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In materials science, the discovery of recipes that yield nanomaterials with defined optical properties is costly

and time-consuming. In this study, we present a two-step framework for a machine learning driven

high-throughput microfluidic platform to rapidly produce silver nanoparticles with a desired absorbance

spectrum. Combining a Gaussian Process based Bayesian Optimization (BO) with a Deep Neural Network

(DNN), the algorithmic framework is able to converge towards the target spectrum after sampling 120

conditions. Once the dataset is large enough to train the DNN with sufficient accuracy in the region of the

target spectrum, the DNN is used to predict the colour palette accessible with the reaction synthesis. While

remaining interpretable by humans, the proposed framework efficiently optimizes the nanomaterial synthesis,

and can extract fundamental knowledge of the relationship between chemical composition and optical

properties, such as the role of each reactant on the shape and amplitude of the absorbance spectrum.
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The supplementary materials contain the detailed data flow of the two-step 

framework (section S1). A proof of the non-triviality of the BO and DNN approaches is given 

in section S2 by comparing the BO and DNN performances to random sampling. Then, the 

calculation results for the Pearson correlation matrix are shown for different optical features 

(shape and amplitude of the absorbance spectrum) and ratios between chemical 

concentrations (section S3). The results of the PCA and SHAP analysis are presented in 

section S4. The minimum loss projection of the BO and DNN regression functions in the {QTSC,

Qtotal} space can be found in section S5. Section S6 shows the evolution within the runs of the 

BO and DNN regression functions projected in the {QAgNO3, Qseed} space. The stability of the 

DNN is investigated in section S7. The architecture of the DNN is described in section S8. 

Finally, an ablation study is presented in section S9 to demonstrate the crucial role of the BO 

in the first step of the proposed framework. 

A supplementary movie is attached and shows a demonstration of the virtual 

experimental platform developed with the DNN trained with the two-step framework. 
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S1: Detailed data flow 
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Fig. S1: Detailed data flow.
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S2: BO and DNN optimization: comparison with random sampling 
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Fig. S2: Evolution of the loss for BO, random sampling and DNN ‘student’ (see 

Supplementary materials S9) in the 3 initial runs. 
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S3: Correlation matrices on spectral shape and amplitude 

The contributions of the spectral amplitude and the shape on the total loss was 

separated by using Pearson correlation matrix.

Fig. S3: Correlation matrix showing the contribution of the spectral shape and amplitude on 

the total loss (a) during the first and second steps of the framework ; (b) the contribution of 

the QAgNO3/Qseed and QTSC/QAgNO3 ratios on the total loss, shape loss and amplitude loss.

(a)

(b)

7

Run 1-5 Run 6-8

Shape loss -0.93 -0.63

Amplitude loss -0.55 -0.95

QAgNO3/Qseed QTSC/QAgNO3

Total loss 0.25 0.6

Shape loss 0.16 0.67

Amplitude loss 0.45 0.31



S4: Principal Component Analysis & SHAP analysis 

We perform a Principal Component Analysis (PCA) on the 5D parameter space with 

the suggested experimental conditions. We find that there is no dominant principal 

component for our experiment as the first two eigenvalues are close to each other and less 

than 0.33, which suggests that the optimization problem is non-trivial. Table S4 shows the 

eigenvalues issued from the PCA.

Table S4: (a) Eigenvalues obtained for the Principal Component Analysis ; (b) Results of the 

SHAP analysis, showing how the 5 features impact (positively or negatively) the loss value.

 (a)

(b)
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PC1 PC2 PC3 PC4 PC5

Eigenvalues 0.32 0.30 0.20 0.10 0.08



S5: Projection of the regression functions in the {QTSC, Qtotal} space

Fig. S5: 2D mapping of the minimum loss obtained with (from left to right) the raw 

experimental data, the BO and the DNN regression in the {QTSC, Qtotal} space. 

S6: Evolution of the projection of the BO regression function

Fig. S6: Projection of the minimum loss projection on the {QAgNO3, Qseed} space for the raw 

experimental data (left) for the BO (centre) and for the DNN (right). The blue dots indicate 

the position of the conditions suggested by the algorithm at the end of the corresponding 

run. White lines correspond to the loss isolines.
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S7: Stability of the DNN regression function

The stability of the DNN over the runs is here defined by the cosine similarity 

between the absorbance spectra predicted by the DNN at the same position of the 

parameter space for two successive runs k and k+1:

 S (NN k ,NN k +1
)=

|A predicted

k
. A predicted

k +1 |
‖A predicted

k ‖.‖Apredicted

k+1 ‖
. 

The stability was calculated for each {QAgNO3, Qseed} combination, at a fixed QTSC = 6,5%,

QPVA = 16% and Qtotal = 850 µL/min. Only the points in the “initial” parameter space were 

considered in the five first runs. All the points in the “extended” parameter space are 

considered starting from the sixth run. Additionally, the boxplot of the stability between the 

DNN at run 8 (NN8) and the final DNN (NNT) trained with all the experimental data is plotted

as a point of comparison.

Fig. S7: Evolution of the DNN stability between successive runs k and k+1.
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S8: DNN architecture

Fig. S8: End-to-end neural network architecture for spectrum prediction based on high-

throughput data.
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S9: Introduction of the DNN from the start

In this section, we perform an ablation study to justify our two-step approach. To 

know if the DNN could have performed well alone, without the help of a BO sampling, we do

an offline computational experiment to compare the DNN and BO performances at the early 

stage of optimization (runs 2 to 5). The DNN “teacher” – which is the final DNN obtained 

using the two-step framework - is used as a surrogate for the experimental evaluation in the 

“initial” parameter space, in order to train a DNN “student” that can suggest new conditions 

from a grid search. All DNN models are developed with the same architecture, and the DNN 

“student” was trained using exclusively the sampled data suggested by itself. Such a DNN 

“teacher” works as an approximation function between the 5D experimental variables and 

their corresponding UV-Vis spectrum. Supplementary Fig. S7 shows that the stability of the 

DNN regression function has already reached a plateau since run 8. Moreover, 

Supplementary Fig. S9a shows that the 2D projection for the DNN “teacher” is very similar to

the one of the DNN obtained in Fig. 3. It is then reasonable to use the DNN “teacher” as a 

surrogate. 

Supplementary Fig. S9b shows the evolution of the loss as the run number increases 

from 1 to 5, for both BO and DNN “student”. Even with a small training dataset, the loss 

decreases and the DNN “student” performs better than random sampling. However, the 

DNN “student”, as a form of DNN, does not perform better than the BO in terms of loss 

reduction. The DNN “student” does not even achieve the best performance of its teacher, 

which could be due to the initialization of the DNN, the fixed DNN structure, and the limited 

number of selected experimental conditions. Therefore, BO’s role as a sampling tool for the 

chemical space is necessary and crucial. 
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Fig. S9: a, 2D projection of the minimum loss obtained with the DNN “teacher” regression 

function in the {Qseed, QAgNO3} space. b, Evolution of the loss obtained with the DNN “student” 

when trained with the DNN “teacher” and comparison with the loss obtained by BO when 

trained with the high-throughput platform.

(a) 

 (b)
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Supplementary Movie: Virtual experimental platform

The interactive plot of the relationship between the optical spectrum and the 5 

chemical parameters is implemented by using Matplotlib, the backend data is from the final 

DNN surrogate model trained by all the experimental data. The horizontal axis is the 

wavelength value (nm) in the range of 380 to 800 nm, the vertical axis corresponds to the 

absorbance, ranging from 0 to 1.2. The slider bar of the 5 input variables follows the range 

allowed by the hardware of the experimental platform: QAgNO3, QTSC and Qseed vary from 0.5 to 

80%, QPVA from 10 to 40% and Qtotal from 200 to 1000 µL/min.

The interactive plot can be deployed at any computer with Python interpreter. Once 

the plot is in operation, the user can click on any position of the slider bar of the 5 variables. 

The corresponding spectrum led by the specified input variables will display in the canvas 

simultaneously. Clicking on the ‘Reset’ button leads the variables and spectrum back to the 

initial state.
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ABSTRACT 

In materials science, the discovery of recipes that yield nanomaterials with defined optical 

properties is costly and time-consuming. In this study, we present a two-step framework for a 

machine learning driven high-throughput microfluidic platform to rapidly produce silver 

nanoparticles with a desired absorbance spectrum. Combining a Gaussian Process based Bayesian 

Optimization (BO) with a Deep Neural Network (DNN), the algorithmic framework is able to 

converge towards the target spectrum after sampling 120 conditions. Once the dataset is large 

enough to train the DNN with sufficient accuracy in the region of the target spectrum, the DNN is 

used to predict the colour palette accessible with the reaction synthesis. While remaining 

interpretable by humans, the proposed framework efficiently optimizes the nanomaterial synthesis, 

and can extract fundamental knowledge of the relationship between chemical composition and 

optical properties, such as the role of each reactant on the shape and amplitude of the absorbance 

spectrum. 

 

INTRODUCTION 

In recent years, machine learning (ML) methods have been applied to solve various 

problems in materials science, such as drug discovery1-2, medical imaging3, material synthesis4-5, 

functional molecules generation6-7 and materials degradation8. Since the generation of experimental 

data in materials science is costly and time-consuming, machine learning algorithms have been 

mainly developed based on computational data or, when available, experimental datasets gathered 

from the literature9. However, once a new material is suggested by the ML algorithm, the material 

synthesis can turn out to be difficult, or even impossible. The recent development of microfluidic 
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high-throughput experimental platforms now allows the generation of a large amount of 

experimental synthesis data with small amounts of material10-13. The integration of the ML 

algorithms in a loop with these flow chemistry platforms would ensure that ML algorithms suggest 

only those new materials that can be synthesized. Such attempts have been made in nanomaterial 

synthesis14-15. However, these studies are limited to optimization problems and focus on sparse 

datasets, while large datasets would be needed to extract knowledge on how the chemical 

composition and process parameters influence the final outcome16. 

In this paper, we propose a two-step machine learning framework that can drive a high-

throughput experimental (HTE) platform from the very start of the screening process (sparse 

dataset) to more resolved screening states (large dataset), to target predetermined optical 

properties, and without any a priori knowledge of the model complexity, extract knowledge on how 

the chemical process impacts the optical properties of the synthesized material. Wet chemical 

nanoparticle synthesis is notoriously challenging to tune because of the intrinsic nonlinear 

competition between nucleation of new ‘seed’ particles and growth of pre-existing seeds in the 

solution17-18. Therefore, silver nanoparticle (AgNP) synthesis was chosen to demonstrate the 

efficiency of the framework. The AgNP synthesis is carried out using a droplet-based microfluidic 

platform with five input variables, as shown in Fig. 1 and detailed in the Methods section. Due to 

surface plasmon resonances, AgNPs have a characteristic optical fingerprint in the UV-visible range 

that depends on their size and shape distributions. In this study, we select as the optical target, the 

theoretical absorbance spectrum of triangular nanoprisms with 50 nm long edges and 10 nm in 

height, calculated by plasmon resonance simulation using Discrete Dipole Scattering.  

