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Two-Step Spectral Clustering

Controlled Islanding Algorithm
Lei Ding, Member, IEEE, Francisco M. Gonzalez-Longatt, Senior Member, IEEE, Peter Wall, and

Vladimir Terzija, Senior Member, IEEE

Abstract—Controlled islanding is an active and effective way of
avoiding catastrophic wide area blackouts. It is usually considered
as a constrained combinatorial optimization problem. However,
the combinatorial explosion of the solution space that occurs for
large power systems increases the complexity of solving it. This
paper proposes a two-step controlled islanding algorithm that
uses spectral clustering to find a suitable islanding solution for
preventing the initiation of wide area blackouts by un-damped
electromechanical oscillations. The objective function used in
this controlled islanding algorithm is the minimal power-flow
disruption. The sole constraint applied to this solution is related
to generator coherency. In the first step of the algorithm, the
generator nodes are grouped using normalized spectral clustering,
based on their dynamic models, to produce groups of coherent
generators. In the second step of the algorithm, the islanding
solution that provides the minimum power-flow disruption while
satisfying the constraint of coherent generator groups is deter-
mined by grouping all nodes using constrained spectral clustering.
Simulation results, obtained using the IEEE 9-, 39-, and 118-bus
test systems, show that the proposed algorithm is computationally
efficient when solving the controlled islanding problem, particu-
larly in the case of a large power system.

Index Terms—Constrained spectral clustering, controlled is-
landing, graph theory, normalized spectral clustering.

I. INTRODUCTION

C ONTROLLED islanding of a power system is an effi-

cient corrective measure for limiting system blackouts

after a large disturbance has occurred. It limits the occurrence

and consequences of blackouts by splitting the power system

into a group of smaller, islanded power systems, or islands. The

essence of an islanding solution is determining a suitable set of

transmission lines that need to be disconnected to create a set of

electrically isolated islands. Controlled islanding can be used to

cope with different power system extremes, such as un-damped
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oscillations, voltage collapse, cascading trips, etc. This paper

proposes an algorithm for determining suitable islanding solu-

tions for the scenario of un-damped electromechanical oscilla-

tions that are not accompanied by voltage instability.

To create stable islands, the islanding solution must satisfy

a large number of constraints, such as load-generation balance,

generator coherency, availability of transmission lines, thermal

limits, voltage stability, transient stability, etc. It would be too

complicated to search for a solution satisfying all of these con-

straints or even confirm if such a solution exists. Considering

only a sub-set of these constraints, such as load-generation bal-

ance and generator coherency, allows a set of feasible candi-

date islanding solutions to be produced. This set of candidates

can be coordinated with other corrective measures to find a final

islanding solution that satisfies all constraints [1]–[6]. This ap-

proximation reduces the complexity of the controlled islanding

problem; this is particularly useful when dealing with large net-

works [1]–[4].

Existing methods in the literature for determining islanding

solutions can be classified according to the objective function

used. The two main types of objective function are minimal

power imbalance and minimal power-flow disruption.

Methodologies for minimal power imbalance minimize

the power imbalance within the islands formed to reduce the

amount of load that must be shed after system splitting [1]–[4],

[7]–[11]. Methodologies for finding islanding solutions with

the minimal power-flow disruption minimize the change of the

power flow pattern within the system following system splitting

[12]–[14].

The difference between power imbalance and power-flow

disruption is that the power imbalance can be expressed by

the algebraic sum of active power (considering the direction

of power flow) on each disconnected transmission line, while

the power-flow disruption can be expressed by the arithmetical

sum of active power on each disconnected transmission line.

In [1], a two-phase Ordered Binary Decision Diagram

(OBDD) method based on a simplified graph is presented to

find islands with low power imbalance that contain coherent

generators. In [2], the Breadth First Search (BFS) and Depth

First Search (DFS) algorithms are used to find the islanding

solution that separates coherent generator groups, with minimal

power imbalance. Other algorithms that can be used to find

islands with the minimal power flow imbalance include Angle

Modulated Particle Swarm Optimization [4], and the Krylov

Subspace method [7].

