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This paper proposes an instruction pre-execution scheme for a high per-
formance processor, that reduces latency and early scheduling of loads. Our
scheme exploits the difference between the amount of instruction-level paral-
lelism available with an unlimited number of physical registers and that avail-
able with an actual number of physical registers. We introduce the two-step
physical register deallocation scheme, which deallocates physical registers at the
renaming stage as a first step, and eliminates pipeline stalls caused by a short-
age of physical registers. Instructions wait for the final deallocation as a second
step in the instruction window. While waiting, the scheme allows pre-execution
of instructions, that enables prefetching of load data and early calculation of
memory effective addresses. Our evaluation results show that our scheme im-
proves the performance significantly, and achieves a 1.26 times speedup over a
processor without a prefetcher. If combined with a stride prefetcher, it achieves
a 1.18 times speedup over a processor with a stride prefetcher.

1. Introduction

The load latency in cycles becomes longer as the LSI technology advances
because the rate of improvement of memory access time is much slower than
that of the processors clock frequency. The gap between the processor and the
memory is often called a memory wall 30). A general method to reduce the latency
due to a memory wall is to fill the gap with several cache hierarchy levels, and
to satisfy load requests at as a high a level as possible. However, this method is
both very costly and often insufficient.

Data prefetching is an alternative or additional method of solving this prob-
lem. The method moves the necessary data, before it is actually used, from
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a lower level to an upper level of the memory hierarchy in parallel with other
computations, thus hiding the load latency. Many hardware schemes have been
proposed for prefetching 3),8),13),20),26). The schemes currently implemented in
processors generally predict an access pattern, and prefetch data according to
the prediction when triggered by a cache miss. Although these schemes can
be implemented with a simple hardware, they are ineffective for irregular pat-
terns that are difficult to predict. Schemes for irregular patterns have been pro-
posed 2),5)–7),12),15),21),23),24),35),36), but they have disadvantages in that they are
costly to implement or require a multithreaded environment.

Even if the memory latency is perfectly hidden by prefetching, loads generally
still remain on the critical paths. The schedule timing is constrained by true data
dependences, that arise from program semantics and so are difficult to remove.
Some predictive schemes have been proposed that remove true dependences by
predicting a load address or a load value (e.g., last value predictor 16)). A common
disadvantage of these schemes is that it is difficult to achieve a sufficient improve-
ment in performance without a complicated hardware for efficient recovery from
a misprediction 22).

This paper proposes a scheme that provides an instruction pre-execution within
a single thread for data prefetching and load address pre-calculation 31)–33). Our
scheme assumes a split load/store, where the load/store operation is split into an
address calculation and a memory access. Our scheme creates a pre-execution
stream that precedes the main execution stream that builds the architectural
state. In general, instruction execution is constrained by dependences and re-
source constraints. The precedence of the pre-execution stream is ensured by
relaxing the imposed resource constraint. Our scheme focuses on physical reg-
isters as a resource constraint. Generally, a register file large enough to exploit
fully the instruction-level parallelism (ILP) contained in a program is not im-
plemented, because of space, time, and power constraints. This causes pipeline
stalls at the register rename stage due to the shortage of physical registers. To
avoid such stalls, our scheme splits the physical register deallocation into two
steps at different pipeline stages. As a first step, the deallocation is carried out
in the rename stage, which eliminates stalls at the rename stage and so the in-
structions advance and are stored in the instruction window. Our scheme allows
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35 Two-Step Physical Register Deallocation

those instructions to have a dry run (i.e., execution without write), forming the
pre-execution stream. The final deallocation is carried out as a second step at the
commit stage, as in the conventional manner. This deallocation is notified to the
instructions that were allowed to use this physical register in the first step. These
instructions form the main execution stream that is allowed to write results.

