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Abstract  37 

We report the implementation of a two-step strategy for the identification of SARS-CoV-2 38 

variants carrying the spike deletion H69-V70 (ΔH69/ΔV70). This spike deletion resulted in a 39 

S-gene target failure (SGTF) of a three-target RT-PCR assay (TaqPath kit). Whole genome 40 

sequencing performed on 37 samples with SGTF revealed several receptor-binding domain 41 

mutations co-occurring with ΔH69/ΔV70. More importantly, this strategy enabled the first 42 

detection of the variant of concern 202012/01 in France on December 21th 2020.  43 
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Since September a SARS-CoV-2 spike (S) deletion H69-V70 (ΔH69/ΔV70) has attracted 44 

increasing attention. This deletion was detected in the cluster-5 variant identified both in 45 

minks and humans in Denmark. This cluster-5 variant carries a receptor binding domain 46 

(RBD) mutation Y453F and was associated with reduced susceptibility to neutralizing 47 

antibodies to sera from recovered COVID-19 patients [1–3]. The ΔH69/ΔV70 has also co-48 

occurred with two other RBD mutations of increasing interest [4]: N439K that is currently 49 

spreading in Europe and might also have reduced susceptibility to SARS-CoV-2 antibodies 50 

[5]; and N501Y that is part of the SARS-CoV-2 variant of concern (VOC) 202012/01 recently 51 

detected in England [6]. Although the impact of ΔH69/ΔV70 on SARS-CoV-2 pathogenesis 52 

is not clear, enhanced surveillance is urgently needed. Herein we report the implementation of 53 

a two-step strategy enabling a rapid detection of VOC 202012/01 or other variants carrying 54 

ΔH69/ΔV70. 55 

ΔH69/ΔV70 associated with S-gene target failure of a three-target RT-PCR assay  56 

As part of routine SARS-CoV-2 genomic surveillance performed at national reference centre 57 

(NRC) for respiratory viruses (Lyon, France) [7], a 6-nucleotide deletion (21765-21770) 58 

within the S gene was identified in two nasopharyngeal samples collected on September 1st 59 

and 7th , respectively. The SARS-CoV-2 infection diagnosis had been performed with the 60 

Applied Biosystems TaqPath RT-PCR COVID-19 kit (Thermo Fisher Scientific, Waltham, 61 

USA) that includes the ORF1ab, S, and N gene targets. For these two samples, a S-gene target 62 

failure (SGTF) was reported while ORF1ab and N targets were positive with Ct values < 25 63 

(Figure 1A).  64 

The mean coverage for the whole genome sequences generated was 6903x and 6898x, 65 

respectively and the S deletion 21765-21770 was present in 100% of the reads. Using CoV-66 

GLUE online resource [8], we found that the S deletion 21765-21770 led to the removal of 2 67 

amino acids (ΔH69/ΔV70) in the N-terminal domain of the S1 subunit of  the S protein 68 
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(Figure 1B). The whole genome sequencing (WGS) method used was the amplicon-based 69 

ARTIC v3 protocol (https://artic.network/ncov-2019) combined with Nextera DNA Flex 70 

library and sequencing on NextSeq 500 platform (Illumina, San Diego, USA). To confirm the 71 

presence of the deletion, one sample was also sequenced with an untargeted metagenomic 72 

protocol that yielded the same sequence. Of note, this metagenomic approach could not be 73 

applied for the second sample due to low viral load [9].  74 

Although the coordinates of the primer/probe binding regions were not available for the 75 

TaqPath kit, the manufacturer confirmed that the S deletion H69-V70 was in the area targeted 76 

by the test. 77 

ΔH69/ΔV70 screening with RT-PCR followed by WGS 78 

We then performed a retrospective analysis of RT-PCR results obtained using the TaqPath kit 79 

from August 3rd to December 20th. We selected only positive samples with a Ct value < 25 for 80 

the N target, the most sensitive target of the test. By doing so, we found that 59/9,266 (0.6%) 81 

of positive tests had no amplification of the S gene. No significant increase of the SGTF was 82 

noticed over time; the proportion ranging from 0% (week # 32, 33, 34, 42, 48-51) to 2.91% 83 

(week # 35; Figure 2). Among the 59 samples with SGTF, 36 were available for WGS. These 84 

36 samples were collected from August 5th to November 11th (18/36 were collected after 85 

October 9th).  A total of 11 samples that presented an amplification of the S target were also 86 

sequenced. The sequencing results were fully concordant with the RT-PCR profiles (100% of 87 

the samples with SGTF had the S deletion ΔH69/ΔV70, while 100% of the S-gene positive 88 

samples did not contain ΔH69/ΔV70). For samples with SGTF, other S mutations were 89 

detected and are summarized in Table 1. The most frequent S mutations co-occurring with 90 