Finding a solution with minimal power imbalance is an

NP-hard problem and has been shown to be a special case of

0885-8950/$31.00 © 2012 IEEE
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the 0–1 knapsack problem [1]. There is no known algorithm that

can efficiently solve problems of this type within polynomial

time [1], [9].

Most existing algorithms overcome this challenge by using

heuristic search methods, or by only solving the problem for

a simplified network model, or a select subset of the original

power system [1]–[9]. For example, when using an OBDD

based method in online applications, the network model should

be simplified to contain less than approximately 40 nodes [3],

[11].

Simplifying the network model reduces the solution space.

It is possible that some of the solutions that are lost during the

simplification will be better than the final solution found by the

algorithm [11]. Heuristic search methods are usually quite flex-

ible and have satisfactory computational efficiency. However,

the solution quality cannot be guaranteed since these methods

tend to converge to local, rather than global, minima.

Spectral partitioning and multi-level kernel k-meansmethods

are proposed in [12] and [13] to find the islanding solution with

the minimal power-flow disruption. Both methods have excel-

lent computational efficiency, but do not consider generator co-

herency [15]. This neglect of generator behavior means that the

stability of the islands produced cannot be guaranteed. In addi-

tion, direct application of spectral clustering without constraints

often leads to a single node being separated from the rest of the

graph [16]. The flaws in these two solution types are clearly un-

acceptable when attempting the controlled islanding of a power

system.

In this paper, a novel two-step SpectralClusteringControlled

Islanding algorithm (the SCCI algorithm) will be presented. In

the first step of the SCCI algorithm, the generator nodes are

grouped using normalized spectral clustering. The results of this

grouping serve as pair-wise constraints in the next step of the

SCCI algorithm, in which every node is grouped based on con-

strained spectral clustering. This constrained spectral clustering

uses power flow data to producing an islanding solution with

minimal power-flow disruption. Therefore, the two-step SCCI

algorithm proposed here can identify, in real time, an islanding

solution that has minimal power-flow disruption and satisfies

the constraint of generator coherency.

The main body of the paper is organized as follows. Section II

introduces the controlled islanding problem and basic concepts

of spectral clustering. In Section III, the execution of the pro-

posed SCCI algorithm is discussed. In Section IV, the new al-

gorithm is applied to the IEEE 9-bus, 39-bus, and 118-bus test

systems to demonstrate its performance. Section V concludes

the paper.

II. CONTROLLED ISLANDING AND SPECTRAL CLUSTERING

In this section, some basics concepts of graph theory are

introduced. The controlled islanding problem is then defined

as a constrained optimization problem that is converted into a

graph-cut problem. A possible method for solving this type of

problem, spectral clustering, is introduced.

A. Graph Theory Preliminaries

In graph theory, an undirected graph-model

can be used to describe an -gen-

erator and -bus power system. In the above graph-model, the

node set and the edge set , with elements

, denote the buses and transmission lines,

respectively. is a subset of the node set that contains

only those buses with generators directly connected to them.

The matrix is a set of edge weights.

For convenience, only the bisection case is presented in this

paper. Bisection of a graph splits it into two sub-graphs

and by re-

moving the edges connecting these two sub-graphs, with each

sub-graph representing a sub-system of the original power

system. Here, and are disjoint subsets of , i.e.,

and . In the same way, and

are defined as two disjoint subsets of , while they are

also subsets of and , respectively.

The set of edges removed to separate these sub-graphs is

called the cutset. The sum of the weights of the edges within

this cutset is called the cut, which is defined as [17]

(1)

The graph-cut problem is then defined as finding the cutset

that bisects the graph with minimum cut [16]. It is common that

the islanding solution, for a large power system, will require the

system to be split into more than two islands; this is achieved

using recursive bisection [16].

B. Controlled Islanding

The set of sub-graphs formed using the recursive bisection

approach represent the islands that must be created to achieve

controlled islanding. To ensure that stable islands are produced,

the islands formed should have minimal power-flow disruption

and satisfy the constraint of generator coherency, as discussed

below.

