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Abstract

This paper proposes a two-stream flow-guided convolu-

tional attention networks for action recognition in videos.

The central idea is that optical flows, when properly com-

pensated for the camera motion, can be used to guide at-

tention to the human foreground. We thus develop cross-

link layers from the temporal network (trained on flows) to

the spatial network (trained on RGB frames). These cross-

link layers guide the spatial-stream to pay more attention to

the human foreground areas and be less affected by back-

ground clutter. We obtain promising performances with

our approach on the UCF101, HMDB51 and Hollywood2

datasets.

1. Introduction

Human action recognition in video is an important and

challenging problem in computer vision. Like many other

computer vision problems, an effective visual representa-

tion of actions in video data is vital to deal with these prob-

lems.

Over the last decade, there is a great evolution of fea-

tures for action recognition from short video clips [29,

10, 22, 26]. The research works can be roughly divided

into two mainstreams. The first type of representation is

hand-crafted local features in combination with the Bag-of-

Features (BoFs) paradigm [14, 11, 29]. Probably the most

successful approach of local features representation is to

extract improved dense trajectory features [29] and deploy

Fisher vector representation [20]. The second approach is

to utilize deep learning algorithms to learn features auto-

matically from data (e.g., RGB frames or optical flows)

[22, 10, 26, 28, 30]. Probably the most successful approach

of local features representation is to extract improved dense

trajectory features [29] and deploy Fisher vector represen-

tation [20]. High performances of neural network architec-

tures have been recently reported on video action recogni-

tion, specially those of two-stream convolutional networks
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Figure 1: Our proposed Two-stream Flow-guided Convolu-

tional Attention Networks (Two-stream FCANs) for action

recognition. A video clip is represented by RGB frames

and optical flows. Two streams of data are fed into two

separate CNNs: spatial stream that models scene and ob-

ject contexts (blue), while (compensated) temporal-stream

likely provides some motion-based attentions on foreground

actions (orange). We leverage attentions provided from

temporal-stream to assist recognition processes in spatial-

stream by cross-link layers (pink). The attention weighted

feature maps are fused by element-wise multiplication to

preserve spatial-temporal structure in videos. The Two-

stream FCAN refers to the entire architecture of two streams

with the late fusion stage, whereas we call the area inside

dashed lines the FCAN model. Best viewed in color.

[22, 30].

Due to different network architectures and types of data

in these two-stream networks, the learned features should

have characteristics that help to deal with the different types

of nuances in these specific data streams. RGB frames in

video usually provide scene and object contexts in the back-

ground together with the human forms in the foreground.

However, the spatial area occupied by the human fore-

ground is usually much smaller than the area of the back-

ground such that it might not be effectively represented. On

the contrary, optical flows in videos, when properly com-

pensated for camera motion, immediately isolate the mov-

ing human silhouettes (see Figure 2), and provide motion
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cues. In view of the preceding discussion, feature responses

of a CNN model (i.e., called spatial-CNN) on RGB data

are likely to be activations more on background contexts

rather than on human foreground actions. In contrast, a

CNN model (i.e., called temporal-CNN) trained on flow

data would often fire more on the human forms and move-

ments.

In this paper, we propose a novel flow-guided convolu-

tional attention networks (FCANs) for action recognition

based on the aforementioned two-stream network architec-

ture (see Figure 1). This attention guiding is partly moti-

vated by the primate visual system, whereby it is known

that there is connectivity between the motion pathway and

the form pathway [27]. To model the attention guidance, we

propose cross-link layers from the temporal stream to the

spatial stream. There can be multiple such cross-link lay-

ers, but as we shall show later, the optimal number is in the

range of one to two layers. Each cross-link layer has three

components: (1) a convolution layer to reduce the dimen-

sion of the flow feature tensor; (2) a mean-variance normal-

ization layer; (3) a sigmoid function. The final cross-link

output is an attention map, which is used to control the level

of activation in the corresponding layer in the spatial-stream

via an element-wise multiplication.

Our contributions are two-fold. First, we propose a flow-

guided convolution based attention mechanism for action

recognition task. Second, we perform comprehensive eval-

uations two-stream FCANs based on 3d-convolution op-

erations; we also explore the effects of different number

of cross-link layers to understand where they are most ef-

fective. We visualize attentions provided by cross-link

layers in our FCAN model (3D version) to show the at-

tentive capacity of the (compensated) flows. Lastly, we

achieve promising results on the HMDB51 and the UCF101

datasets. All codes and models 1 are implemented in Caffe

framework [9].

