the best performer.
The possibility to change the acquisition function in the second
step of the framework should also be considered, especially in the
event that a higher regression accuracy is required close to the
target. Algorithm selection using information criteria such as
Akaike information criterion34 and Bayesian information criterion35

could also be used to maximize time- and resource-efficiency of
closed-loop laboratories, e.g., by leveraging co-evolution, physics-
fusion, and related strategies36,37.
In conclusion, we demonstrated the performance of a two-step

framework algorithm that combines BO and DNN in a loop with an
HTE platform, to optimize the synthesis of silver nanoprisms. The
optimization process is accelerated by the offline introduction of
the DNN after a few runs of targeted sampling with a BO
algorithm. By following the evolution of the loss function and of
the regression function over the runs, we could determine at
which run the DNN starts to better predict the region around the
target position in the parameter space. The process is inter-
pretable, and knowledge can be extracted. The feature impor-
tance shows that, even if each parameter plays a role, the silver
nitrate and silver seeds remain the most influential parameters for
targeting silver nanoprisms. The correlation matrices give
information on how the parameters and their ratios affect either
the shape of the amplitude of the absorbance spectra. Moreover,
absorbance spectra can be predicted all around the target to
understand the sensitivity of the optical properties of the
synthesized nanomaterial on process parameters. In addition to
this, this framework trains a transferable algorithm, since the final
trained DNN can then be used to optimize the synthesis towards a
different target. Furthermore, the inverse design could be
performed using the final DNN to synthesize nanoparticles with
optical properties that are different from our initial target.
The developed methodology is generally applicable to other

materials synthesis in an HTE loop and can be adapted to other
types of HTE platforms. The set of experimental data collected
during this study could be used in further work to determine how
other acquisition functions and regressor would have performed
in such a two-step framework, and compare it to other single step
frameworks like BNN.

METHODS

Bayesian optimization

BO has many advantages which make it suitable to kick-start the sampling
of the parameter space. As the response surface between the process
variables and the targeted loss is unknown, the optimization of process
variables can be treated as optimization of a black-box function. BO has
been shown to outperform other global optimization methods on various
benchmark functions38. A GP is chosen as the surrogate model for the BO,
considering that the parameter space is continuous. An important aspect
of defining the GP model is the kernel and its related hyperparameters.
This controls the shape of the regression function39, which corresponds to
the fitting of the response surface between the process variables and the
targeted loss.
We select a BO with GP surrogate model for the following reasons: first,

implementation of BO with GP is less sensitive to the initial choice of
hyperparameter selection of the algorithm39. The functional relationship f
between the process parameters and the absorbance spectrum is
expensive to evaluate and possibly noisy. This eliminates most of the
exhaustive search methods such as grid sampling and RS. Ref. 40 has
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shown that BO requires a smaller initial dataset and fewer iterations to
reach the optimal than a genetic algorithm. There are five different process
variables in the experiments. This falls into the sweet spot for BO41. There
are a number of surrogate models that can be selected for BO such as GP,
tree-based algorithms and NN. Tree-based algorithms are not adapted in
this study as the process variables are continuous32. GP is selected since
the number of hyperparameters are much smaller than the NN. Moreover,
the uncertainty of a fitted GP is known, as such, it is easy to make a trade-
off between exploration and exploitation. Driven by these considerations,
BO coupled with GP is used to actively sample the chemical space.
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GP is defined in Eq. (1). We can denote this equation using the notation:
f(X)∼GP(m(X), k(X, X′)), where X ¼ fx1; ¼ ; xng is the vector of process
variables, m(X) the mean function, k(X, X′) the covariance matrix between
all possible (X, X′) pairs. We use Matern 52 kernel in the covariance matrix23

and implement the batch BO with LP22 to suggest a batch of 15 data
points to align with the experimental setup.
We use expected improvement (EI) as the acquisition function to select

the next experimental conditions that trade-off exploration and exploita-
tion.

EIðXÞ¼max 0; E fðXÞ � fðX þÞðð Þ (2)

where f(X+) is the value of the 15 best samples and X+ is the location of
that 15 data points.

Xnew ¼ argmax EI Xð Þ (3)

The suggested points for the next experiments are the points that
maximize the expected improvement. EI can be analytically expressed as:

EIðXÞ ¼ ðμðXÞ � fðXþÞ � ξÞΦðZÞ þ σðXÞφðZÞ (4)

Z ¼
μ Xð Þ � f X þð Þ � ξ

σ Xð Þ
(5)

where μ Xð Þ and σ Xð Þ are the mean and the standard deviation of the GP
posterior at X. Φ and φ are the cumulative density function and probability
density function of a normal distribution. ξ is the jitter value which
determines the exploration to exploitation ratio. The higher ξ , the more
explorative the BO is. In this study, we fix the jitter value at 0.1.