1) Generator Coherency: A large disturbance in a power

system can initiate un-damped electromechanical oscillations;

these oscillations can cause generators to lose their coherency.

To create stable islands, the generators within any island formed

must be approximately synchronous.

Based on the classical linearized generator swing equation,

with damping neglected, the linearized second-order dynamic

model of an -generator power system can be expressed in the

following matrix form [18]:

(2)

where and is the generator angle

deviation from a steady state operating point and is the

system state matrix. According to the theory of slow coherency,

separating the generators into two groups is equivalent to an

arbitrary division of matrix into two sub-matrices and

that represent the sub-systems and (see Fig. 1) [19].

The sum of the Frobenius norms of the off-diagonal sub-ma-

trices and can be used to define the dynamic coupling

between subsystems and [19]:

(3)
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Fig. 1. Division of the system matrix into two sub-matrices and .

In this paper, the focus is solely upon the scenario of

un-damped electromechanical oscillations that are not accom-

panied by voltage instability. In this scenario, if it is assumed

that the reactive power balance can be controlled via local

compensation, the effects of the reactive power and bus voltage

magnitude can be neglected as they have a negligible impact

on the dynamic coupling. Therefore, (3) can be rewritten as

follows:

(4)

where are the synchronizing coefficients and is

the inertia constant of the th generator.

When exposed to electromechanical oscillations generators

with strong dynamic coupling will swing together, whereas gen-

erators with weak dynamic coupling will swing against one an-

other [18]. Therefore, the problem of finding coherent generator

groups is equivalent to an optimization problem of finding the

weakest dynamic coupling between different generator groups,

as shown in (5):

(5)

2) Objective Function: Minimal power imbalance and min-

imal power-flow disruption, defined according to (6) and (7), re-

spectively, can both be used as objective functions of controlled

islanding. Each objective will produce a different solution with

different advantages and disadvantages [3], [20]:

(6)

(7)

where denotes the value of the active power on the trans-

mission line between node and .

The use of minimal power imbalance as the objective func-

tion creates islands with a similar level of load and generation,

i.e., a good load-generation balance. This property of the objec-

tive function minimizes the amount of load that must be shed

following system splitting.

The use of minimal power-flow disruption as the objective

function creates islands with the minimum change from the pre-

disturbance power-flow pattern. This property of the objective

function improves the transient stability of the islands, reduces

the possibility of overloading the transmission lines within the

island, and eases the islands eventual reintegration with the rest

of the system [20].

When attempting to ensure stability after system splitting the

transient stability, rather than load-generation balance, should

be the primary concern because an island with a negative sta-

bility margin and good load-generation balance will collapse.

However, an island with a positive stability margin and a poor

load-generation balance can be stabilized through load shed-

ding.

Based on the properties of these objective functions the min-

imal power flow disruption is used in this paper, it also has the

additional benefit of reducing the complexity of the problem

faced, the details of this reduction in complexity are described

in Section IV-B.

Considering the complexity of large interconnected power

systems, it might be that the consideration of active power flows

only would not lead to the optimal splitting solution. The in-

clusion of some heuristic knowledge inherent for every single

system, or additional assessment of reactive power flows and

voltage stability related challenges would probably lead to a

more efficient final splitting solution. However, the complexity

of such an approach might be too high and even not practical

enough. This should be addressed in future research projects.

3) Controlled Islanding Problem: The controlled islanding

problem that is solved in this paper consists of a minimal

power-flow disruption objective function (7) and a generator

coherency constraint (5). In [21] some basic results in solving

such an optimization problem are given.

These two optimization problems are combined to form the

SCCI algorithm (8). This is done by first solving (5), to find a

set of coherent generator groups, and then solving (7) subject to

these generator groups:

(8)

Here, argmin stands for the argument of the minimum, i.e.,

is the node grouping that minimizes the objective

function of (5) [22].