Conventional Bayesian Optimization (BO) is often chosen for driving HTE loops because of its 

ability to efficiently explore the parameter space and target specific material properties, even when 

initiated with a sparse dataset5, 19. However, BO does not give general insights into the reaction 

process. Moreover, its performance depends on the initial choice of model hyperparameters and on 
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the definition of the loss, a scalar vector which quantifies how close the output parameter is from 

the target. To extract knowledge from the data, other studies use neural networks to train a 

regression model and perform inverse design from a fixed dataset16, 20-21. While a neural network can 

learn complex functions even from a full optical spectrum, it has many hyperparameters and 

requires a large training dataset, which makes it difficult to integrate into a machine-driven 

experimental loop with limited initial data and expensive evaluations, and is inefficient to use at the 

early stage of sampling to explore the parameter space. 

The proposed two-step framework (Fig.1, left) combines the optimization assets of BO with 

the regression ability of a Deep Neural Network (DNN). In a first step, after performing a first 

experimental run of 15 conditions using Latin HyperCube sampling, the optimization process is 

initiated using a batch mode BO with local penalization22-23. The BO algorithm with Gaussian Process 

(GP) as a surrogate model (see Methods section) is used to explore the parameter space, where 

boundaries are initially set by the experimenter, and find the chemical conditions that lead to the 

target spectrum. The definition of the loss function (see equation (7) in Methods section) takes into 

account both the shape and the intensity of the absorbance spectrum. At each run, the BO algorithm 

picks the next batch of 15 conditions to test, based on a balance between minimizing loss 

(exploitation) and minimizing uncertainty (exploration), as determined by the decision-making policy 

(acquisition function). In parallel, an offline Deep Neural Network (DNN) is trained using the 

experimental data generated by the BO sampling. In a second step, starting from the sixth run, while 

the BO continues suggesting 15 new conditions with the same hyperparameters and feeding the 

DNN with new data around the targeted spectrum, the DNN is used to produce the simulated 

spectra for all the process variables on a parameter space grid. In this way, the DNN is able to 

suggest 15 new conditions that minimize the loss function by ranking the predicted values in the 

grid. The DNN architecture and grid optimization are described in the Methods section. The new 

conditions suggested by both DNN and BO are tested on the HTE platform. In the subsequent runs, 

only experimental data generated by the BO sampling are used to train the DNN, which allows a 
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direct comparison between the BO and the DNN performance. The ML-driven HTE loop is stopped 

when the target spectrum has been optimized, either by the BO or the DNN, and when the DNN 

regression is sufficiently accurate and stable to extract knowledge on the chemical synthesis. The 

detailed data flow of the framework can be found in Supplementary Fig. S1.  

Herein, we first demonstrate that the proposed two-step algorithmic framework efficiently 

optimizes the nanomaterial synthesis to get the desired plasmon resonance. The optimization 

performance is validated experimentally by TEM imaging of the synthesized AgNPs. Next, by 

extracting both BO and DNN regression functions, we show how the optimization process remains 

interpretable by humans. Lastly, once the stability and accuracy of the DNN regression function are 

established, we use the DNN to extract fundamental knowledge on how the chemical composition 

and the spectral properties of the nanoparticles are related.  
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RESULTS 

Optimization performance 

To evaluate the optimization performance of the framework, we follow the evolution of the 

loss over successive experimental runs. Each run consists of 15 chemical conditions. For each 

condition, the optical spectra of 20 droplet replicas are recorded and used to update the algorithms, 

and the median loss of the 20 replicas is calculated to handle the outliers. As the median loss is used 

to update the BO, we define the condition leading to the lowest median loss among all the 

conditions of a run as the best performer. In Fig. 2a, we report the loss value obtained for each 

replica, as well as the statistical distribution of the replicas for the best performing condition. In the 

first step of the framework, the median loss of the BO best performing condition quickly decreases 

in the first runs, before reaching a plateau starting from run 4. The non-triviality of the BO approach 

in the first step of the framework is demonstrated by its higher performance compared to random 

sampling (see Supplementary Fig. S2): the BO converges towards lower loss values, faster than 

random sampling.  

In this first step, the best conditions suggested by the BO accumulate at the border of the 

parameter space (lower Qseed, higher QAgNO3), suggesting that better configurations may be found 

beyond the parameter space boundaries. The framework is designed to be able to extend the 

parameter space if the suggested conditions are too close to the set boundaries for two successive 

runs. This situation occurs in runs 4 and 5. Thus, starting from run 6, the flow rate constraints are 

relaxed to the maximal values allowed by the equipment. No preliminary screening of the extended 

parameter space is performed. Both BO and DNN-based grid optimization use their knowledge on 

the initial parameter space to start exploring the new space. This extension allows a further decrease 

in the median loss of the best performing conditions obtained by BO sampling. The DNN sampling is 

introduced from run 6. Interestingly, the median loss of the best performing condition obtained by 

the DNN in run 8 is significantly lower than the one of BO (see Fig. 2a).  
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The optimization is further validated by the convergence of the BO and DNN as the best 

performing absorbance spectra towards the target spectrum. For the BO samples (Fig. 2b), the main 

absorbance peak quickly shifts to reach the target value (645 nm), while the intensity of the 

absorbance below 600 nm decreases. The evolution of the measured spectra towards the target 

spectrum validates the efficiency of the loss function definition used in this study. Fig. 2c reports at 

each run the measured spectra of the DNN best performers, as well as the spectra predicted by the 

DNN before sampling. While the predicted spectra in run 6 are noisy due to insufficient training in 

the newly accessible region, the spectral predictions become smoother in the following runs, even if 

the DNN is still doing extrapolation at the location of the sampled conditions. 

The shift of the absorbance spectra with the runs goes along with a shift of the size 

distribution of the synthesized triangular nanoprisms towards the desired triangular edge length. 

The size distribution of the triangular AgNPs synthesized by the BO (Fig. 2b) and the DNN (Fig. 2c) 

gets narrower with the runs, the triangle edge converging towards 65 nm, which is slightly higher 

than the targeted edge (50 nm). This discrepancy is due to the different thickness of the triangular 

prisms in the experiment and simulation, which is discussed in the TEM imaging & analysis section. 

 It is worth noting that the approach developed in this study uses the full optical absorbance 

spectrum. In previous studies14-15, the optimization process was performed using only certain 

attributes of the absorbance spectrum, such as peak wavelength, full width at half maximum 

(FWHM), and peak intensity. However, defining the loss on limited spectral features is task-

dependent, as it requires changing the loss definition whenever the spectral target changes. Using a 

modified cosine similarity allows the use of the full absorbance spectrum in a more universal 

manner, and makes the framework transferable to the optimization towards any other spectral 

target. Furthermore, since the shape and size heterogeneity of the silver nanoparticles leads to the 

superposition of the absorbance peaks, the whole spectrum contains information on the full size and 

shape distribution of the nanoparticles. While the 1D reduction of the spectrum into a single loss 
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value allows the BO to remain efficient, the full spectral resolution can be used by the DNN to get 

both an efficient optimization and allow the DNN to accurately predict the AgNP colours. 

   

Interpretability 

To understand how the BO proceeds to take decisions in each successive run, the Pearson 

correlation matrix is calculated. Supplementary Fig. S3 shows the corresponding correlation 

coefficient of the shape and amplitude of the spectra pertaining to the total loss. From run 1 to run 

5, the shape has a higher correlation coefficient (-0.93), compared to that of amplitude (-0.55). Thus, 

the spectral shape is mainly optimized in the initial parameter space, relative to the spectral 

amplitude. However, from run 6 to run 8, the correlation coefficient for the shape (-0.63) becomes 

smaller than that for the amplitude (-0.95), showing that the amplitude of the absorbance spectrum 

is mainly optimized during the second step of the framework.  

In the following, we investigate the reasons for the good optimization performance of the 

DNN during the second step, while the dataset remains sparse in the extended parameter space. In 

the second step of the framework, both algorithms are refining their extrapolation accuracy. As the 

DNN is only trained with the data obtained by the BO sampling, we can compare its surrogate 

function with the BO’s surrogate function obtained with a Gaussian Process for each run. Using SHAP 

(SHapley Additive exPlanations), we can rank the process variables according to their importance: 

QAgNO3 and Qseed are identified as the most important, followed by QTSC, Qtotal and QPVA (see 

Supplementary Fig. S4). The {QAgNO3, Qseed} space is thus chosen to project the minimum loss 

obtained by the regression function over the three other process variables. The minimum loss 

projection obtained at the end of run 8 is shown in Fig. 3 for three different functions: the raw 

experimental data fitted with a Gaussian distribution, the BO regression function and the DNN 

regression function. Both the BO and the DNN suggested conditions converge to a similar region in 

the {QAgNO3, Qseed} space (Fig. 3 left). The position of the global minimum is similar for both 
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algorithms. However, the BO regression function is found to have less features than the DNN one 

(Fig. 3 centre and right). The projection of the BO regression function shows a reminiscence of the 

local minimum obtained before the extension of the parameter space (see Fig. 3, centre). This is due 

to a lack of experimental points between the global and secondary minima. This second minimum is 

not observed on the DNN regression, confirming the better ability of the DNN to fit the parameter 

space. 

To further understand why the BO was outperformed by the DNN, we examine the 

minimum loss projections of the BO surrogate and the DNN in the {QTSC, Qtotal} space over the 3 other 

dimensions. Striped features appear in the BO projection, while the DNN performs correctly in the 

same subspace (see Supplementary Fig. S5). The BO is unable to properly fit the Qtotal dimension, due 

to the ten times higher resolution in this dimension compared to the other ones since the 

parameters are unnormalized before the BO training. Parameter normalization for BO surrogate 

leads to a better projection in the {QTSC, Qtotal} space but we choose not to normalize that to enable 

more flexibility in the event of a parameter space extension. While the non-normalization of the 

parameter highly affects the BO performance, the DNN performs well on the Qtotal dimension. 

 

Knowledge extraction 

The complexity of the relation between chemical composition and optical performance can 

be explored by performing a Principal Component Analysis (PCA). It is found that neither a linear nor 

a kernel PCA can help in reducing the parameter space (see Supplementary Fig. S4). This indicates 

that there are complex nonlinear relationships between the chemical parameters and the optical 

spectrum. Some information though can be extracted from the SHAP analysis: we observe that high 

QAgNO3, low Qseed, low QTSC and high Qtotal values have a negative correlation with the final loss. This 

gives information not only about the future directions for designing the experimental setup but also 

about the region where the target spectrum could be reached. The correlation matrix can also help 
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to understand how the flow rate ratios QAgNO3/Qseed and QTSC/QAgNO3 affect the spectral outcome (see 

Supplementary Fig. S3). While the ratio between silver nitrate and silver seed flowrates (and 

therefore concentrations in the droplets) has a greater impact on the spectral amplitude, the ratio 

between trisodium citrate and silver nitrate concentration has a greater influence on the shape of 

the absorbance spectrum. This extracted insight is non-trivial, and in agreement with the prior 

literature on the role of trisodium citrate on anisotropic growth in AgNPs synthesis24. 