Neural network

Supplementary Fig. 2 shows the architecture of the neural networks used
in this work. The architecture was chosen to catch the complexity of the
system while keeping a reasonable computation time. The input layer is
composed of five nodes, followed by four hidden layers (with 50 nodes,
100 nodes, 200 nodes, and 500 nodes). The output layer is composed of
421 nodes, which are corresponding to the UV–Vis spectral data points. As
an exploratory work without much knowledge about the parameter space,
we choose ReLU for all the activation functions for ease of convergence,
and the cost function is an MSE. The weight and bias are updated at each
run of the HTE loop. The number of the initially hidden layers is
determined by Eq. (6), which is investigated by Stathakis et al.42, where m
is the number of output nodes and N is the number of data points. In this
work,m is 421, and N is determined by the data points of each run (around
300). Goodfellow et al.43 demonstrated empirically that using deep
networks with many layers may be a heuristic approach to configure
networks for challenging and complex predictive modelling problems.

Number of nodes required for the last hidden layer ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mþ 2ð Þ N
p

(6)

Since the initial DNN is trained by few and under representative data, the
obtained function is not well trained. We incorporate grid search over the
whole parameter space for the selection of the best recipes with a minimal
loss, with the aim to enforce a regularization term during the optimization
process. Starting from run 6, the DNN joined the optimization process.
DNN 6 was constructed following the above-mentioned specifications.
Afterwards, DNN 6 was trained and established with experimental data
suggested by BO runs 1 to 5. DNN 6 was used as a mapping function
between the five process variables and the corresponding UV–Vis
spectrum. Grid search of the 5D parameter space was conducted to
generate each spectrum corresponding to each data point: QAgNO3

, QTSC

and Qseed in the range of [0.5:80]% with point interval of 5%, QPVA in the
range of [10:40]% with point interval of 5%, and Qtotal in the range of
[200:1000] µL/min with point interval of 100 µL/min. After that, the loss of
each spectrum can be calculated according to our defined loss function
and ranked in ascending order. The DNN 6 would select the 15
combinations of the five variables which have the top 15 minimal losses
and recommend them to the experimentalists to carry out the synthesis
and collect the actual spectral data. Further, the DNN 7 was trained with
data of BO runs 1 to 6 and conducted grid optimization; DNN 8 was trained
with data of BO runs 1 to 7 and conducted grid optimization.

Definition of the loss function

The loss function is defined as:

Loss ¼ 1� δ Amax
measured

� � Ameasured λð Þ:Atarget λð Þ
�

�

�

�

Ameasured λð Þk k: Atarget λð Þ
�

�

�

�

(7)

with δ Að Þ ¼

A
0:7

if A < 0:7

1 if 0:7 � A � 1:2

0 if A> 1:2

8

>

<

>

:

where Amax
measured is the maximal value of the measured absorbance

spectrum. The cosine similarity between the measured and targeted
spectra quantifies the shape similarity of the two spectra. Thus, by using
the cosine similarity in the definition of the loss function, the shape of the
absorbance spectrum can be optimized. However, to avoid saturation or
noisy optical measurements, the BO and DNN suggestions should remain
in the detection range of the UV–Vis spectrometer. The amplitude function
δ is designed for this purpose. It forces both BO and DNN to suggest
conditions with a maximal absorbance higher than half the detection limit
of the spectrometer.

SHAP analysis

To quantify the most significant process parameters and their impact on
model performance, we use SHAP (SHapley Additive exPlanations)
algorithm to evaluate both the BO and the DNN. SHAP algorithm is a
game-theoretic approach that provides the additive feature importance
measure of any ML model44. The objective is to carry out a prediction task
for a single data point of the dataset. The gain is the actual prediction for
this data point minus the average prediction for all data points in this
dataset. It is assumed that all the feature values of a data point contribute
together to the gain. In this work, the feature values (QAgNO3

, QPVA, QTSC,
Qseed and Qtotal) worked together to achieve the predicted value in terms
of loss. Our goal is to explain the difference between the actual prediction
value and the average prediction values in the whole dataset. Specifically
speaking, the value of the difference should be partially assigned to the
five features, and the partially assigned values should represent each
feature’s importance at the specified data point.

Materials

Silver nitrate (99.9%) was purchased from Strem Chemicals Inc. Silver seeds
(10 nm, 0.02mg/mL in aqueous buffer stabilised with sodium citrate),
sodium citrate tribasic dihydrate (TSC) (≥99.0%, ACS) and polyvinyl alcohol
(PVA) (Mowiol 8-88, Mw ~ 67,000) were purchased from Sigma Aldrich. The
silver seeds were used as received. L-(+)-ascorbic acid (AA) (99+%) was
purchased from Alfa Aesar. Silicone Oil (PMX-200, 10 cSt) was purchased
from MegaChem Ltd. and used as received. Ultrapure water (18.2 MO at
25 °C) was obtained from a Milli-Q purifier.