C. Spectral Clustering

Defining the edge weight of the graph using the synchro-

nizing coefficient or the absolute active power on the transmis-

sion line allows the problem of finding the weakest dynamic

coupling and the minimum power flow disruption, respectively,

to be converted into graph-cut problems.

Spectral clustering is the tool used in this paper to solve these

graph-cut problems. In this subsection, two types of spectral

clustering will be introduced, namely un-normalized and nor-

malized spectral clustering.

1) Un-Normalized Spectral Clustering: The theory behind

un-normalized spectral clustering can be briefly described as

follows.
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Un-Normalized Spectral Clustering clusters the nodes into

two subsets based on the Laplacian Matrix , which is defined

for a graph as [16]

(9)

where is a diagonal degree matrix that contains diagonal el-

ements that are equal to the total weight of the edges con-

nected to node . Defined in this way, the edge weight matrix

and the Laplacian Matrix are both symmetric for any undi-

rected graph.

The un-normalized spectral clustering algorithm, for the case

of bisection, can be executed using the following steps [16]:

1) Compute the first two eigenvectors , of the Laplacian

matrix .

2) Let be the matrix containing the vectors ,

as columns. Let be the vector corresponding to

the th row of .

3) Cluster the nodes into clusters , using a

clustering algorithm, e.g., the k-medoids algorithm [23].

Unfortunately, the solution for bisecting the graph using

un-normalized spectral clustering often consists of simply

separating one node from the rest of the graph. This form of

solution is clearly unacceptable for an islanding solution.

2) Normalized Spectral Clustering: Normalized spectral

clustering uses the sum of the node weights within each

sub-graph as a balancing condition, to prevent the application

of spectral clustering from simply separating a single node.

This gives rise to the concept of a normalized cut (Ncut) [17],

which is, defined as

(10)

where and is thus the total sum of the

weights of the nodes in . The is similarly defined

for . The inclusion of the node weights as a balancing con-

dition acts to discourage the creation of a sub-graph with very

low weight. The normalized spectral clustering method can be

used to split the graph with minimum Ncut.

For the case of bisection, this can be achieved using the fol-

lowing steps [16], [17]:

1) Compute the first two eigenvectors , of the general-

ized eigen-problem .

2) Let be the matrix containing the vectors ,

as columns. Let be the vector corresponding to

the th row of .

3) Cluster the nodes into clusters , using a

clustering algorithm, such as the k-medoids algorithm.

III. TWO-STEP SPECTRAL CLUSTERING

CONTROLLED ISLANDING ALGORITHM

In this section, the two-step SCCI algorithm, proposed for

solving the optimization problem expressed in (8), is presented.

Solving this optimization problem is equivalent to determining

a suitable islanding solution.

This solution can be found by constructing two graphs, based

on the objective function and constraint from (8), and applying

theSCCI algorithm to find theminimumcut of these two graphs.

Fig. 2. Flowchart of the SCCI algorithm.

In the first step of the SCCI algorithm, the dynamic graph

is constructed. It only contains the generator nodes and its

edge weights of this graph are the synchronizing coefficients

that describe the dynamic coupling between the

nodes and . To satisfy the generator coherency constraint (5),

the generator nodes are grouped using the normalized spectral

clustering algorithm, introduced in Section II-C2. These groups

of generator nodes then serve as constraints for the second step

of the SCCI algorithm.

In the second step of the algorithm, the static graph is

constructed using power flow data. It contains every node and

the edge weights are defined as the absolute value of the active

power exchange between nodes and , . The nodes are

then grouped using constrained spectral clustering, which will

be described in this section, to solve the optimization problem

described in (8).

In Fig. 2, a flowchart depicting the execution of the SCCI

algorithm is presented. In the text below a detailed description

of both algorithm steps is presented.

A. Step 1: Determining Coherent Generator Groups

The coherent generator groups in the power system being

considered can be found by constructing a graph that represents

the dynamic coupling between the generator nodes, referred to

as a dynamic graph. Normalized spectral clustering is then ap-

plied to this graph to cluster the generator nodes based on their

dynamic coupling.