To go further and determine which colour palette can be achieved with this chemical 

process and establish a map for the accessible colours, we use the trained DNN to generate spectra 

in the parameter space. Before extracting any information from the DNN, the accuracy and stability 

of the DNN regression should be quantified. While neural networks usually use a fixed dataset which 

is generally separated in two for training and validation purposes, the two-step framework 

integrates the DNN in the HTE loop, with a dataset that expands at each run. The DNN is trained 

online with the data previously sampled by the BO and the validation step is performed with the 

data selected by the grid optimization for the following experimental run. Thus, the accuracy of the 

DNN can be investigated by comparing the absorbance spectra predicted by the DNN to the spectra 

measured in the following run. One way to qualitatively represent the prediction accuracy of the 

DNN is to report the cosine similarity between the measured and the target spectrum as a function 

of the cosine similarity between the DNN-predicted and the target spectrum (Fig. 4a). The data 

points gather around the diagonal, meaning that the DNN predictions are as close to the target as 

the measured spectra. The accuracy can also be quantitatively estimated for each condition in two 

different ways: the cosine similarity between the predicted and measured spectra determines the 

accuracy of the shape of the absorbance spectrum, while the mean squared error (MSE) gives an 

estimation of the error in the absorbance amplitude at each wavelength. Fig. 4b shows an 

improvement of both the shape similarity and the MSE over the runs during the second step of the 

framework. The DNN prediction becomes progressively more accurate in terms of shape and in 
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terms of noise. In run 8, the MSE between predicted and measured spectra becomes lower than our 

target value, arbitrarily fixed to 0.02, and the HTE loop is stopped. 

The stability of the DNN with respect to the variations among the runs can be investigated 

by tracking the evolution of the regression function in the {QAgNO3, Qseed} space from run 1 to run 8 

(Supplementary Fig. S6). Whereas the BO projection changes gradually even when the parameter 

space is expanded (run 5), the DNN mapping changes drastically for the first 5 runs. This shows that 

DNN is not stable with a small training dataset. The stability of the DNN regression function is 

evaluated by measuring the cosine similarity between two successive runs of DNN on the {QAgNO3, 

Qseed} plane of the parameter space, while the QTSC, Qtotal and QPVA values of the DNN are fixed to the 

best performance conditions in run 8 (see Supplementary Fig. S7). In both initial and extended 

spaces, we observe a clear increase of the stability within the runs.  

 

Once the stability and the accuracy of the DNN are established, a final DNN is trained with all 

the data generated during the experimental runs. This DNN surrogate model is used to generate 

spectra over the whole parameter space. A software was developed to navigate continuously in the 

parameter space and display the predicted absorbance spectra obtained at a specific condition (see 

Supplementary Movie). Furthermore, using the CIE 1931 colour spaces, each absorbance spectrum 

can be converted to the colour that the human eye would see while observing the generated 

droplets of nanoparticles. Fig. 5 shows the colours seen by the DNN surrogate model on the {QAgNO3, 

Qseed} plane of the parameter space. For four different regions of the parameter space, the 

absorbance spectra predicted by the DNN are compared to experimental spectra obtained for 

similar conditions to illustrate the relevance of this representation. The diversity of colours obtained 

reflects the complex link between the absorbance spectrum and droplet chemical composition.  
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CONCLUSIONS 

 In this article, we demonstrated the performance of a two-step framework algorithm that 

combines Bayesian Optimization and Deep Neural Network in a loop with a high-throughput 

experimental platform, to optimize the synthesis of silver nanoprisms. The optimization process is 

accelerated by the offline introduction of the DNN after a few runs of targeted sampling with a BO 

algorithm. By following the evolution of the loss function and of the regression function over the 

runs, we could determine at which run the DNN starts to better predict the region around the target 

position in the parameter space. The process is fully interpretable, and knowledge can be extracted. 

The feature importance shows that, even if each parameter plays a role, the silver nitrate and silver 

seeds remain the most influential parameters for targeting silver nanoprisms. The correlation 

matrices give information on how the parameters and their ratios affect either the shape or the 

amplitude of the absorbance spectra. Moreover, absorbance spectra can be predicted all around the 

target to understand the sensitivity of the optical properties of the synthesized nanomaterial on 

process parameters. In addition to this, this framework trains a transferable algorithm, since the 

final trained DNN can now be used to optimize the synthesis towards a new target. Furthermore, 

inverse design could be performed using the final DNN to synthesize nanoparticles with optical 

properties that are different from our initial target. 

 Other approaches have been recently proposed for similar optimization problems. For 

instance, some studies suggest that Bayesian optimization with an adaptive kernel might discover 

finer regression features25. However, most prior work focuses on either optimization which lacks 

interpretability and transferability when the target changes5 or inverse design using regression 

which uses a static dataset20. Algorithm selection using information criteria such as Akaike 

information criterion (AIC)26 and Bayesian information criterion (BIC)27 could be used to maximize 

time- and resource-efficiency of closed-loop laboratories, e.g., by leveraging co-evolution, physics-

fusion, and related strategies28-29.  While it might not be the only possible ML architecture for such a 
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problem, our approach attempts to combine efficient optimization, interpretability and knowledge 

extraction. Furthermore, the developed methodology is generally applicable to other materials 

synthesis in a HTE loop. 

   

METHODS 

BAYESIAN OPTIMIZATION 

Bayesian Optimization has many advantages which make it suitable to kick-start the 

sampling of the parameter space. As the response surface between the process variables and the 

targeted loss is unknown, the optimization of process variables can be treated as optimization of a 

black-box function. Bayesian Optimization has been shown to outperform other global optimization 

methods on various benchmark functions30. A Gaussian Process is chosen as the surrogate model for 

the BO, considering that the parameter space is continuous. An important aspect of defining the GP 

model is the kernel and its related hyperparameters. This controls the shape of the regression 

function31, which corresponds to the fitting of the response surface between the process variables 

and the targeted loss.  

We select a BO with GP surrogate model for the following reasons: first, implementation of 

BO with GP is less sensitive to the initial choice of hyperparameter selection of the algorithm31. The 

functional relationship f between process parameters and the absorbance spectrum is expensive to 

evaluate and possibly noisy. This eliminates most of the exhaustive search methods such as grid 

sampling and random sampling. Ref.32 has shown that BO requires smaller initial dataset and fewer 

iterations to reach the optimal than a Genetic Algorithm. There are 5 different process variables in 

the experiments. This falls into the “sweet spot” for Bayesian Optimization33.  There are a number of 

surrogate models that can be selected for BO such as GP, tree-based algorithms and NN. Tree-based 

algorithms are not adapted in this study as the process variables are continuous34. GP is selected 
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since the number of hyperparameters are much smaller than the NN. Moreover, the uncertainty of a 

fitted Gaussian process is known, as such, it is easy to make a trade-off between exploration and 

exploitation. Driven by these considerations, Bayesian Optimization coupled with Gaussian Process is 

used to actively sample the chemical space. 

[ 𝑓(𝑥1)⋮𝑓(𝑥𝑚)] ~ 𝑁 (  [ 𝑚(𝑥1)⋮𝑚(𝑥𝑚)] , [ 𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑚)⋮ ⋱ ⋮𝑘(𝑥𝑚, 𝑥1) ⋯ 𝑘(𝑥𝑚, 𝑥𝑚)]  )    (1) 

GP is defined in equation (1). We can denote this equation using the notation: 𝑓(𝑋) ~ 𝐺𝑃(𝑚(𝑋), 𝑘(𝑋, 𝑋′)), where X is the vector of process variables {𝑥1, … , 𝑥𝑚 ∈ 𝑋}, m(X) the 

mean function, k(X,X’) the covariance matrix between all possible pairs (X,X’). We use Matern 52 

kernel in the covariance matrix23 and implement the batch BO with local penalization22 to suggest a 

batch of 15 data points to align with the experimental setup. We use expected improvement (EI) as 

the acquisition function to select the next experimental conditions that trade-off exploration and 

exploitation. 

 𝐸𝐼(𝑋) = 𝑚𝑎𝑥 (0, 𝐸 (𝑓(𝑋) −  𝑓(𝑋+))   (2) 

where 𝑓(𝑋+)is the value of 15 best samples and X is the location of that 15 data points.  

𝑋𝑛𝑒𝑤 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝐼(𝑋)   (3) 

The suggested points for next experiments are the points that maximize the expected improvement. 

EI can be analytically expressed as: 

𝐸𝐼(𝑋) = ( 0, (𝜇(𝑋) − 𝑓(𝑋+) − 𝜉)(𝑍) + 𝜎(𝑋)(𝑍))  (4) 

𝑍 = (0, (𝜇(𝑋) − 𝑓(𝑋+) − 𝜉)/𝜎(𝑋))   (5) 

where 𝜇(𝑋) and 𝜎(𝑋) are the mean and the standard deviation of the GP posterior at X.  and ϕ are 

the cumulative density function and probability density function of a normal distribution. 𝜉 is the 
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jitter value which determines the exploration to exploitation ratio. The higher 𝜉, the more 

explorative the BO is. In this study, we fix the jitter value at 0.1.  

 

NEURAL NETWORK  

DNN architecture 

Supplementary Fig. S9 shows the architecture of the neural networks used in this work. The 

architecture was chosen to catch the complexity of the system while keeping a reasonable 

computation time. The input layer is composed of 5 nodes, followed by 4 hidden layers (with 50 

nodes, 100 nodes, 200 nodes, and 500 nodes). The output layer is composed of 421 nodes, which 

are corresponding to the UV-Vis spectral data points. As an exploratory work without much 

knowledge about the parameter space, we choose ReLU for all the activation functions for ease of 

convergence, and the cost function is a mean squared error. The weight and bias are updated at 

each run of the HTE loop. The number of the initial hidden layers is determined by equation (6), 

which is investigated by Stathakis et al.35, where m is the number of output nodes and N is the 

number of data points. In this work, m is 421, and N is determined by the data points of each run 

(around 300). Goodfellow et al.36 demonstrated empirically that using deep networks with many 

layers may be a heuristic approach to configure networks for challenging and complex predictive 

modelling problems. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 = 2 √(𝑚 + 2) 𝑁   (6) 

 

Grid optimization  

Since the initial DNN is trained by few and under representative data, the obtained function 

is not well trained. We incorporate grid search over the whole parameter space for the selection of 
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the best recipes with a minimal loss, with the aim to enforce a regularization term during the 

optimization process. Starting from run 6, the DNN joined the optimization process. DNN 6 was 

constructed following the above-mentioned specifications. Afterwards, DNN 6 was trained and 

established with experimental data suggested by BO runs 1 to 5. DNN 6 was used as a mapping 

function between the 5 process variables and the corresponding UV-Vis spectrum. Grid search of the 

5D parameter space was conducted to generate each spectrum corresponding to each data point: 

QAgNO3, QTSC and Qseed in the range of [0.5:80]% with point interval of 5%, QPVA in the range of 

[10:40]% with point interval of 5%, and Qtotal in the range of [200:1000] µL/min with point interval of 

100 µL/min. After that, the loss of each spectrum can be calculated according to our defined loss 

function and ranked following ascending order. The DNN 6 would select the 15 combinations of the 

5 variables which have the top 15 minimal losses and recommend them to the experimentalists to 

carry out the synthesis and collect the actual spectral data. Further, the DNN 7 was trained with data 

of BO runs 1 to 7 and conducted grid optimization; DNN 8 was trained with data of BO runs 1 to 8 

and conducted grid optimization. 