Experimental design

Silver seed (0.02 mg/mL), TSC solution (15 mM), AA solution (10mM), PVA
solution (5 wt%), water, silver nitrate solution (6 mM) and silicone oil were
loaded in Hamilton glass syringes. The chemical reactants were chosen
based on the literature45,46. Their loading concentration was estimated
based on the concentrations found in the literature, and considering that a
ten times higher concentration of AgNPs is required to measure the
absorbance spectrum in a 1mm optical chamber.
The syringes containing the aqueous phases were all connected to a 9-

port PEEK manifold (Idex) through PTFE tubes. The manifold output and
the oil syringe were connected to a PEEK Tee-junction (1mm thru-hole),
allowing the controlled generation of monodisperse droplets.
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Nanoparticles are synthesized in aqueous sub-microliter droplets (see

Fig. 1). In such a flow system, the concentration of each reactant is directly

proportional to the flow rate ratio Qi (%) between the flow rate of the

reactant and the total aqueous flow rate. By adjusting the flow rate of the

solvent (water), the flow rate ratios Qseed of silver seeds, QAgNO3
of silver

nitrate, QTSC of trisodium citrate and QPVA of PVA are independently

controlled by varying the flow rate of the corresponding solutions using

LabView automated syringe pumps. The flow rate ratio QAA of ascorbic acid

is kept constant. The mixing of the reactants inside the droplet depends on

the speed of the droplet, which is directly proportional to the total flow

rate Qtotal (µL/min) of both oil and aqueous phases. The absorbance

spectra of the droplets are measured inline, and the five controlled

variables Qseed, QAgNO3
, QTSC, QPVA and Qtotal are used as input parameters

for the two-step optimization framework and the absorbance spectra as

the output.
The boundaries of the parameter space were defined by the range of

accessible flow rates for each solution. Since the mixing inside the droplets

is directly linked to the total flow rate in the reaction tube, the sum of all

flow rates (Qtotal) was varied between 200 and 1000 µL/min. The total

aqueous flow rate was kept equal to the flow rate of the oil in order to

keep the droplet volume constant. The ascorbic acid flow rate was kept

equal to 10% of the oil flow rate at all time. The flow rate of the five other

aqueous phases could be selected by the ML algorithm within a certain

range of percentage of the total aqueous flow rate. First, in the initial

parameter space, the silver seeds, silver nitrate and TSC flow rates were

kept between 4 and 20%, and the PVA solution between 10 and 40%.

Then, in extended parameter space, while the PVA flow rate was still kept

between 10 and 40%, the flow rate restrictions for silver seeds, silver

nitrate and TSC were partially released, so that the only limitations left

were: (1) that the sum of the silver seeds, silver nitrate, TSC and PVA flow

rates should stay below 90% of the aqueous flow rate, (2) that the silver

seeds, silver nitrate and TSC flow rates should remain above 0.5% of the

total aqueous flow rate.
After the Tee-junction, the droplets were forced to flow in a 1.25m long

PFA tube (1mm ID). One meter after the Tee-junction, the PFA reaction

tube entered a customized optical chamber. For each condition suggested

by the ML algorithm, droplets were generated until the first droplet exits

the optical chamber. The total flow rate was then decreased to 30 µL/min

and the absorbance spectra of 20 consecutive droplets were recorded at

1.4 fps with a spectrometer (Flame-T-UV–Vis, Ocean Optics) combined with

a Deuterium-Halogen light source (DH-2000-BAL, Ocean Optics).

TEM imaging and analysis

To validate the integration of the full absorbance spectra in the HTE loop,

we used TEM (JEM-2100F) imaging to measure the size dispersity of the

synthesized nanoparticles. Since TEM imaging is time-consuming when

compared to inline absorbance measurements, we observed the

nanoparticles only for the best performing conditions of each run.

Statistical analyses on the TEM images were performed with MATLAB,

using several hundreds of particles for each condition.

Simulation of the target spectrum

The target spectrum was simulated by DDSCAT47 using the optical

constants of silver48. The simulation was performed for a 50 nm wide and

10 nm thick triangular prism, using 13,398 dipoles, and averaging the

results on two incident polarisations and eight different angular

orientations of the target around the axis perpendicular to the direction

of propagation of the incident light. To limit the computation time, the

target spectrum was calculated for 25 wavelengths equally spaced

between 380 and 800 nm.
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