A dynamic graph can be constructed for

the generator nodes by defining its Laplacian matrix as

[21]

if

if

(11)

where is the imaginary entry of the network admittance ma-

trix, reduced to the internal generator nodes [18]. The dynamic

graph describes the dynamic coupling between generator
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nodes; its edge weights are defined as the synchronizing coeffi-

cient .

Using the Laplacian Matrix , the linearized second-order

dynamic model of the -generator power system can be

rewritten as [18]

(12)

where and is the

inertia matrix.

From (4) and (10), it can be observed that (4) is a kind of

Ncut of the dynamic graph , where the graph is normalized

by node inertia rather than node weight. By applying normal-

ized spectral clustering to the dynamic graph , the minimum

Ncut of , i.e., the solution of the optimization problem (5),

can be found [17].

The first step of the SCCI algorithm can thus be executed as

follows:

1) Construct the dynamic graph using only generator

nodes, and with edge weights equal to .

2) Compute the first two eigenvectors , of the general-

ized eigen-problem .

3) Let be the matrix containing the vectors ,

as columns. Let be the vector corresponding to

the th row of the matrix .

4) The nodes are then clustered into sub-sets

and using the k-medoids algorithm.

5) Select or as the node set of a new dynamic

graph and return to 1) to allow recursive bisection.

The first step of the SCCI algorithm is equivalent to the appli-

cation of methods based on the theory of slow coherency. Slow

coherency based methods group generators using the eigenvec-

torsof thestatematrix . If the inertiamatrix is invertible, then

(2) and (12) are actually identical, assuming that .

The slow coherency method is useful for offline analysis, but

has some drawbacks if implemented in online applications. It is

difficult to determine if the generators will retain coherency, or

which oscillatory mode is excited by the disturbance that has oc-

curred.

However,howtocombineandsatisfy theconstraintsnecessary

to enforce the coherent generator groups during islanding, rather

than how to identify the coherent generators, is the key challenge

addressed in this paper. The drawbacks of slow coherency can

be overcome by using a revised slow coherency algorithm [2] or

online coherency identification algorithms [23], [24].

B. Step 2: Minimizing the Power-Flow Disruption While

Preserving Coherent Generator Groups

The islanding solution that will separate the coherent gen-

erator groups found in Step 1, with the minimum power-flow

disruption, can be found by applying constrained spectral clus-

tering to a static graph of the power system.

This static graph can be constructed for

an -node power system using power flow data to describe the

active power exchange between each of the nodes.

The issue of losses within the system must be accounted for

to produce the symmetric undirected graph necessary for the ap-

plication of spectral clustering. To ensure that the matrix is

symmetric, the elements of is defined as .

The Laplacian Matrix of the static graph can then be

expressed as [21]

if

if

(13)

where is the imaginary entry of the network admittance ma-

trix.

The minimal power-flow disruption of the graph is the

solution of (7). However, to solve (8), the generator coherency

constraint must be included. This is done by including the gen-

erator groups, obtained in the first step, as pair-wise constraints

in the second step of the algorithm [26].

The pair-wise generator coherency constraints consist of 1)

Must-Link constraints and 2) Cannot-Link constraints; these are

defined as follows:

1) Must-Link constraints: all the generator nodes within a

first-step group must be linked at the second step.

2) Cannot-Link constraints: any two generator nodes in dif-

ferent first-step groups cannot be linked at the second step.

Constrained spectral clustering is an efficient method for

solving clustering problems with pair-wise constraints. The

pair-wise constraints can be included by modifying the solution

subspace using a projection matrix (the subspace approach)

[26].

Without loss of generality, it can be assumed that the first

nodes belong to the cluster and the next nodes belong to

the cluster . The projection matrix can then be defined as

follows [26]:

(14)

where is the identity matrix, is the all-ones column vector,

and is the zero matrix or zero column vector.

In this way, the solution subspace is projected from an -di-

mension space to an -dimension space, where

. All nodes of the same cluster in the -dimension

space are represented by one equivalent node in the

-dimension space to satisfy the pair-wise constraints.