Our pre-execution has two advantages. First, it realizes data prefetching. Our
prefetching relies on the actual execution, not on the prediction, and is thus effec-
tive for memory accesses that are difficult to predict. Second, the pre-calculation
of the load address removes the true dependence of a load during the main ex-
ecution. Our pre-calculation of an address writes the result to the load/store
queue (LSQ). Thus, a load can immediately use the calculated address in the
main execution, without having to wait for the address calculation.

The remainder of this paper is organized as follows. Section 2 illustrates the
effect of our scheme. Section 3 describes related work. Our pre-execution scheme
is proposed in Section 4. Section 5 presents the evaluation results and finally,
our conclusions are presented in Section 6.

2. Illustration of Effects

Figure 1 illustrates the effects of our pre-execution scheme. Figure 1 (a) shows
an example of the execution timing of four dependent instructions in a conven-
tional processor, where load occurs a cache miss. Figure 1 (b) shows the execu-
tion timing of the same instructions with our pre-execution scheme. On the left
of this figure is the pre-execution stream, while the corresponding main execu-
tion stream, not considering and considering the address pre-calculation effect,
is shown on the middle and the right hand side of the figure, respectively. As
shown on the left of Fig. 1 (b), pre-execution starts earlier than the conventional
execution because it is not stalled by the shortage of physical registers. Thus,
the cache miss of load occurs earlier. Handling this cache miss moves data from
the lower level of the memory subsystem to the upper level. As a result, in the
main execution, load hits the L1 data cache, resulting in a speedup. Address
pre-calculation yields further speedup. The instruction acalc (address calcula-
tion) is pre-executed and the generated address is written into the LSQ. As a
result, as shown on the right of Fig. 1 (b), in the main execution, the dependence

Fig. 1 Effect of our pre-execution scheme.

of load on acalc is resolved. Thus, load is executed further earlier.

3. Related Work

3.1 Data Prefetching
Jouppi proposed a stream buffer that automatically prefetches contiguous lines,

succeeding a missed cache line, into the buffer 13). For a regular access pat-
tern with a non-unit stride, stride prefetchers have been proposed 3),8),20). Such
automatic prefetchers have considerable strength in prefetch timeliness if the
access pattern has a constant stride. However, they are ineffective for irreg-
ular patterns. Several prefetch schemes for irregular patterns have been pro-
posed 12),15),23). These schemes generally hold irregular pattern information for
each missed address, and thus are very costly.

Our scheme is based on pre-execution. A number of studies based on pre-
execution have been carried out 2),5)–7),21),24),35),36). These schemes extract, either
statically or dynamically, the instructions necessary for prefetching as a thread,
and then spawn this thread at a certain point in the program execution to a
different context of the processor. The disadvantage of these schemes is that they
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require a multithreaded environment such as simultaneous multithreading 29) or
chip multiprocessors. Even in such an environment, a disadvantage arises in that
the context is consumed; it may be more profitable to allocate other threads to
the context for a better throughput.

The only pre-execution scheme, to our knowledge, that does not need a mul-
tithreaded environment is runahead execution 19). This scheme enters a special
mode called a runahead when an L2 cache miss occurs. In this mode, the archi-
tectural state is checkpointed, and then succeeding instructions after the missed
load are executed until the triggered miss is resolved. If another L2 cache miss
occurs while in the runahead mode, the missed line is prefetched, overlapping
memory requests. The disadvantage of this scheme is the large overhead of mode
switching in both checkpointing and restarting. Therefore, its effectiveness is re-
duced for cache misses with relatively small, yet still important latencies like L1
cache misses. Furthermore, no computation can be overlapped with the triggered
L2 miss, because the computed results during the runahead mode are discarded
on returning to the normal mode.

3.2 Elimination of Address Calculation Dependence
Load address prediction is effective in eliminating the true dependence between

an address calculation and a load. Value predictors 4),16),25) are used as an address
predictor. The effectiveness of this predictive scheme depends on the prediction
accuracy and the efficiency of the recovery from mispredictions. A comprehen-
sive performance evaluation was carried out by Reinman, et al.22). They found
that a simple recovery method using pipeline squashing significantly reduces the
effectiveness, and a more elaborate method where only dependent instructions
are re-executed is necessary for the performance improvement to be sufficient.
However, this complicates the issue logic, thus adversely affecting the clock cycle
time.