 

DEFINITION OF THE LOSS FUNCTION 

The loss function is defined as: 

𝐿𝑜𝑠𝑠 = 1 −  𝛿(𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑚𝑎𝑥 ) | 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝜆) . 𝐴𝑡𝑎𝑟𝑔𝑒𝑡(𝜆) | ‖ 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝜆) ‖  .  ‖ 𝐴𝑡𝑎𝑟𝑔𝑒𝑡(𝜆) ‖    (7) 

with    𝛿(𝐴) =  { 𝐴0.7    𝑖𝑓 𝐴 < 0.7              1    𝑖𝑓 0.7 ≤ 𝐴 ≤ 1.2   0    𝑖𝑓  𝐴 > 1.2            

where 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑𝑚𝑎𝑥  is the maximal value of the measured absorbance spectrum. The cosine similarity 

between the measured and targeted spectra quantifies the shape similarity of the two spectra. Thus, 

by using the cosine similarity in the definition of the loss function, the shape of the absorbance 
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spectrum can be optimized. However, to avoid saturation or noisy optical measurements, the BO 

and DNN suggestions should remain in the detection range of the UV-Vis spectrometer. The 

amplitude function 𝛿 is designed for this purpose. It forces both BO and DNN to suggest conditions 

with a maximal absorbance higher than half the detection limit of the spectrometer.  

 

SHAP ANALYSIS  

To quantify the most significant process parameters and their impact on model 

performance, we use SHAP (SHapley Additive exPlanations) algorithm to evaluate both the BO and 

the DNN. SHAP algorithm is a game-theoretic approach that provides the unique additive feature 

importance measure of any machine learning model37. The objective is to carry out a prediction task 

for a single data point of the dataset. The “gain” is the actual prediction for this data point minus the 

average prediction for all data points in this dataset. It is assumed that all the feature values of a 

data point contribute together to the gain. In this work, the feature values (QAgNO3, QPVA, QTSC, Qseed 

and Qtotal) worked together to achieve the predicted value in terms of loss. Our goal is to explain the 

difference between the actual prediction value and the average prediction values in the whole 

dataset. Specifically speaking, the value of the difference should be partially assigned to the 5 

features, and the partially assigned values should represent each feature’s importance at the 

specified data point.  

 

EXPERIMENTAL  

Materials 

Silver nitrate (99.9%) was purchased from Strem Chemicals Inc. Silver seeds (10nm, 

0.02mg/mL in aqueous buffer stabilised with sodium citrate), sodium citrate tribasic dihydrate (TSC) 
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(≥ 99.0%, ACS) and polyvinyl alcohol (PVA) (Mowiol 8-88, Mw ~ 67,000) were purchased from Sigma 

Aldrich. The silver seeds were used as received. L-(+)-Ascorbic acid (AA) (99+%) was purchased from 

Alfa Aesar. Silicone Oil (PMX-200, 10 cSt) was purchased from MegaChem Ltd and used as received. 

Ultrapure water (18.2 MO at 25 °C) was obtained from Milli-Q purifier. 

 

Experimental design 

Silver seed (0.02mg/mL), TSC solution (15 mM), AA solution (10 mM), PVA solution (5 wt%), 

water, silver nitrate solution (6mM) and silicone oil were loaded in Hamilton glass syringes. The 

chemical reactants were chosen based on the literature38-39. Their loading concentration was 

estimated based on the concentrations found in the literature, and considering that a 10 times 

higher concentration of silver nanoparticles is required to measure the absorbance spectrum in a 1 

mm optical chamber.  

The syringes containing the aqueous phases were all connected to a 9-port PEEK manifold 

(Idex) through PTFE tubes. The manifold output and the oil syringe were connected to a PEEK Tee-

junction (1 mm thruhole), allowing the controlled generation of monodisperse droplets.  

Nanoparticles are synthesized in aqueous sub-microliter droplets (see Fig. 1, right). In such a 

flow system, the concentration of each reactant is directly proportional to the flow rate ratio Qi (%) 

between the flow rate of the reactant and the total aqueous flow rate. By adjusting the flow rate of 

the solvent (water), the flow rate ratios Qseed of silver seeds, QAgNO3 of silver nitrate, QTSC of trisodium 

citrate and QPVA of polyvinyl alcohol are independently controlled by varying the flow rate of the 

corresponding solutions using LabView automated syringe pumps. The flow rate ratio QAA of ascorbic 

acid is kept constant. The mixing of the reactants inside the droplet depends on the speed of the 

droplet, which is directly proportional to the total flow rate Qtotal (µL/min) of both oil and aqueous 

phases. The absorbance spectra of the droplets are measured inline, and the five controlled 
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variables Qseed, QAgNO3, QTSC, QPVA and Qtotal are used as input parameters for the two-step 

optimization framework and the absorbance spectra as the output.   

The boundaries of the parameter space were defined by the range of accessible flow rates 

for each solution. Since the mixing inside the droplets is directly linked to the total flow rate in the 

reaction tube, the sum of all flow rates (Qtotal) was varied between 200 and 1000 µL/min. The total 

aqueous flow rate was kept equal to the flow rate of the oil in order to keep the droplet volume 

constant. The ascorbic acid flow rate was kept equal to 10% of the aqueous flow rate at all time. The 

flow rate of the 5 other aqueous phases could be selected by the ML algorithm within a certain 

range of percentage of the total aqueous flow rate. First, in an “initial parameter space”, the silver 

seeds, silver nitrate and TSC flow rates were kept between 4 and 20%, and the PVA solution 

between 10 and 40%. Then, in an “extended parameter space”, while the PVA flow rate was still kept 

between 10 and 40%, the flow rate restrictions for silver seeds, silver nitrate and TSC were partially 

released, so that the only limitations left were: 1) that the sum of the silver seeds, silver nitrate, TSC 

and PVA flow rates should stay below 90% of the aqueous flow rate, 2) that the silver seeds, silver 

nitrate and TSC flow rates should remain above 0.5% of the total aqueous flow rate. 

After the Tee-junction, the droplets were forced to flow in a 1.25m long PFA tube (1 mm ID). 

One meter after the Tee-junction, the PFA reaction tube entered a customized optical chamber. For 

each condition suggested by the ML algorithm, droplets were generated until the first droplet exists 

the optical chamber. The total flow rate was then decreased to 30 µL/min and the absorbance 

spectra of 20 consecutive droplets were recorded at 1.4 fps with a spectrometer (Flame-T-UV-Vis, 

Ocean Optics) combined with a Deuterium-Halogen light source (DH-2000-BAL, Ocean Optics).      
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TEM imaging & analysis 

To validate the integration of the full absorbance spectra in the HTE loop, we used TEM 

(JEM-2100F) imaging to measure the size dispersity of the synthesized nanoparticles. Since TEM 

imaging is time consuming when compared to inline absorbance measurements, we observed the 

nanoparticles only for the best performing conditions of each run. 

Two nanoparticle shapes were mainly synthesized: nanospheres and triangular nanoprisms, 

with a wide heterogeneity in size for both shapes. Statistical analyses on the TEM images were 

performed with MATLAB, using several hundreds of particles for each condition. We show that the 

percentage of triangular shapes stays around 30% for the different runs. Furthermore, the triangular 

nanoprisms edge length and the nanospheres diameter both increase over the runs, for both BO and 

DNN best performances (Fig. 2b and 2c). The conditions associated with the best performance of the 

last run gave triangular prisms of 65 nm edge lengths, which is 30% larger than the simulated 

nanoparticle size that produces the target spectrum. This shift can be explained by an increase of the 

thickness of the triangular prisms: using TEM measurements, the prism thickness was estimated 

around 13 nm. In fact, the absorbance peak position is determined by the aspect ratio between the 

prism edge length and its thickness40. 

 

SIMULATION OF THE TARGET SPECTRUM 

The target spectrum was simulated by Discrete Dipole Scattering (DDSCAT)41 using the 

optical constants of silver42. The simulation was performed for a 50 nm wide and 10 nm thick 

triangular prism, using 13398 dipoles, and averaging the results on 2 incident polarisations and 8 

different angular orientations of the target around the axis perpendicular to the direction of 

propagation of the incident light. To limit the computation time, the target spectrum was calculated 

for 25 wavelengths equally spaced between 380 and 800 nm. 
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LEGENDS 

Fig. 1  

Algorithmic framework for high-throughput experimental loop.  

The two-step optimization algorithmic framework (left blue box) consists of a first HTE loop 

(runs 2 to 5) in which the BO is sampling the parameter space to train a DNN, and a second 

loop (runs 6 to 8) in which the DNN is allowed to sample the parameter space to validate its 

regression function. The new conditions suggested by the BO and the DNN are tested on a 

droplet-based microfluidic platform (upper right). The absorbance spectrum of each droplet 

is measured and compared to the target spectrum through the loss function before feeding 

the BO, while the fully resolved absorbance spectrum is provided to the DNN. 

 

Fig. 2  

Optimization performance  

a, Evolution of the loss for the conditions suggested by the BO (blue) and the DNN (orange): 

each point represents a droplet. For each run, the condition giving the lowest loss is 

identified as the best performer. The absorbance spectra of the BO (b) and DNN (c) best 

performers, with the associated size distribution of triangular prisms in solution, show that 

the chosen loss function allows a convergence of the spectra towards the target spectrum 

and the prisms towards a triangle edge of 65nm. The TEM images show nanoprisms with the 

median edge size found in the sample. 
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Fig. 3  

Interpretability of the algorithmic decision process 

2D mapping of the minimum loss obtained with (from left to right) the raw experimental 

data, the BO and the DNN regression in the {QAgNO3, Qseed} space. Experimental conditions 

are represented on the left figure by blue disks (BO suggested conditions from run 1 to 8) 

and orange disks (DNN suggested conditions from run 6 to 8). Stars represent the parameter 

conditions for the best loss performance obtained by the BO and the DNN. 