With the introduction of the projection matrix , constrained

spectral clustering can be applied to the static graph to find

the cutset with minimal power-flow disruption that satisfies the

generator grouping constraints produced in the first step of the

SCCI algorithm. The second step of the SCCI algorithm can

thus be described as follows:

1) Construct a static graph of all nodes with the edge

weights defined as .

2) Construct the projection matrix based on the generator

grouping results.

3) Compute the first two eigenvectors , of the general-

ized eigen-problem .

4) Let be the matrix containing the vectors ,

as columns. Let be the vector corresponding

to the th row of .

5) Cluster the nodes into the clusters , using

the k-medoids algorithm.
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6) Select or as the node set of a new static graph and

return to 1).

Using the two-step SCCI algorithm, described above, the so-

lution of the optimization problem (8), i.e., the islanding solu-

tion, can be found.

The second step of SCCI algorithm could be used with any

online coherency identification method, provided that coherent

generator groups are available to serve as constraints.

IV. SCCI ALGORITHM TESTING

In this Section, three test systems are used to validate the

proposed SCCI algorithm [27]:

I) IEEE 9-bus test system

II) IEEE 39-bus test system

III) IEEE 118-bus test system [28].

For every test system, the SCCI algorithm has been applied

and an islanding solution found. These solutions are compared

with those obtained using the spectral -way partitioning algo-

rithm (SkP) and anOBDDmethod to evaluate the quality of the

SCCI algorithm solution.

1) Spectral k-Way Partitioning (SkP): The SkP method in-

troduced in [12] does not consider the generator coherency con-

straint; a comparison with this method in Test Case I is used

to demonstrate that the generator coherency constraint is neces-

sary to form stable islands.

SkP is a special case of the un-normalized spectral clustering

algorithm described in Section II-C1. In the third step of the

algorithm, instead of using -medoids, to cluster the nodes

reference nodes are selected and then the remaining nodes are

clustered to these reference nodes according to the distance be-

tween the node and the reference nodes.

2) Ordered Binary Decision Diagram (OBDD): OBDD are

capable of searching the entire searching space and finding all

possible solutions [1]. Therefore, the comparisons with this

method in Test Case II and Test Case III are used to demon-

strate that the SCCI algorithm is capable of finding the optimal

solution of (8). The OBDD method described in [1], [3], and

[11] is revised to find the islanding solution with the minimal

power-flow disruption:

(15)

Fig. 3. Dynamic graph and static graph of the IEEE 9-bus test system (base
power MW). Right: the dotted line is the SCCI solution, while the
dash-dotted line is the SkP solution. (a) Dynamic graph. (b) Static graph.

where is the Boolean function of the OBDD method, and

represent the adjacency matrix and reachability matrix of

graph , respectively, and represents the load node set of

graph [1].

The SSC represents the requirement of generator coherency,

where the first item denotes that the generators of different co-

herent groups cannot be connected, the second item denotes that

the generators in the same coherent group must be connected,

and the third item denotes that every load must be connected to

one and only one coherent generator group [1], [3], [11].

The MCC is used to reduce the number of islanding solutions

by allowing only those edges that help to form islands to be

disconnected [11]. The MPD denotes that the power-flow dis-

ruption cannot exceed the threshold , and it is used to replace

the power balance constraint (PBC) in [3] and [11].

A. Evaluating Solution Quality

1) Test Case I: IEEE 9-Bus Test System: The first step in

applying the SCCI algorithm to the IEEE 9-bus test system

was to construct the dynamic graph using (11), as shown in

Fig. 3(a). The normalized spectral clustering algorithm, de-

scribed in Section III-A, was then applied and two coherent

generator groups and were found.

The second step of the SCCI algorithm required a static graph

to be constructed using (13), as shown in Fig. 3(b). The co-

herent generator groups are then used to construct a projec-

tion matrix (14) that represented the must-link constraint be-

tween generators 2 and 3, and the cannot-link constraint be-

tween generator 1 and generators 2 and 3. This projection matrix

allows the constrained spectral clustering algorithm, described

in Section III-B, to be used to cluster the nodes of the system.