3.3 Effectively Enlarging Register File
Several studies, aimed at effectively enlarging register files, have been done in

an attempt to reduce the occupation time of physical registers by a late alloca-
tion 9),17) or an early deallocation 1),18),28) of these registers.

Early deallocation schemes deallocate registers speculatively by predicting a
last consumer, and allocate them at the rename stage. The shortcomings of such

schemes include the large penalty imposed by a mis-speculation recovery, and the
requirement of a large checkpointing register file that includes a shadow storage.

Late allocation schemes do not allocate registers at the rename stage; instead,
they are allocated later in the pipeline. The virtual-physical register scheme 9),17)

allocates registers at the write-back stage. This scheme is similar to our scheme in
that instructions are executed even if physical registers have failed to be allocated,
thus realizing pre-execution. Unfortunately, this scheme has a complication in
avoiding a deadlock due to an out-of-order physical register allocation. A feasible,
yet still complicated implementation imposes a considerable cycle count penalty,
and causes a significant increase in the dynamic instruction counts by an ad hoc
register reallocation and the resulting instruction’s re-execution. We compare
our scheme with the virtual-physical register scheme in Section 5.6.

4. Pre-Execution Microarchitecture

Our scheme assumes a register renaming scheme, where the register file contains
committed values and temporary values for instructions that have been completed
but not yet committed, and a map table translates a logical register number into
a physical one. This type of register renaming is, for example, implemented
in the MIPS R10000 34) and in the Digital Equipment Alpha 21264 14). In this
section, we first propose a two-step physical register deallocation scheme as the
basic scheme, and then extend this scheme to enable pre-execution.

4.1 Basic Scheme
We first describe the first-step deallocation, and then describe the second-step

deallocation.
4.1.1 First-Step Deallocation
The first-step deallocation is performed in the rename stage. Besides the map

table and the free list, we prepare a table called the deallocation table (DAT).
Each entry in the DAT is associated with a physical register, and holds a valid
bit and the number of the reorder buffer (ROB) entry, where the instruction that
finally deallocates the corresponding physical register is placed.

The operations are as follows. First, when an instruction reaches the rename
stage, the physical register that is currently allocated to the same logical des-
tination register of the instruction is temporarily deallocated, and is appended
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to the free list. At the same time, the number of the ROB entry, to which the
instruction has been allocated, is written into the DAT entry associated with the
deallocated physical register, and the entry is validated. In addition, an avail-
able physical register is obtained from the free list, and is newly allocated to
the logical destination register as in the conventional method. At this time, by
looking up the DAT, we obtain the number of the ROB entry (ROBP), where
an instruction that will finally deallocate the physical register has been placed,
if such an instruction is still in the ROB (in this case, the DAT entry found is
valid; otherwise, the entry is invalid, meaning that the instruction has already
been committed and the final deallocation has been performed). The ROBP (if
obtained) is attached to the renaming instruction as a tag to find the timing
of the second-step deallocation later in the instruction window (as described in
Section 4.1.2).

Figure 2 illustrates an example of the operation described above. The table
presents an allocated physical register, a deallocating physical register, and an
allocated ROB entry number, for each instruction in the first column. Figure 2 (a)
illustrates the operations when instructions i0 and i1 have already been renamed,
and i2 is being renamed. First, the physical register 36, currently allocated to
a logical destination register r2, is deallocated, and appended to the free list
(mark (1) in Fig. 2 (a)). At the same time, the allocated ROB entry number 13

is written into the 36th entry of the DAT (mark (2)).
Next, Fig. 2 (b) illustrates the operations when instruction i3 is being renamed.