 

Fig. 4  

DNN regression validation 

a, The measured cosine similarity (cosine similarity between the target spectrum and the 

experimental spectrum) is compared to the predicted cosine similarity (cosine similarity 

between the target spectrum and the DNN predicted spectrum at runs 6, 7 and 8).  All the 

data that were not used for training the DNN are used for this validation step: all the DNN 

data, the BO data from the last run, and the random sampling data. The alignment of the 

data with the diagonal shows that the DNN is able to predict the spectral shape correctly. b, 

Evolution of the cosine similarity and the mean squared error (MSE) between the spectra 

predicted by the DNN and the spectra measured at each run, for the conditions suggested 

by both BO and DNN in that run.  
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Fig. 5  

Knowledge extraction on the silver nanoprism synthesis 

Map of the AgNPs colours predicted by the DNN “teacher” in the {QAgNO3, Qseed} space, for a 

fixed value QPVA = 16%, QTSC = 6.5% and Qtotal = 850 µL/min, corresponding to the conditions 

of the DNN best performance in run 8. Predicted spectra (dotted gray line) were extracted in 

four regions of the space (A, B, C & D) and compared to experimental spectra (plain 

coloured line) obtained for similar conditions. 
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ABSTRACT

In materials science, the discovery of recipes that yield nanomaterials with defined optical 

properties is costly and time-consuming. In this study, we present a two-step framework for a 

machine learning driven high-throughput microfluidic platform to rapidly produce silver 

nanoparticles with a desired absorbance spectrum. Combining a Gaussian Process based Bayesian 

Optimization (BO) with a Deep Neural Network (DNN), the algorithmic framework is able to converge

towards the target spectrum after sampling 120 conditions. Once the dataset is large enough to train 

the DNN with sufficient accuracy in the region of the target spectrum, the DNN is used to predict the 

colour palette accessible with the reaction synthesis. While remaining interpretable by humans, the 

proposed framework efficiently optimizes the nanomaterial synthesis, and can extract fundamental 

knowledge of the relationship between chemical composition and optical properties, such as the role

of each reactant on the shape and amplitude of the absorbance spectrum.

INTRODUCTION

In recent years, machine learning (ML) methods have been applied to solve various problems

in materials science, such as drug discovery1-2, medical imaging3, material synthesis4-5, functional 

molecules generation6-7 and materials degradation8. Since the generation of experimental data in 

materials science is costly and time-consuming, machine learning algorithms have been mainly 

developed based on computational data or, when available, experimental datasets gathered from the

literature9. However, once a new material is suggested by the ML algorithm, the material synthesis 

can turn out to be difficult, or even impossible. The recent development of microfluidic high-

throughput experimental platforms now allows the generation of a large amount of experimental 
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synthesis data with small amounts of material10-13. The integration of the ML algorithms in a loop with

these flow chemistry platforms would ensure that ML algorithms suggest only those new materials 

that can be synthesized. Such attempts have been made in nanomaterial synthesis14-15. However, 

these studies are limited to optimization problems and focus on sparse datasets, while large datasets

would be needed to extract knowledge on how the chemical composition and process parameters 

influence the final outcome16.

In this paper, we propose a two-step machine learning framework that can drive a high-

throughput experimental (HTE) platform from the very start of the screening process (sparse dataset)

to more resolved screening states (large dataset), to target predetermined optical properties, and 

without any a priori knowledge of the model complexity, extract knowledge on how the chemical 

process impacts the optical properties of the synthesized material. Wet chemical nanoparticle 

synthesis is notoriously challenging to tune because of the intrinsic nonlinear competition between 

nucleation of new ‘seed’ particles and growth of pre-existing seeds in the solution17-18. Therefore, 

silver nanoparticle (AgNP) synthesis was chosen to demonstrate the efficiency of the framework. The

AgNP synthesis is carried out using a droplet-based microfluidic platform with five input variables, as 

shown in Fig. 1 and detailed in the Methods section. Due to surface plasmon resonances, AgNPs have

a characteristic optical fingerprint in the UV-visible range that depends on their size and shape 

distributions. In this study, we select as the optical target, the theoretical absorbance spectrum of 

triangular nanoprisms with 50 nm long edges and 10 nm in height, calculated by plasmon resonance 

simulation using Discrete Dipole Scattering. 

Conventional Bayesian Optimization (BO) is often chosen for driving HTE loops because of its 

ability to efficiently explore the parameter space and target specific material properties, even when 

initiated with a sparse dataset5, 19. However, BO does not give general insights into the reaction 

process. Moreover, its performance depends on the initial choice of model hyperparameters and on 

the definition of the loss, a scalar vector which quantifies how close the output parameter is from 
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the target. To extract knowledge from the data, other studies use neural networks to train a 

regression model and perform inverse design from a fixed dataset16, 20-21. While a neural network can 

learn complex functions even from a full optical spectrum, it has many hyperparameters and requires

a large training dataset, which makes it difficult to integrate into a machine-driven experimental loop 

with limited initial data and expensive evaluations, and is inefficient to use at the early stage of 

sampling to explore the parameter space.

The proposed two-step framework (Fig.1, left) combines the optimization assets of BO with 

the regression ability of a Deep Neural Network (DNN). In a first step, after performing a first 

experimental run of 15 conditions using Latin HyperCube sampling, the optimization process is 

initiated using a batch mode BO with local penalization22-23. The BO algorithm with Gaussian Process 

(GP) as a surrogate model (see Methods section) is used to explore the parameter space, where 

boundaries are initially set by the experimenter, and find the chemical conditions that lead to the 

target spectrum. The definition of the loss function (see equation (7) in Methods section) takes into 

account both the shape and the intensity of the absorbance spectrum. At each run, the BO algorithm

picks the next batch of 15 conditions to test, based on a balance between minimizing loss 

(exploitation) and minimizing uncertainty (exploration), as determined by the decision-making policy 

(acquisition function). In parallel, an offline Deep Neural Network (DNN) is trained using the 

experimental data generated by the BO sampling. In a second step, starting from the sixth run, while 

the BO continues suggesting 15 new conditions with the same hyperparameters and feeding the 

DNN with new data around the targeted spectrum, the DNN is used to produce the simulated spectra

for all the process variables on a parameter space grid. In this way, the DNN is able to suggest 15 new

conditions that minimize the loss function by ranking the predicted values in the grid. The DNN 

architecture and grid optimization are described in the Methods section. The new conditions 

suggested by both DNN and BO are tested on the HTE platform. In the subsequent runs, only 

experimental data generated by the BO sampling are used to train the DNN, which allows a direct 
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comparison between the BO and the DNN performance. The ML-driven HTE loop is stopped when 

the target spectrum has been optimized, either by the BO or the DNN, and when the DNN regression

is sufficiently accurate and stable to extract knowledge on the chemical synthesis. The detailed data 

flow of the framework can be found in Supplementary Fig. S1. 

Herein, we first demonstrate that the proposed two-step algorithmic framework efficiently 

optimizes the nanomaterial synthesis to get the desired plasmon resonance. The optimization 

performance is validated experimentally by TEM imaging of the synthesized AgNPs. Next, by 

extracting both BO and DNN regression functions, we show how the optimization process remains 

interpretable by humans. Lastly, once the stability and accuracy of the DNN regression function are 

established, we use the DNN to extract fundamental knowledge on how the chemical composition 

and the spectral properties of the nanoparticles are related. 
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RESULTS

Optimization performance

To evaluate the optimization performance of the framework, we follow the evolution of the 

loss over successive experimental runs. Each run consists of 15 chemical conditions. For each 

condition, the optical spectra of 20 droplet replicas are recorded and used to update the algorithms, 

and the median loss of the 20 replicas is calculated to handle the outliers. As the median loss is used 

to update the BO, we define the condition leading to the lowest median loss among all the 

conditions of a run as the best performer. In Fig. 2a, we report the loss value obtained for each 

replica, as well as the statistical distribution of the replicas for the best performing condition. In the 

first step of the framework, the median loss of the BO best performing condition quickly decreases in

the first runs, before reaching a plateau starting from run 4. The non-triviality of the BO approach in 

the first step of the framework is demonstrated by its higher performance compared to random 

sampling (see Supplementary Fig. S2): the BO converges towards lower loss values, faster than 

random sampling. 

In this first step, the best conditions suggested by the BO accumulate at the border of the 

parameter space (lower Qseed, higher QAgNO3), suggesting that better configurations may be found 

beyond the parameter space boundaries. The framework is designed to be able to extend the 

parameter space if the suggested conditions are too close to the set boundaries for two successive 

runs. This situation occurs in runs 4 and 5. Thus, starting from run 6, the flow rate constraints are 

relaxed to the maximal values allowed by the equipment. No preliminary screening of the extended 

parameter space is performed. Both BO and DNN-based grid optimization use their knowledge on 

the initial parameter space to start exploring the new space. This extension allows a further decrease

in the median loss of the best performing conditions obtained by BO sampling. The DNN sampling is 

introduced from run 6. Interestingly, the median loss of the best performing condition obtained by 

the DNN in run 8 is significantly lower than the one of BO (see Fig. 2a). 
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The optimization is further validated by the convergence of the BO and DNN as the best 

performing absorbance spectra towards the target spectrum. For the BO samples (Fig. 2b), the main 

absorbance peak quickly shifts to reach the target value (645 nm), while the intensity of the 

absorbance below 600 nm decreases. The evolution of the measured spectra towards the target 

spectrum validates the efficiency of the loss function definition used in this study. Fig. 2c reports at 

each run the measured spectra of the DNN best performers, as well as the spectra predicted by the 

DNN before sampling. While the predicted spectra in run 6 are noisy due to insufficient training in 

the newly accessible region, the spectral predictions become smoother in the following runs, even if 

the DNN is still doing extrapolation at the location of the sampled conditions.

The shift of the absorbance spectra with the runs goes along with a shift of the size 

distribution of the synthesized triangular nanoprisms towards the desired triangular edge length. The

size distribution of the triangular AgNPs synthesized by the BO (Fig. 2b) and the DNN (Fig. 2c) gets 

narrower with the runs, the triangle edge converging towards 65 nm, which is slightly higher than 

the targeted edge (50 nm). This discrepancy is due to the different thickness of the triangular prisms 

in the experiment and simulation, which is discussed in the TEM imaging & analysis section.

It is worth noting that the approach developed in this study uses the full optical absorbance 

spectrum. In previous studies14-15, the optimization process was performed using only certain 

attributes of the absorbance spectrum, such as peak wavelength, full width at half maximum 

(FWHM), and peak intensity. However, defining the loss on limited spectral features is task-

dependent, as it requires changing the loss definition whenever the spectral target changes. Using a 

modified cosine similarity allows the use of the full absorbance spectrum in a more universal 

manner, and makes the framework transferable to the optimization towards any other spectral 

target. Furthermore, since the shape and size heterogeneity of the silver nanoparticles leads to the 

superposition of the absorbance peaks, the whole spectrum contains information on the full size and

shape distribution of the nanoparticles. While the 1D reduction of the spectrum into a single loss 
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value allows the BO to remain efficient, the full spectral resolution can be used by the DNN to get 

both an efficient optimization and allow the DNN to accurately predict the AgNP colours.

Interpretability

To understand how the BO proceeds to take decisions in each successive run, the Pearson 

correlation matrix is calculated. Supplementary Fig. S3 shows the corresponding correlation 

coefficient of the shape and amplitude of the spectra pertaining to the total loss. From run 1 to run 

5, the shape has a higher correlation coefficient (-0.93), compared to that of amplitude (-0.55). Thus, 

the spectral shape is mainly optimized in the initial parameter space, relative to the spectral 

amplitude. However, from run 6 to run 8, the correlation coefficient for the shape (-0.63) becomes 

smaller than that for the amplitude (-0.95), showing that the amplitude of the absorbance spectrum 

is mainly optimized during the second step of the framework. 