Applying the SCCI algorithm to the IEEE 9-bus test system

resulted in finding a single cutset that created an islanding solu-

tion that consisted of two islands and .

This cutset is marked in Fig. 3(b) by a dotted line, the cut of

which is 0.65 p.u.

Application of the SkPmethod to the IEEE 9-bus test system

resulted in an islanding solution that consisted of two different

islands and . This cutset is marked in

Fig. 3(b) by a dash-dotted line, the cut of which is 0.50 p.u.

It is clear that the island is not stable because

it contains the unsynchronized generators 1 and 2. The solution

of the SCCI algorithm has a higher cut; this difference from the

solution of the SkP method represents the cost of satisfying the

generator coherency constraint.
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TABLE I
GENERATOR GROUPS IN THE FIRST STEP OF 39-BUS TEST SYSTEM

Fig. 4. Single-line diagram of the IEEE 39-bus test system. The dotted lines
represent the two cutsets necessary to produce the final islanding solution.

TABLE II
THE 39-BUS TEST SYSTEM RESULTS COMPARISONWITH OBDD

2) Test Case II: IEEE 39-Bus Test System: As in Test Case

I, the first step of the SCCI algorithm was applied to find the

dynamic graph of the IEEE 39-bus test system. The application

of normalized spectral clustering identified the set of generator

groups shown in Table I. From these groups, a set of pair-wise

generator constraints can be determined to form the projection

matrix.

The execution of the second step of the SCCI algorithm is

effected by there being three generator groups. This effect is

that the second step of the algorithm now requires the use of

recursive bisection to determine two cutsets and create three

islands.

The first cutset to be found, Cutset 1, separated Group 1 from

Group 2 and Group 3. The second cutset to be found, Cutset 2,

separated Group 3 from Group 2. Combined, these two cutsets

form the final islanding solution marked in Fig. 4.

The OBDD method was executed with a value of 335 MW

and the five solutions for Cutset 1 that had the smallest cuts

are shown in Table II, alongside the SCCI algorithm solution

for Cutset 1. It is obvious that the SCCI algorithm found the

minimum cut for separating Group 1 from Group 2 and Group

3. A comparison of Cutset 2 is not included because it would be

quite trivial for separating only one generator.

TABLE III
GENERATOR GROUPS OF 118-BUS TEST SYSTEM

Fig. 5. Single-line diagram of the IEEE 118-bus power network. The two
dotted lines represent the cutsets necessary to produce the final islanding
solution.

3) Test Case III: IEEE 118-Bus Power System: The first step

of the SCCI algorithm returned the three coherent generator

groups given in Table III.

The two cutsets produced in the second step of the SCCI al-

gorithm, Cutset 1 and Cutset 2, separated Group 1 from Groups

2 and 3, and then separated Group 2 from Group 3, respectively.

Combined, these two cutsets form the final islanding solution

marked in Fig. 5.

As in Test Case II, the results returned by theOBDD method

will be used to validate the SCCI solution. Unfortunately, it is

not practical to apply the OBDD method directly to the 118-

node network. The original network is simplified to a 34-node

and 43-edge graphwhen searching for Cutset 1, and is simplified

to a 24-node and 38-edge graph when searching for Cutset 2.

The cutset solutions found for these simplified graphs were then

mapped onto the original graphs so that all possible solutions

in the original graphs are still found. The precise nature of the

simplified graphs and the mapping relationships are given in the

Appendix.

For both Cutset 1 and Cutset 2 the five cutsets with the

smallest cut that were found by the OBBD method are pre-

sented in Table IV, alongside which are the results returned by

the SCCI algorithm.

The comparison in Table IV shows that, as in Test Case II, the

SCCI algorithm returned the cutset that separated the coherent

generator groups with minimum cut.

B. Computational Efficiency

The accuracy of the islanding solution produced is not the

sole measure of a controlled islanding algorithm performance.