The physical register 36 that was deallocated by the instruction i2 has been allo-
cated to this instruction. After the deallocation and the allocation of the physical
registers as described, we obtain, by referring to the DAT (mark (3) in Fig. 2 (b)),
the ROB entry number 13, containing the instruction i2 that will finally deallo-
cate the allocated physical register 36 (in the second-step deallocation).

This number is attached to the renaming instruction i3 as an ROBP tag, and
will be written into the instruction window along with the destination register
tag (dtag) and two source register tags (stagl and stagr) (mark (4)). Note that
physical register numbers are not used as operand tags. Instead arbitrary unique
numbers are used to identify the dependences of the instructions in flight, because
physical register numbers cannot differentiate between dependences due to the

(a) At renaming of instruction i2

(b) At renaming of instruction i3

Fig. 2 First-step deallocation.

temporary deallocation at the rename stage.
4.1.2 Second-Step Deallocation
The renamed instruction is stored in the instruction window, and waits for the

second-step deallocation of its destination physical register, that is performed
at the commit stage. The deallocated physical register at this time is one that
was previously allocated to the logical register as is the case in the conventional
scheme. The scheme differs, however, in that it broadcasts the number of the
committed ROB entry, ROBP, to the instruction window. If the broadcasted
ROBP matches the ROBP tag of an instruction waiting in the instruction win-
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Fig. 3 Instruction scheduler in our basic scheme.

dow, the write of the result is granted. Also, the DAT entry associated with the
deallocated physical register is invalidated.

In the example shown in Fig. 2, the second-step deallocation of the physical
register 36 is performed when the instruction i2 is committed. The ROB entry
number 13 is then broadcast to the instruction window. It is matched with the
ROBP tag of the instruction i3, and the result write of this instruction is granted.

The logic circuit of the instruction scheduler in our basic scheme is shown in
Fig. 3. The three tags, ROBP, stagl, and stagr, are held in the wakeup logic for
each instruction. The three flags, W, Rl, and Rr, associated with each tag are
also held. Flags Rl and Rr are the conventional ready flags indicating that the
corresponding source operands are available. Flag W indicates that the result
write of the corresponding instruction has been granted. When an instruction is
issued, its destination tag, also called a result tag, is read from the tag RAM, and
is broadcast to the wakeup logic. The tag match is checked with the comparator,
and the ready flag is set if a match occurred as in the conventional scheme. On
the other hand, the ROB entry number sent from the ROB is compared with
each ROBP tag, and the flag W is set if a match occurs. If flags W, Rl, and Rr

are all set, an issue request is sent to the select logic. If selected, the instruction

is executed and the result is written as in the normal method.
Note that, for instructions that do not obtain a valid ROBP in the rename

stage, flag W is initially set when they are written into the instruction window.
Since their destination physical register has already been finally deallocated, an
issue control by the flag W is not necessary. Also, instructions that do not
have destination registers, such as the address calculation instructions of memory
instructions, are controlled in the same manner, because these instructions do not
require register writes.

4.2 Extension to Instruction Pre-Execution
In the previous section, we mentioned that instructions waiting in the instruc-

tion window are not allowed to be issued until their writes have been granted.
However, it is possible for such instructions to be executed; although the exe-
cution result is not written, it can be passed to dependent instructions via the
bypass logic if the instructions are issued continuously. These instructions form a
pre-execution stream, which proceeds faster than the main execution stream be-
cause it exploits ILP, where no resource constraint concerning physical registers
exists.

Figure 4 shows the logic circuit diagram of the instruction scheduler that im-
plements our pre-execution scheme. The main differences between this extended
scheduler logic and the logic of the basic scheme shown in Fig. 3 are the following:
1) A T-FF is placed in the issue request logic to allow the pre-execution only once
before a write is granted. 2) A flag we call pexec is attached to the result tag of
each pre-executed instruction. This flag is used to reset the ready flag that was
set in the previous cycle.