In the following, we investigate the reasons for the good optimization performance of the 

DNN during the second step, while the dataset remains sparse in the extended parameter space. In 

the second step of the framework, both algorithms are refining their extrapolation accuracy. As the 

DNN is only trained with the data obtained by the BO sampling, we can compare its surrogate 

function with the BO’s surrogate function obtained with a Gaussian Process for each run. Using SHAP 

(SHapley Additive exPlanations), we can rank the process variables according to their importance: 

QAgNO3 and Qseed are identified as the most important, followed by QTSC, Qtotal and QPVA (see 

Supplementary Fig. S4). The {QAgNO3, Qseed} space is thus chosen to project the minimum loss obtained 

by the regression function over the three other process variables. The minimum loss projection 

obtained at the end of run 8 is shown in Fig. 3 for three different functions: the raw experimental 

data fitted with a Gaussian distribution, the BO regression function and the DNN regression function.

Both the BO and the DNN suggested conditions converge to a similar region in the {QAgNO3, Qseed} 

space (Fig. 3 left). The position of the global minimum is similar for both algorithms. However, the BO
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regression function is found to have less features than the DNN one (Fig. 3 centre and right). The 

projection of the BO regression function shows a reminiscence of the local minimum obtained before

the extension of the parameter space (see Fig. 3, centre). This is due to a lack of experimental points 

between the global and secondary minima. This second minimum is not observed on the DNN 

regression, confirming the better ability of the DNN to fit the parameter space.

To further understand why the BO was outperformed by the DNN, we examine the minimum

loss projections of the BO surrogate and the DNN in the {QTSC, Qtotal} space over the 3 other 

dimensions. Striped features appear in the BO projection, while the DNN performs correctly in the 

same subspace (see Supplementary Fig. S5). The BO is unable to properly fit the Qtotal dimension, due 

to the ten times higher resolution in this dimension compared to the other ones since the 

parameters are unnormalized before the BO training. Parameter normalization for BO surrogate 

leads to a better projection in the {QTSC, Qtotal} space but we choose not to normalize that to enable 

more flexibility in the event of a parameter space extension. While the non-normalization of the 

parameter highly affects the BO performance, the DNN performs well on the Qtotal dimension.

Knowledge extraction

The complexity of the relation between chemical composition and optical performance can 

be explored by performing a Principal Component Analysis (PCA). It is found that neither a linear nor 

a kernel PCA can help in reducing the parameter space (see Supplementary Fig. S4). This indicates 

that there are complex nonlinear relationships between the chemical parameters and the optical 

spectrum. Some information though can be extracted from the SHAP analysis: we observe that high 

QAgNO3, low Qseed, low QTSC and high Qtotal values have a negative correlation with the final loss. This 

gives information not only about the future directions for designing the experimental setup but also 

about the region where the target spectrum could be reached. The correlation matrix can also help 

to understand how the flow rate ratios QAgNO3/Qseed and QTSC/QAgNO3 affect the spectral outcome (see 
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Supplementary Fig. S3). While the ratio between silver nitrate and silver seed flowrates (and 

therefore concentrations in the droplets) has a greater impact on the spectral amplitude, the ratio 

between trisodium citrate and silver nitrate concentration has a greater influence on the shape of 

the absorbance spectrum. This extracted insight is non-trivial, and in agreement with the prior 

literature on the role of trisodium citrate on anisotropic growth in AgNPs synthesis24.

To go further and determine which colour palette can be achieved with this chemical process

and establish a map for the accessible colours, we use the trained DNN to generate spectra in the 

parameter space. Before extracting any information from the DNN, the accuracy and stability of the 

DNN regression should be quantified. While neural networks usually use a fixed dataset which is 

generally separated in two for training and validation purposes, the two-step framework integrates 

the DNN in the HTE loop, with a dataset that expands at each run. The DNN is trained online with the

data previously sampled by the BO and the validation step is performed with the data selected by the

grid optimization for the following experimental run. Thus, the accuracy of the DNN can be 

investigated by comparing the absorbance spectra predicted by the DNN to the spectra measured in 

the following run. One way to qualitatively represent the prediction accuracy of the DNN is to report 

the cosine similarity between the measured and the target spectrum as a function of the cosine 

similarity between the DNN-predicted and the target spectrum (Fig. 4a). The data points gather 

around the diagonal, meaning that the DNN predictions are as close to the target as the measured 

spectra. The accuracy can also be quantitatively estimated for each condition in two different ways: 

the cosine similarity between the predicted and measured spectra determines the accuracy of the 

shape of the absorbance spectrum, while the mean squared error (MSE) gives an estimation of the 

error in the absorbance amplitude at each wavelength. Fig. 4b shows an improvement of both the 

shape similarity and the MSE over the runs during the second step of the framework. The DNN 

prediction becomes progressively more accurate in terms of shape and in terms of noise. In run 8, 

the MSE between predicted and measured spectra becomes lower than our target value, arbitrarily 

fixed to 0.02, and the HTE loop is stopped.
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The stability of the DNN with respect to the variations among the runs can be investigated by

tracking the evolution of the regression function in the {QAgNO3, Qseed} space from run 1 to run 8 

(Supplementary Fig. S6). Whereas the BO projection changes gradually even when the parameter 

space is expanded (run 5), the DNN mapping changes drastically for the first 5 runs. This shows that 

DNN is not stable with a small training dataset. The stability of the DNN regression function is 

evaluated by measuring the cosine similarity between two successive runs of DNN on the {QAgNO3, 

Qseed} plane of the parameter space, while the QTSC, Qtotal and QPVA values of the DNN are fixed to the 

best performance conditions in run 8 (see Supplementary Fig. S7). In both initial and extended 

spaces, we observe a clear increase of the stability within the runs. 

Once the stability and the accuracy of the DNN are established, a final DNN is trained with all

the data generated during the experimental runs. This DNN surrogate model is used to generate 

spectra over the whole parameter space. A software was developed to navigate continuously in the 

parameter space and display the predicted absorbance spectra obtained at a specific condition (see 

Supplementary Movie). Furthermore, using the CIE 1931 colour spaces, each absorbance spectrum 

can be converted to the colour that the human eye would see while observing the generated 

droplets of nanoparticles. Fig. 5 shows the colours seen by the DNN surrogate model on the {QAgNO3, 

Qseed} plane of the parameter space. For four different regions of the parameter space, the 

absorbance spectra predicted by the DNN are compared to experimental spectra obtained for similar

conditions to illustrate the relevance of this representation. The diversity of colours obtained reflects 

the complex link between the absorbance spectrum and droplet chemical composition. 

CONCLUSIONS
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In this article, we demonstrated the performance of a two-step framework algorithm that 

combines Bayesian Optimization and Deep Neural Network in a loop with a high-throughput 

experimental platform, to optimize the synthesis of silver nanoprisms. The optimization process is 

accelerated by the offline introduction of the DNN after a few runs of targeted sampling with a BO 

algorithm. By following the evolution of the loss function and of the regression function over the 

runs, we could determine at which run the DNN starts to better predict the region around the target 

position in the parameter space. The process is fully interpretable, and knowledge can be extracted. 

The feature importance shows that, even if each parameter plays a role, the silver nitrate and silver 

seeds remain the most influential parameters for targeting silver nanoprisms. The correlation 

matrices give information on how the parameters and their ratios affect either the shape or the 

amplitude of the absorbance spectra. Moreover, absorbance spectra can be predicted all around the 

target to understand the sensitivity of the optical properties of the synthesized nanomaterial on 

process parameters. In addition to this, this framework trains a transferable algorithm, since the final

trained DNN can now be used to optimize the synthesis towards a new target. Furthermore, inverse 

design could be performed using the final DNN to synthesize nanoparticles with optical properties 

that are different from our initial target.

Other approaches have been recently proposed for similar optimization problems. For 

instance, some studies suggest that Bayesian optimization with an adaptive kernel might discover 

finer regression features25. However, most prior work focuses on either optimization which lacks 

interpretability and transferability when the target changes5 or inverse design using regression which 

uses a static dataset20. Algorithm selection using information criteria such as Akaike information 

criterion (AIC)26 and Bayesian information criterion (BIC)27 could be used to maximize time- and 

resource-efficiency of closed-loop laboratories, e.g., by leveraging co-evolution, physics-fusion, and 

related strategies28-29.  While it might not be the only possible ML architecture for such a problem, 

our approach attempts to combine efficient optimization, interpretability and knowledge extraction. 

12



Furthermore, the developed methodology is generally applicable to other materials synthesis in a 

HTE loop.

 

METHODS

BAYESIAN OPTIMIZATION

Bayesian Optimization has many advantages which make it suitable to kick-start the sampling

of the parameter space. As the response surface between the process variables and the targeted loss

is unknown, the optimization of process variables can be treated as optimization of a black-box 

function. Bayesian Optimization has been shown to outperform other global optimization methods 

on various benchmark functions30. A Gaussian Process is chosen as the surrogate model for the BO, 

considering that the parameter space is continuous. An important aspect of defining the GP model is 

the kernel and its related hyperparameters. This controls the shape of the regression function31, 

which corresponds to the fitting of the response surface between the process variables and the 

targeted loss. 

We select a BO with GP surrogate model for the following reasons: first, implementation of 

BO with GP is less sensitive to the initial choice of hyperparameter selection of the algorithm31. The 

functional relationship f between process parameters and the absorbance spectrum is expensive to 

evaluate and possibly noisy. This eliminates most of the exhaustive search methods such as grid 

sampling and random sampling. Ref.32 has shown that BO requires smaller initial dataset and fewer 

iterations to reach the optimal than a Genetic Algorithm. There are 5 different process variables in 

the experiments. This falls into the “sweet spot” for Bayesian Optimization33.  There are a number of 

surrogate models that can be selected for BO such as GP, tree-based algorithms and NN. Tree-based 

algorithms are not adapted in this study as the process variables are continuous34. GP is selected 

since the number of hyperparameters are much smaller than the NN. Moreover, the uncertainty of a 
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fitted Gaussian process is known, as such, it is easy to make a trade-off between exploration and 

exploitation. Driven by these considerations, Bayesian Optimization coupled with Gaussian Process is 

used to actively sample the chemical space.

[ f (x1
)

⋮

f (xm)] N ([m ( x1 )
⋮

m (xm )] ,[
k ( x1 , x1 ) ⋯ k ( x1 , xm )

⋮ ⋱ ⋮

k (xm , x
1 ) ⋯ k ( xm , xm )])     (1)

GP is defined in equation (1). We can denote this equation using the notation:

f (X ) GP (m ( X ) , k ( X , X
' )) , where X is the vector of process variables { x

1
,…, xm∈ X }, 

m(X) the mean function, k(X,X’) the covariance matrix between all possible pairs (X,X’). We use 

Matern 52 kernel in the covariance matrix23 and implement the batch BO with local penalization22 to 

suggest a batch of 15 data points to align with the experimental setup. We use expected 

improvement (EI) as the acquisition function to select the next experimental conditions that trade-off

exploration and exploitation.