ΔH69/ΔV70 deletion were S477N and D614G that were found in 21/36 samples (58.3%). The 91 

co-occurrence of N439K and D614G mutations was found in 10/36 samples; the first sample 92 
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containing this combination of mutation was collected on August 5th. Of note the complete 93 

combination of S mutations detected in cluster-5 variant was not found. 94 

The 2-step strategy presented herein and based on a screening with TaqPath Kit followed by 95 

WGS for samples with SGTF has been implemented in France since December 20th. On 96 

December 21th, the virology laboratory of university hospital of Tours reported a SGTF on a 97 

nasopharyngeal sample from a patient with a recent travel history from England (London). 98 

The sample was addressed to NRC for WGS and the detection of VOC 202012/01 (lineage 99 

B.1.1.7) was confirmed on December 25th that corresponded to the first detection of this 100 

variant in France (GISAID accession number EPI_ISL_735391). 101 

Discussion and conclusion  102 

According to CoV-GLUE resource [8] (last update from GISAID: December 14th), the S 103 

deletion 21765-21770 has been identified in 4,632 sequences worldwide (>99% in Europe) 104 

Interestingly, only 16 sequences containing this deletion were sampled between March 15th 105 

and July 23th corresponding to the first wave of COVID-19 pandemic in Europe. Herein, 106 

using data obtained with TaqPath RT-PCR kit, we found an overall prevalence of 0.6%, 107 

suggesting a limited circulation of variants presenting the ΔH69/ΔV70 deletion during the 108 

second wave of the pandemic in Lyon, France. 109 

It should be underlined that N439K, Y453F, or N501Y RBD mutations that can co-occurred 110 

with ΔH69/ΔV70 deletion might be associated with an increased affinity to ACE2 or reduced 111 

sensitivity to SARS-CoV-2 antibodies [3, 5, 10–12]. It has been hypothesized that the 112 

ΔH69/ΔV70 deletion might compensate some RBD mutations and might be involved in the 113 

transmissibility of variant containing these mutations [4, 6]. In addition, it has been recently 114 

shown that the combined ΔH69/V70 and D796H mutant was less sensitive to neutralizing 115 

antibodies [13]. As the N-terminal domain may interact with lung receptors [14] and might be 116 
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a target of neutralizing antibodies [15, 16], further studies are needed to understand the 117 

consequences of ΔH69/ΔV70 deletion on SARS-CoV-2 transmissibility and host-immune 118 

response. 119 

Importantly, the TaqPath kit used for this study did not lead to a false negative conclusion as 120 

the two other targets remain positive. The data presented herein emphasize that the TaqPath 121 

RT-PCR assay is a useful and cost-effective tool enabling a rapid, large-scale screening of 122 

SARS-CoV-2 variants with ΔH69/ΔV70. Samples with  SGTF should be further addressed to 123 

national referral laboratories for SARS-CoV-2 WGS. This 2-step strategy can contribute to 124 

the early detection of SARS-CoV-2 VOC 202012/01 which has been found to be more 125 

transmissible than non-VOC lineage [17]. This strategy is currently being reinforced in France 126 

as national diagnostic platforms have mainly implemented the TaqPath RT-PCR kit. 127 
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Spike mutation co-occurring with ΔH69/ΔV70 spike deletion  n (%) 

 

S477N + D614G 21 (58.3%) 

N439K  + D614G 10 (27.8%) 

H146Y + D614G 1 (2.78%) 

D80Y + N439K + D614G 1 (2.78%) 

ΔI670/Δ671/Δ672/Δ673 deletion + S477N + D614G 1 (2.78%) 

D614G 1 (2.78%) 

V401L + S477N + D614G 1 (2.78%) 

Table 1. Spike mutations co-occurring with ΔH69/ΔV70 deletion in 36 samples with S 128 

negative profiles (negative for S target and positive for N & ORF1ab targets) obtained with 129 

the RT-PCR TaqPath kit.  130 
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Figure caption 131 

Figure 1A. Amplification curves obtained with TaqPath COVID-19 RT-PCR kit for samples 132 

with the S deletion 21765-21770. The three targets included in the RT-PCR kit are 133 

represented by a different color. The amplification curve of the internal control is also 134 

represented (MS2, red curve). 1B. Pairwise sequence alignment from nucleotide position 135 

21758 to 21775 of the spike gene using CoV-GLUE resource. Sequence with the deletion 136 

21765-21770 is represented in green and the reference sequence in blue (Wuhan-Hu-1). The 137 

21765-21770 deletion results in deletion of amino acid residues 69 and 70; ATC (21764-138 

21771-21772) encoding for an isoleucine amino acid (I).  139 

Figure 2. Prevalence of the S negative profile (negative for S target and positive for N & 140 

ORF1ab targets) with TaqPath COVID-19 RT-PCR kit from August 3rd (week 32) to 141 

December 20th (week 51). 142 

143 
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