When an instruction is written into the instruction window, the T-FF in the
corresponding entry is set. When the execution of an instruction finishes, its
result tag is broadcast. The ready flag in the entry matching the tag is set.
When both ready flags, Rl and Rr, are set, the issue request is sent to the select
logic through the issue request logic, even if flag W is 0, because the T-FF is
1. If the request is granted, the selected instruction is issued and pre-executed.
The grant signal toggles the T-FF to 0, and thus an issue request will not be
produced until flag W has been set. Also, pexec flags are generated, and will
reset the ready flags in the next cycle
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Fig. 4 Instruction scheduler for pre-execution.

Note that pre-executed instructions are not removed from the instruction win-
dow. Later, when the flag W is set by an ROBP tag match, and both ready
flags are set again, the instruction is re-executed and writes the result into the
destination physical register, as described in Section 4.1.2.

4.3 Delay Problems
Since the instruction scheduler is one of the critical circuits that determine the

clock cycle time of a processor, we need to check whether or not the circuits
added to the instruction scheduler affect the delay. The critical path of the
original scheduler consists of the grant drive, the tag RAM access, the tag drive,
the tag match, ORing the match results, setting the ready flag, ANDing the ready
flags, and the select. The potential problematic path that is most concerning in
our scheduler is the one related to flag W. This path consists of the drive of ROB
entry numbers, the matching the ROBP (mark (1) in Fig. 4), ORing the match
results, setting flag W, ORing the flag W with the T-FF (mark (2)), ANDing the
ready flags, and the select. Compared with the original critical path, this delay
is shorter with respect to the tag RAM access time, but is longer with respect

to the time for ORing with the T-FF. Apparently, the time for ORing with the
T-FF is much shorter than the tag RAM access time. Therefore, the delay for
the path related to flag W is shorter than that for the original critical path.

4.4 Combining with Automatic Prefetcher
Automatic prefetchers, like stride prefetchers, have a big advantage in that

they can automatically and promptly prefetch enough data in a long stream with
a regular pattern. On the other hand, although our pre-execution scheme can
prefetch data with both regular and irregular patterns, the prefetching rate is
bounded by the fetch rate of load instructions. This restriction is particularly
disadvantageous in a long stream with a regular pattern.

Considering both the strengths and the weaknesses, combining the two
prefetching schemes compensates for the weaknesses in each scheme; the au-
tomatic prefetcher covers the miss stream with a regular pattern, and our pre-
execution prefetching covers the miss stream with an irregular pattern. This
combination also provides additional benefits. First, the automatic prefetcher
helps advance the pre-execution faster, because part of the cache misses during
the pre-execution can be avoided with the automatic prefetcher. This improves
the timeliness of prefetching with an irregular pattern. Second, our pre-execution
triggers the automatic prefetcher earlier, improving the timeliness of prefetching
with a regular pattern.

5. Evaluation

To evaluate our scheme, we built a simulator based on the SimpleScalar Tool
Set version 3.0a 27). The instruction set is SimpleScalar/PISA, which is an ex-
tension of the MIPS R10000 ISA. We use nine memory intensive programs from
SPECfp95 and SPECfp2000. We have chosen the nine programs with the highest
L1 data cache miss rate from the programs in the two suites that we could com-
pile for SimpleScalar. Table 1 lists the benchmark programs and their L1 data
and L2 unified cache miss rates. The programs are compiled using gcc ver.2.7.2.3
with options -O6 -funroll-loops.

The configuration of the baseline processor for our evaluation is summarised in
Table 2. As expected, our scheme achieves a higher performance improvement
over the base with a larger ROB and a smaller register file, because, with such a
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Table 1 Cache miss rate.

miss rate
suite program

L1 data L2
hyrdro2d 8% 31%

SPECfp95 su2cor 7% 0%
wave5 4% 7%
ammp 9% 32%
applu 5% 49%
art 48% 44%

SPECfp2000
equake 5% 41%
mgrid 3% 30%
swim 13% 36%

Table 2 Baseline processor configuration.