+¿
X

¿

¿
f ( X )−f ¿
0 ,E ⁡¿

EI ( X )=max ⁡¿

   (2)

where 

+¿
X

¿

f ¿
is the value of 15 best samples and X is the location of that 15 data points. 

Xnew=argmax EI ( X )    (3)

The suggested points for next experiments are the points that maximize the expected improvement. 

EI can be analytically expressed as:
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where μ ( X )  and σ ( X )  are the mean and the standard deviation of the GP posterior at X.  

 and ϕ are the cumulative density function and probability density function of a normal 

distribution. ξ  is the jitter value which determines the exploration to exploitation ratio. The higher

ξ , the more explorative the BO is. In this study, we fix the jitter value at 0.1. 

NEURAL NETWORK 

DNN architecture

Supplementary Fig. S9 shows the architecture of the neural networks used in this work. The 

architecture was chosen to catch the complexity of the system while keeping a reasonable 

computation time. The input layer is composed of 5 nodes, followed by 4 hidden layers (with 50 

nodes, 100 nodes, 200 nodes, and 500 nodes). The output layer is composed of 421 nodes, which are

corresponding to the UV-Vis spectral data points. As an exploratory work without much knowledge 

about the parameter space, we choose ReLU for all the activation functions for ease of convergence, 

and the cost function is a mean squared error. The weight and bias are updated at each run of the 

HTE loop. The number of the initial hidden layers is determined by equation (6), which is investigated

by Stathakis et al.35, where m is the number of output nodes and N is the number of data points. In 
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this work, m is 421, and N is determined by the data points of each run (around 300). Goodfellow et 

al.36 demonstrated empirically that using deep networks with many layers may be a heuristic 

approach to configure networks for challenging and complex predictive modelling problems.

Number of nodesrequired for the last hiddenlayer=2√(m+2 ) N    (6)

Grid optimization 

Since the initial DNN is trained by few and under representative data, the obtained function 

is not well trained. We incorporate grid search over the whole parameter space for the selection of 

the best recipes with a minimal loss, with the aim to enforce a regularization term during the 

optimization process. Starting from run 6, the DNN joined the optimization process. DNN 6 was 

constructed following the above-mentioned specifications. Afterwards, DNN 6 was trained and 

established with experimental data suggested by BO runs 1 to 5. DNN 6 was used as a mapping 

function between the 5 process variables and the corresponding UV-Vis spectrum. Grid search of the 

5D parameter space was conducted to generate each spectrum corresponding to each data point: 

QAgNO3, QTSC and Qseed in the range of [0.5:80]% with point interval of 5%, QPVA in the range of [10:40]% 

with point interval of 5%, and Qtotal in the range of [200:1000] µL/min with point interval of 100 

µL/min. After that, the loss of each spectrum can be calculated according to our defined loss function

and ranked following ascending order. The DNN 6 would select the 15 combinations of the 5 

variables which have the top 15 minimal losses and recommend them to the experimentalists to 

carry out the synthesis and collect the actual spectral data. Further, the DNN 7 was trained with data 

of BO runs 1 to 7 and conducted grid optimization; DNN 8 was trained with data of BO runs 1 to 8 

and conducted grid optimization.
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DEFINITION OF THE LOSS FUNCTION

The loss function is defined as:

Loss=1−δ ( Ameasured

max )
|Ameasured ( λ ) . Atarget ( λ )|

‖Ameasured ( λ )‖.‖A target ( λ )‖
(7)

with  δ ( A )={
A

0.7
if A<0.7

1 if 0.7≤ A ≤1.2

0 if A>1.2

where Ameasured

max
 is the maximal value of the measured absorbance spectrum. The cosine similarity

between the measured and targeted spectra quantifies the shape similarity of the two spectra. Thus, 

by using the cosine similarity in the definition of the loss function, the shape of the absorbance 

spectrum can be optimized. However, to avoid saturation or noisy optical measurements, the BO and

DNN suggestions should remain in the detection range of the UV-Vis spectrometer. The amplitude 

function δ  is designed for this purpose. It forces both BO and DNN to suggest conditions with a 

maximal absorbance higher than half the detection limit of the spectrometer. 

SHAP ANALYSIS 

To quantify the most significant process parameters and their impact on model performance,

we use SHAP (SHapley Additive exPlanations) algorithm to evaluate both the BO and the DNN. SHAP 

algorithm is a game-theoretic approach that provides the unique additive feature importance 

measure of any machine learning model37. The objective is to carry out a prediction task for a single 

data point of the dataset. The “gain” is the actual prediction for this data point minus the average 

prediction for all data points in this dataset. It is assumed that all the feature values of a data point 

contribute together to the gain. In this work, the feature values (QAgNO3, QPVA, QTSC, Qseed and Qtotal) 

worked together to achieve the predicted value in terms of loss. Our goal is to explain the difference 
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between the actual prediction value and the average prediction values in the whole dataset. 

Specifically speaking, the value of the difference should be partially assigned to the 5 features, and 

the partially assigned values should represent each feature’s importance at the specified data point. 

EXPERIMENTAL 

Materials

Silver nitrate (99.9%) was purchased from Strem Chemicals Inc. Silver seeds (10nm, 

0.02mg/mL in aqueous buffer stabilised with sodium citrate), sodium citrate tribasic dihydrate (TSC) 

(≥ 99.0%, ACS) and polyvinyl alcohol (PVA) (Mowiol 8-88, Mw ~ 67,000) were purchased from Sigma 

Aldrich. The silver seeds were used as received. L-(+)-Ascorbic acid (AA) (99+%) was purchased from 

Alfa Aesar. Silicone Oil (PMX-200, 10 cSt) was purchased from MegaChem Ltd and used as received. 

Ultrapure water (18.2 MO at 25 °C) was obtained from Milli-Q purifier.

Experimental design

Silver seed (0.02mg/mL), TSC solution (15 mM), AA solution (10 mM), PVA solution (5 wt%), 

water, silver nitrate solution (6mM) and silicone oil were loaded in Hamilton glass syringes. The 

chemical reactants were chosen based on the literature38-39. Their loading concentration was 

estimated based on the concentrations found in the literature, and considering that a 10 times 

higher concentration of silver nanoparticles is required to measure the absorbance spectrum in a 1 

mm optical chamber. 

The syringes containing the aqueous phases were all connected to a 9-port PEEK manifold 

(Idex) through PTFE tubes. The manifold output and the oil syringe were connected to a PEEK Tee-

junction (1 mm thruhole), allowing the controlled generation of monodisperse droplets. 
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Nanoparticles are synthesized in aqueous sub-microliter droplets (see Fig. 1, right). In such a 

flow system, the concentration of each reactant is directly proportional to the flow rate ratio Qi (%) 

between the flow rate of the reactant and the total aqueous flow rate. By adjusting the flow rate of 

the solvent (water), the flow rate ratios Qseed of silver seeds, QAgNO3 of silver nitrate, QTSC of trisodium 

citrate and QPVA of polyvinyl alcohol are independently controlled by varying the flow rate of the 

corresponding solutions using LabView automated syringe pumps. The flow rate ratio QAA of ascorbic 

acid is kept constant. The mixing of the reactants inside the droplet depends on the speed of the 

droplet, which is directly proportional to the total flow rate Qtotal (µL/min) of both oil and aqueous 

phases. The absorbance spectra of the droplets are measured inline, and the five controlled variables

Qseed, QAgNO3, QTSC, QPVA and Qtotal are used as input parameters for the two-step optimization 

framework and the absorbance spectra as the output.  

The boundaries of the parameter space were defined by the range of accessible flow rates 

for each solution. Since the mixing inside the droplets is directly linked to the total flow rate in the 

reaction tube, the sum of all flow rates (Qtotal) was varied between 200 and 1000 µL/min. The total 

aqueous flow rate was kept equal to the flow rate of the oil in order to keep the droplet volume 

constant. The ascorbic acid flow rate was kept equal to 10% of the aqueous flow rate at all time. The 

flow rate of the 5 other aqueous phases could be selected by the ML algorithm within a certain range

of percentage of the total aqueous flow rate. First, in an “initial parameter space”, the silver seeds, 

silver nitrate and TSC flow rates were kept between 4 and 20%, and the PVA solution between 10 and

40%. Then, in an “extended parameter space”, while the PVA flow rate was still kept between 10 and 

40%, the flow rate restrictions for silver seeds, silver nitrate and TSC were partially released, so that 

the only limitations left were: 1) that the sum of the silver seeds, silver nitrate, TSC and PVA flow 

rates should stay below 90% of the aqueous flow rate, 2) that the silver seeds, silver nitrate and TSC 

flow rates should remain above 0.5% of the total aqueous flow rate.
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After the Tee-junction, the droplets were forced to flow in a 1.25m long PFA tube (1 mm ID). 

One meter after the Tee-junction, the PFA reaction tube entered a customized optical chamber. For 

each condition suggested by the ML algorithm, droplets were generated until the first droplet exists 

the optical chamber. The total flow rate was then decreased to 30 µL/min and the absorbance 

spectra of 20 consecutive droplets were recorded at 1.4 fps with a spectrometer (Flame-T-UV-Vis, 

Ocean Optics) combined with a Deuterium-Halogen light source (DH-2000-BAL, Ocean Optics).     

TEM imaging & analysis

To validate the integration of the full absorbance spectra in the HTE loop, we used TEM (JEM-

2100F) imaging to measure the size dispersity of the synthesized nanoparticles. Since TEM imaging is 

time consuming when compared to inline absorbance measurements, we observed the 

nanoparticles only for the best performing conditions of each run.

Two nanoparticle shapes were mainly synthesized: nanospheres and triangular nanoprisms, 

with a wide heterogeneity in size for both shapes. Statistical analyses on the TEM images were 

performed with MATLAB, using several hundreds of particles for each condition. We show that the 

percentage of triangular shapes stays around 30% for the different runs. Furthermore, the triangular 

nanoprisms edge length and the nanospheres diameter both increase over the runs, for both BO and 

DNN best performances (Fig. 2b and 2c). The conditions associated with the best performance of the 

last run gave triangular prisms of 65 nm edge lengths, which is 30% larger than the simulated 

nanoparticle size that produces the target spectrum. This shift can be explained by an increase of the

thickness of the triangular prisms: using TEM measurements, the prism thickness was estimated 
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around 13 nm. In fact, the absorbance peak position is determined by the aspect ratio between the 

prism edge length and its thickness40.

SIMULATION OF THE TARGET SPECTRUM

The target spectrum was simulated by Discrete Dipole Scattering (DDSCAT)41 using the optical

constants of silver42. The simulation was performed for a 50 nm wide and 10 nm thick triangular 

prism, using 13398 dipoles, and averaging the results on 2 incident polarisations and 8 different 

angular orientations of the target around the axis perpendicular to the direction of propagation of 

the incident light. To limit the computation time, the target spectrum was calculated for 25 

wavelengths equally spaced between 380 and 800 nm.