The computational efficiency of the algorithm is also a key
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TABLE IV
THE 118-BUS SYSTEM RESULTS COMPARISONWITH OBDD

TABLE V
COMPUTATION TIME OF TEST CASES

index when evaluating the performance of a controlled is-

landing algorithm.

Using the minimal power-flow disruption as the objective

function means that the problem the SCCI algorithm solves is a

P-problem because it can be converted into a max-flow/min-cut

problem and solved efficiently [9], [16].

However, the introduction of the pair-wise constraints,

especially Cannot-Link constraints, necessary to include the

generator coherency constraint into the problem increases its

complexity. This increase in complexity makes the feasibility

problem of constrained spectral clustering NP-complete in sev-

eral situations, this means in polynomial time it is not possible

to identify if a solution that satisfies all constraints even exists

[29].

This increase in complexity can be overcome by using recur-

sive bisection to identify the islands. This is because this type

of problem can always be solved efficiently when the number

of clusters is two [29].

The search space for the controlled islanding problem solved

by the SCCI algorithm will be for a graph with gener-

ators, nodes, and edges. The major computational task in

spectral clustering is computing the eigenvectors of the Lapla-

cian matrix. So, the time complexity of the first step of the SCCI

algorithm is just , and the time complexity of the second

step of the SCCI algorithm is . If deemed nec-

essary, this could be reduced to as the

matrix is a sparse matrix [15].

This degree of time complexity means that the SCCI algo-

rithm is computationally efficient. The computational times for

Test Case II and III are shown in Table V.

As mentioned in Section I, solving the problem of controlled

islanding for a minimal power imbalance objective function is

an NP-hard problem, a type of problem that cannot be solved in

Fig. 6. Simplified graphs of 118-bus system for OBDD. (a) Simplified 34-node,
43-edge graph for Cutset 1. (b) Simplified 24-node, 38-edge graph for Cutset 2.

polynomial time, with existing algorithms, as the computational

time is exponential in order [9], [11]. Thus, using the minimal

power-flow disruption has the benefit of reducing the time com-

plexity of the problem from NP-hard to P, and making the pro-

posed SCCI algorithm computationally efficient.

V. CONCLUSION

This paper proposes a novel two-step SCCI algorithm for de-

termining islanding solutions for power systems. At the core

of this algorithm is a single optimization problem that uses the

minimal power-flow disruption as objective function and con-

siders ensuring generator coherency as a constraint.

Using the minimal power-flow disruption as the objective

function, instead of the minimal power imbalance, improves

the transient stability of the islands produced, reduces the time

complexity of the problem and allows a computationally effi-

cient algorithm to be developed. The inclusion of the generator

coherency constraints prevents islands from being formed that

contain non-coherent generators or isolated loads. Three test

cases have been considered to evaluate the algorithm. The re-

sults show that the novel SCCI algorithm is computationally

efficient and is suitable for use as a real time application, partic-

ularly in large power systems.

APPENDIX

This appendix contains the simplified graphs, Fig. 6, used in

Test Case III (Section IV-A3) and the mapping relationship be-

tween these simplified graphs and the original graph, Tables VI

and VII.

The simplified graphs were created with the intent of pre-

serving the network structure between the two coherent gener-

ator groups as much as possible, while reducing the remaining

network as much as possible.

If a new edge in Tables VI and VII has several mapping cut-

sets in the original graph, only the one with minimum weight

is selected as the new edge, the others will be considered when

mapping the solution found back onto the original graph so that

all of the possible solutions will still be found.

For example, the new edge 12–17 in Table VI has two

mapping cutsets (15–17,12–16) and (15–17,16–17) with the

weight 94.8 and 105.0, respectively. The weight of the new

edge 12–17 will be designated as 94.8. If the new edge 12–17
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TABLE VI
MAPPING NODES AND EDGES OF SIMPLIFIED GRAPH 1

TABLE VII
MAPPING NODES AND EDGES OF SIMPLIFIED GRAPH 2

is in the solution produced, the mapping cutsets (15–17,12–16)

or (15–17,16–17) are possible elements of the final solution for

the original graph.
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