Pipeline width 8-instruction wide for each of fetch, decode, issue, and commit
ROB 128 entries
Instruction window 64 entries
LSQ 64 entries
Function unit 8 iALU, 4 iMULT/DIV, 4 Ld/St, 6 fpALU,

4 fpMULT/DIV/SQRT
L1 I-cache 64KB, 2-way, 32B line
L1 D-cache 64KB, 2-way, 32B line, 4 ports, 2-cycle hit latency, non-blocking
L2 cache 2MB, 4-way, 64B line, 12-cycle hit latency
Main memory 300-cycle minimum latency, 8B/cycle bandwidth
Branch prediction 6-bit history gshare, 8K-entry PHT,

10-cycle misprediction penalty
Physical register total 192 (96 for each of integer and floating-point)
Mem. disambiguation perfect

configuration, many instructions stalls due to the shortage of physical registers
in the conventional processor, while such instructions can be pre-executed with
the support of the large ROB in our scheme. For fair evaluation, we conserva-
tively determined the relationship between the ROB and register file sizes, to be
balanced in the conventional microarchitecture. We used the following equation:

Npregs = ROB size + Nlregs (1)
where Npregs and Nlregs are the total number of physical and logical registers,
respectively. The ROB size and the number of physical registers determined by
equation (1) are balanced in that 1) the ROB size gives the number of supported
in-flight instructions, and most in-flight instructions require a physical register,
and 2) each committed logical destination register requires a physical register.

Table 3 Percentage of dynamic instructions categorized by type of destination register.

type of destination register
program

int fp other none
hydro2d 46% 28% 4% 21%
su2cor 51% 32% 0% 16%
wave5 41% 41% 2% 16%
ammp 24% 55% 1% 20%
applu 60% 31% 1% 8%
art 37% 39% 2% 22%

equake 58% 16% 0% 26%
mgrid 43% 55% 1% 2%
swim 48% 48% 0% 4%
AVG 45% 38% 1% 15%

Next, we divided the total number of physical registers equally between inte-
ger and floating-point registers. This is reasonable as the number of dynamic
instructions with destination registers being either integer or floating point is
roughly equal in the benchmark programs we used. Table 3 lists the percentage
of dynamic instructions categorized by the type of the destination register in
the baseline processor. Finally, we determined the instruction window size and
the LSQ size to be half the ROB size. In Sections 5.4 and 5.5, we present the
evaluation results showing the sensitivity of the ROB and the register file sizes
to performance.

Finally, we also assume a perfect memory disambiguation for fair evaluation.
Our pre-calculation of the load address has a positive effect on the memory
disambiguation. For fair evaluation, instead of implementing memory dependence
predictors in our base simulator, we assume a perfect memory disambiguation to
exclude the effects on memory disambiguation.

5.1 Effect of Data Prefetching
We evaluate the average load latency of the following three models. The first is

the stride prefetcher model, which is the baseline processor with a stride prefetcher
using a per-load stride predictor 8). It has a stream buffer 13) between the L1 data
cache and the L2 unified cache to avoid the pollution of the L1 data cache. The
stream buffer is accessed in parallel with the L1 data cache, and the requested
data is assumed to be obtained with a single cycle latency, if it is found. The con-
figuration of the stream buffer is determined based on the hardware prefetching
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Fig. 5 Average load latency.

scheme of an Intel Pentium 4 11). The buffer has eight ways, the capacity of each
being 4 KB each, and the line size 32B. The buffer is allocated on an L1 data
cache miss. To suppress prefetching of useless data, the incremental prefetching
scheme 8) proposed by Farkas et al. is introduced.

The second model is the pre-execution model, which incorporates our pre-
execution scheme into the baseline processor. A stream buffer is not placed.

The third model is a hybrid model that combines the pre-execution and the
stride prefetcher models.

Figure 5 shows the average load latency for each model. As shown in the
figure, the pre-execution model reduces the load latency significantly compared
to the base model for many programs.