21



ACKNOWLEDGMENTS

We would like to thank Swee Liang Wong, Lim Yee-Fun, Xu Yang, Jatin Kumar, Liu Xiali and Li 

Jiali for equipment support and helpful discussions. Support was provided by the Accelerated 

Materials Development for Manufacturing Program at A*STAR via the AME Programmatic Fund by 

the Agency for Science, Technology and Research under Grant No. A1898b0043, (FMB, ZR, TH, WKW, 

FZ, SJ, ZM, DB, KH, SAK, QL, XW) and Singapore’s National Research Foundation through the 

Singapore MIT Alliance for Research and Technology’s Low energy electronic systems (LEES) IRG (ZR, 

IPST, TB).

AUTHOR CONTRIBUTIONS

FMB, ZR, TB and SAK conceived this study; FMB, WKW, FZ, JX designed and supervised the 

autonomous experiment; ZR, TH, IPST, SJ, TB, QL, XW developed machine-learning algorithms; FMB, 

DB conducted the plasmon resonance simulations; FMB, ZM conducted TEM; FMB, ZR, TH, TB wrote 

the manuscript; KH, SAK, TB, QL, XW supervised the research.

COMPETING INTERESTS

The authors declare no competing interests.

22



REFERENCES

1. Altae-Tran, H., Ramsundar, B., Pappu, A.S. & Pande, V. Low data drug discovery with one-shot 

learning. ACS Cent. Sci. 3, 283-293 (2017).

2. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of deep learning in drug 

discovery. Drug Discovery Today 23, 1241-1250 (2018).

3. Erickson, B. J., Korfiatis, P., Akkus, Z. & Kline, T. L. Machine learning for medical imaging. 

RadioGraphics 37, 505–515 (2017). 

4. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and 

interpretable prediction of material properties. Physical review letters 120, 145301 (2018).

5. Yamawaki, M., Ohnishi, M., Ju, S. & Shiomi, J. Multifunctional structural design of graphene 

thermoelectrics by Bayesian optimization. Science Advances 4, eaar4192, (2018).

6. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and 

materials science. J. Digit Imaging 30, 391 (2017).

7. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molecular de-novo design through deep 

reinforcement learning. J. Cheminform. 9, (2017). 

8. Nash, W., Drummond, T. & Birbilis, N. A review of deep learning in the study of materials 

degradation. npj Mater. Degrad. 2, (2018). 

9. Himanen, L., Geurts, A., Foster, A. S. & Rinke, P. Data driven materials science: status, challenges ‐

and perspectives. Adv. Sci. 6, 1900808 (2019). 

10. Trivedi, V. et al. A modular approach for the generation, storage, mixing, and detection of droplet 

libraries for high-throughput screening. Lab Chip 10, 2433-2442 (2010).

23



11. Knauer, A. et al. Screening of plasmonic properties of composed metal nanoparticles by 

combinatorial synthesis in micro-fluid segment sequences. Chemical Engineering Journal 227, 80–89 

(2013). 

12. Lignos, I. et al. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based 

microfluidic platform: fast parametric space mapping. Nano Lett. 16, 1869-1877 (2016). 

13. Epps, R.W., Felton, K.C., Coley, C.W. & Abolhasani, M. Automated microfluidic platform for 

systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing. Lab

Chip 17, 4040-4047 (2017).

14. Bezinge, L., Maceiczyk, R.M., Lignos, I., Kovalenko, M. V. & Demello, A. J. Pick a color MARIA: 

adaptive sampling enables the rapid identification of complex perovskite nanocrystal compositions 

with defined emission characteristics. ACS Appl. Mater. Interfaces 10, 18869-18878 (2018). 

15. Keenan, G. et al. A nanomaterials discovery robot for the darwinian evolution of shape 

programmable gold nanoparticles. Nat Commun 11, 2771 (2020).

16. Shabanzadeh, P., Yusof, R. & Shameli, K. Neural network modelling for prediction size of silver 

nanoparticles in montmorillonite/starch synthesis by chemical reduction method. Digest Journal of 

Nanomaterials and Biostructures 9, 1699-1711 (2014).

17. Thanh, N. T. K. , Maclean, N. & Mahiddine, S. Mechanisms of nucleation and growth of 

nanoparticles in solution. Chem. Rev. 114, 7610-7630 (2014). 

18. Lee, J., Yang, J., Kwon, S. & Hyeon, T. Nonclassical nucleation and growth of inorganic 

nanoparticles. Nat. Rev. Mater 1, 16034 (2016).

19. Yuan, B. et al. Machine-learning-based monitoring of laser powder bed fusion. Advanced 

Materials Technologies 3, 1800136 (2018).

24



20.  Kumar, J. et al. Machine learning enables polymer cloud-point engineering via inverse design. npj

Computational Materials 5, 1-6 (2019).

21. Voznyy, O. Machine learning accelerates discovery of optimal colloidal quantum dot synthesis. 

ACS Nano 13, 11122-11128 (2019).

22. Gonzalez, J., Dai, Z., Hennig, P. & Lawrence, N. Batch bayesian optimization via local penalization. 

In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics 51, 648–

657 (2016).

23. Dai, Z. et al. GPyOpt: A Bayesian optimization framework in python. 

http://github.com/SheffieldML/GPyOpt (2016).

24. Aherne, D., Ledwith, D. M., Gara, M. & Kelly, J. M. Optical properties and growth aspects of silver 

nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. 

Mater. 18, 2005–2016 (2008).

25. Wang, H. & Li, J. Adaptive Gaussian process approximation for Bayesian inference with expensive 

likelihood functions. Neural computation 30, 3072-3094 (2018).

26. Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike information criterion statistics (D. 

Reidel, Dordrecht, 1986).

27. Schwarz, G. Estimating the dimension of a model. In The annals of statistics 6, 461-464 (1978).

28. Wolpert, D. H. & Macready, W. G. Coevolutionary free lunches. In IEEE Transactions on 

Evolutionary Computation 9, 721-735 (2005). 

29. Rohr, B. et al. Benchmarking the acceleration of materials discovery by sequential learning. 

Chem. Sci. 11, 2696-2706 (2020).

25

http://github.com/SheffieldML/GPyOpt


30. Jones, D. R. A taxonomy of global optimization methods based on response surfaces. Journal of 

Global Optimization 21, 345–383 (2001). 

31. Rasmussen C.E. Gaussian Processes in Machine Learning. In: Advanced Lectures on Machine 

Learning (Springer-Verlag, Berlin Heidelberg, 2004).

32. Wang, Z. L., Ogawa, T. & Adachi, Y. Influence of algorithm parameters of Bayesian optimization, 

genetic algorithm, and particle swarm optimization on their optimization performance. Advanced 

Theory and Simulations 2, 1900110 (2019).

33. Frazier, P. I. Bayesian optimization. Recent Advances in Optimization and Modeling of 

Contemporary Problems, 255–278 (2018).

34. Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a bayesian optimizer for 

chemistry. ACS Cent. Sci. 4, 1134-1145 (2018).

35. Stathakis, D. How many hidden layers and nodes? International Journal of Remote Sensing 30, 

2133-2147 (2009). 

36. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning: Adaptive Computation and Machine 

Learning (MIT Press, Cambridge, 2016).

37. Lundberg, S. & Lee, S. I. A unified approach to interpreting model predictions. In 31st Conference 

on Neural Information Processing Systems (NIPS, 2017).

38. Singh, A. K.  et al. Nonlinear optical properties of triangular silver nanoparticles. Chemical Physics

Letters 481, 94-98 (2009). 

39. Potara, M., Gabudean, A.-M.  & Astilean, S. Solution-phase, dual LSPR-SERS plasmonic sensors of 

high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles. J. Mater. 

Chem. 21, 3625-3633 (2011).

26



40. Shuford, K. L., Ratner M. A. R. & Schatz, G. C. Multipolar excitation in triangular nanoprisms. J. 

Chem. Phys. 123, 114713 (2005). 

41. Draine, B.T. & Flatau, P.J. Discrete dipole approximation for scattering calculations. J. Opt. Soc. 

Am. A 11, 1491-1499 (1994). 

42. Johnson, P. B. & Christy, R. W. Optical constants of the nobel metals. Phys. Rev. B 6, 4370-4379 

(1972).

27



LEGENDS

Fig. 1 

Algorithmic framework for high-throughput experimental loop. 

The two-step optimization algorithmic framework (left blue box) consists of a first HTE loop 

(runs 2 to 5) in which the BO is sampling the parameter space to train a DNN, and a second 

loop (runs 6 to 8) in which the DNN is allowed to sample the parameter space to validate its 

regression function. The new conditions suggested by the BO and the DNN are tested on a 

droplet-based microfluidic platform (upper right). The absorbance spectrum of each droplet 

is measured and compared to the target spectrum through the loss function before feeding 

the BO, while the fully resolved absorbance spectrum is provided to the DNN.

Fig. 2 

Optimization performance 

a, Evolution of the loss for the conditions suggested by the BO (blue) and the DNN (orange): 

each point represents a droplet. For each run, the condition giving the lowest loss is 

identified as the best performer. The absorbance spectra of the BO (b) and DNN (c) best 

performers, with the associated size distribution of triangular prisms in solution, show that 

the chosen loss function allows a convergence of the spectra towards the target spectrum 

and the prisms towards a triangle edge of 65nm. The TEM images show nanoprisms with the

median edge size found in the sample.
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Fig. 3 

Interpretability of the algorithmic decision process

2D mapping of the minimum loss obtained with (from left to right) the raw experimental 

data, the BO and the DNN regression in the {QAgNO3, Qseed} space. Experimental conditions are 

represented on the left figure by blue disks (BO suggested conditions from run 1 to 8) and 

orange disks (DNN suggested conditions from run 6 to 8). Stars represent the parameter 

conditions for the best loss performance obtained by the BO and the DNN.

Fig. 4 

DNN regression validation

a, The measured cosine similarity (cosine similarity between the target spectrum and the 

experimental spectrum) is compared to the predicted cosine similarity (cosine similarity 

between the target spectrum and the DNN predicted spectrum at runs 6, 7 and 8).  All the 

data that were not used for training the DNN are used for this validation step: all the DNN 

data, the BO data from the last run, and the random sampling data. The alignment of the 

data with the diagonal shows that the DNN is able to predict the spectral shape correctly. b, 

Evolution of the cosine similarity and the mean squared error (MSE) between the spectra 

predicted by the DNN and the spectra measured at each run, for the conditions suggested by

both BO and DNN in that run. 
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Fig. 5 

Knowledge extraction on the silver nanoprism synthesis

Map of the AgNPs colours predicted by the DNN “teacher” in the {QAgNO3, Qseed} space, for a 

fixed value QPVA = 16%, QTSC = 6.5% and Qtotal = 850 µL/min, corresponding to the conditions 

of the DNN best performance in run 8. Predicted spectra (dotted gray line) were extracted in 

four regions of the space (A, B, C & D) and compared to experimental spectra (plain coloured

line) obtained for similar conditions.
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