Intuitively, the effectiveness of the pre-execution model depends on how well
pre-execution is performed. In other words, the effectiveness correlates to how
well pre-execution is performed. To confirm this, we introduce the following
metric, which we call precedence cycles per load (PCPL):

PCPL =

∑

pre−executed load

precedence cycles

total number of loads
where precedence cycles is defined as how many cycles the pre-execution of a

Fig. 6 Correlation between load latency reduction rate and precedence cycles per load.

load is earlier than the main execution of the load. Note that we focus only on
committed loads in this definition. PCPL becomes larger as more loads are pre-
executed and/or the number of precedence cycles in a pre-executed load grows.

Figure 6 shows the correlation between the load latency reduction rate from
the base and PCPL. As expected, a correlation can be confirmed, although it
is weak. The reason that the correlation is weak is that the contribution to the
load latency reduction depends on whether or not pre-executed loads incur a
cache miss and at which level the miss occurs. This weak correlation indicates
the inefficiency of our data prefetching in terms of power consumption, because
useless pre-execution may be performed. If we can focus on loads that incur a
cache miss and pre-execute only the instructions related to such loads, a more
efficient pre-execution will be achieved. This is our work in progress 10).

Let us return to Fig. 5. Compared with the stride prefetcher model, the pre-
execution model is better in art, and comparable in su2cor and ammp. However,
in other programs, the stride prefetcher model performs better than the pre-
execution model. Figure 7 shows the hit rate of the stream buffer for missed
accesses to the L1 data cache in the stride prefetcher model. The lower and
upper portions of each bar represent full and partial hits, respectively. In many
programs, the stride prefetcher performs well, and thus it is difficult for the pre-
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Fig. 7 Stream buffer hit rate.

execution model to outperform the stride prefetcher model on average. However,
it is also a fact that misses it cannot cover remain in many programs.

The hybrid model covers those remaining misses with our pre-execution, and
thus exhibits the lowest load latency of the four evaluated models for most pro-
grams. In particular, in ammp and art, the hybrid model significantly reduces
the load latency when compared to both the stride prefetcher model and the
pre-execution model.

5.2 Effect of Address Pre-Calculation
Here, we evaluate the effect of address pre-calculation. To exclude the prefetch

effect, we assume that the L1 data cache is perfect in the evaluation in this section.
Figure 8 shows the speedup of the pre-execution model over the baseline model,
with a perfect L1 data cache for both models. As shown in Fig. 8, the speedup is
less than 10% in most programs, but a significant speedup is attained in mgrid
and swim.

5.3 Overall Performance
We now evaluate the overall performance of our scheme. Figure 9 compares

the IPC of the four models. As shown in this figure, our pre-execution model
achieves a speedup of 26% on average over the base model. Note that our scheme
achieves this significant speedup with a modest hardware cost and with little

Fig. 8 Effect of address pre-calculations.

Fig. 9 Overall performance.

adverse impact on the clock cycle time. Although the performance of the pre-
execution alone is 27% worse than that of the stride prefetcher model on average,
the hybrid model exhibits a considerably better performance. The speedup over
the stride prefetcher model is 18%.

5.4 Performance Sensitivity to the Balance between Register File
Size and ROB Size

As stated before, the effectiveness of our scheme is sensitive to the balance
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Fig. 10 Impact of balance between register file size and reorder buffer (total of register file
size is fixed to 192).

between the register file size and the ROB size. This section evaluates the per-
formance sensitivity with respect to this balance by varying the ROB size, while
keeping the register file size constant (our default: a total of 192). The size of the
instruction window and the LSQ is half the ROB size, and the other configuration
parameters are left unchanged.

Figure 10 shows the evaluation results. The horizontal axis represents the
ROB size, while the vertical axis represents the speedup (geometric mean) of the
pre-execution model over the base model. Note that each speedup is calculated
independently for each different size.

As shown in the figure, a small ROB causes the effectiveness of our scheme
to deteriorate significantly (see the case of a 64-entry ROB). Instructions are
stalled by the shortage of the ROB entries before being stalled by the shortage
of physical registers. On the other hand, a large ROB is significantly beneficial
to our scheme by supporting more pre-execution instructions.

5.5 Performance Sensitivity to Size of Critical Resources
This section evaluates how the effectiveness of our scheme varies by enlarging

the critical resources (the register file, the ROB, the instruction window, and the
LSQ) simultaneously while maintaining their balance (refer to the beginning of
Section 5). Other configuration parameters are left unchanged.

We can anticipate that the effectiveness of our scheme diminishes, as the re-

Fig. 11 IPC vs. size of critical resources.

sources is enlarged, for the following two reasons. 1) As described previously,
our scheme exploits the difference between the available amount of ILP with
an unlimited number of physical registers and that with an actual number of
physical registers. Therefore, as the number of physical registers increases, the
effectiveness will decrease. 2) As the size of the critical resources increases, cache
miss latency will be hidden more by the execution of instructions independent
of the miss. This diminishes the impact of prefetching in our scheme on the
performance.

Figure 11 shows the evaluated IPC (geometric mean) of the four models for
the different sizes of the four critical resources. The horizontal axis represents
the total number of physical registers, as a representative of the four resources.
Unexpectedly, the speedup of the pre-execution model over the base increases
with the small size of resources; the speedup increases from 19% to 29% when
the number of physical registers increases from 128 to 256. We believe that this is
because the positive impact caused by more resources available for pre-execution
exceeds the negative impact described previously. As anticipated, however, the
speedup gradually decreases as the size of the resources increases above 256 phys-
ical registers (29% at 256 physical registers to -0.1% at 4,096 physical registers).
A similar observation is found in the speedup of the hybrid model over the stride
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model. Although our scheme becomes ineffective with an impractically large size
of the critical resources, it is sufficiently effective over a wide range of the sizes
of the critical resources.

5.6 Comparison with Virtual-Physical Register Scheme
As described in Section 3.3, the virtual-physical (VP) scheme has the ability

to prefetch data as in our scheme. Here, we compare our scheme with the VP
scheme, which employs DSY (on-demand with steeling from younger)17) to avoid
any deadlock. We introduce two models for the VP scheme with different cycles
consumed for register reallocation in the DSY. One is an ideal DSY model, which
is ideal in that no cycle is consumed for register reallocation. The other is a real
DSY model, which limits the ROB read bandwidth to the commit width (eight
in our assumption) when searching for a victim to reallocate a register and stalls
the execution and commit stages of the pipeline while searching (the memory
subsystem is not stalled).

Figure 12 (a) shows the IPCs. As shown in this figure, the IPC of our scheme
is comparable with the ideal DSY. However, taking into account the register
reallocation cost, the real DSY model significantly degrades the performance. In
addition, the VP scheme considerably increases the dynamic instruction count,
as shown in Fig. 12 (b) (the vertical axis indicates the percent increase of the
dynamic instruction count over the committed instruction count). This increases
power consumption.

6. Conclusions

In this paper, we have proposed a scheme that prefetches data and pre-
calculates the address of loads. Our scheme allows instructions to be pre-executed
in a single context by exploiting the difference between the available amount of
ILP without resource constraints of the physical registers and that of ILP with
these constraints. Execution-based data prefetching enables prefetching of data
with an irregular access pattern. Our scheme is implemented by a simple table
that maintains early register deallocation and a modestly modified instruction
scheduler. Our evaluation results show that our scheme significantly improves
the performance by 26% over a processor without a prefetcher. Considering the
strength of an automatic prefetcher for a regular access pattern, we believe that

(a) IPC

(b) Dynamic instruction count increase

Fig. 12 Comparison with virtual-physical register scheme.

combining it with our scheme offers its best use. The combined scheme improves
the performance by 18% over a processor incorporating only a stride prefetcher.
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