2. Related Work

Visual features. Many hand-crafted features have been

proposed in the history of action recognition community,

such as HOG/HOF [14], HOG3D [11], MBH [29], etc.

Inspired by recent successes in image classification [12],

there have been extensions of the neural networks to the

video action recognition problem [22, 10, 26]. CNN ar-

chitectures play significant roles in these works, either as

an individual module or as an encoder module for a type

of recurrent neural networks (RNNs). Karpathy et al.

[10] propose a large-scale video dataset, namely Sport1M,

and investigate different ways to embed temporal infor-

mation into the current CNN architecture. Two-stream

CNN model [22] has demonstrated good performance on

1https://github.com/antran89/two-stream-fcan

Figure 2: Columns represent examples of three modali-

ties of inputs: RGB frames, optical flows (x,y-directions),

and compensated optical flows. First two rows consist of

two frames of a cartwheel video in HMDB51 dataset, and

last two ones consist of two frames of a handstand walking

video in UCF101 dataset.

the UCF101 dataset [24] by combining predictions from

two CNNs: spatial-CNNs trained from RGB frames and

temporal-CNNs trained from optical flows. Recently, Tran

et al. [26] extend 2D CNNs to 3D CNNs by developing

3d-convolution and 3d-pooling layers. In [31, 4], the out-

put of a CNN’s last layer is fed into a recurrent sequence

model usually formed by LSTM cells. Interesting works

[28, 30] have attempted to model longer temporal informa-

tion of videos.

Attention for action recognition. Attention is a mech-

anism used to confer more weights on a subset of fea-

tures. The attention mechanism has also been applied to

action recognition [16, 21, 1, 2]. Bazzani et al. use addi-

tional human fixation data to train mixture density network

for saliency prediction and apply it to action recognition

with the so called C3D [26] features obtained from the 3D

CNNs. On the contrary, our approach does not use any addi-

tional data except flows to predict attentions. Furthermore,

Sharma et al. [21] extract image features in each frame with

the VGG16 CNN model [23] and predict visual attention in

each frame using a recurrent model with LSTM cell. The

work most similar to ours is VideoLSTM [16]. VideoL-

STM [16] uses convolutional LSTM trained on optical flow

to predict attention for a second convolutional LSTM layer.

Our FCAN is a convolution-based network that embeds at-

tention in the process of action classification.

Before the deep learning era, there have been works in-

corporating saliency into action recognition from videos.

Several saliency measures have been proposed for actions

in [25, 17] and they show improvements in the recognition

accuracy when focusing attention on the foreground.
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3. Flow-guided Convolutional Attention Net-

works (FCANs)

We propose the cross-link layers to model the interac-

tions of the two networks in the two-stream convolutional

network [22]. The whole network is differential, so it can

be trained end-to-end with the stochastic gradient descent

(SGD) and back-propagation algorithm [15]. The overall

architecture of the FCAN is shown in Figure 1. In the en-

suing discussion, we describe the 3D-FCAN model, which

is the 3D version based on 3D convolution (e.g., C3D [26])

building blocks (please refer to the Supplementary Materi-

als for the 2D-FCAN model based on 2D convolution (e.g.,

Alexnet [12])).

3.1. 3D version of flowguided convolutional atten
tion networks

With the assumption that the magnitudes of optical

flows, when appropriately compensated for camera mo-

tions, usually correlate with the foreground regions, we de-

velop the framework of flow-guided convolutional attention

networks (FCANs) as shown in Figure 1. The C3D net-

work [26] provides explicit representation of the time di-

mension in the architecture. Both the 3D-FCAN and 2D-

FCAN have similar structures, except for the operations in

the convolution and mean-variance normalization layer. Let

x rgbl ∈ R
Cl×Tl×Hl×Wl , x flowl ∈ R

Cl×Tl×Hl×Wl be

the feature map of layer l ∈ {0, 1, ..., L} in the spatial-

and temporal-C3D respectively, with Cl, Tl, Hl, Wl being

the number of channels, temporal length, height and width

of the feature map. Specifically, in the proposed FCANs,

x rgb and x flow are the feature maps from a pooling layer

in the C3D network. We develop attentive cross-link layers

between the early pooling layers from the temporal-C3D to

the spatial-C3D. As we shall show later, the optimal num-

ber of cross-link layers is between one and two, because

the activations from the temporal-C3D at these early stages

are still largely retinotopic. They directly point to the fore-

ground regions and help the spatial-C3D learn distributed

feature representation focused around these regions for the

label prediction task. In the following, we report results

for the case of only one attentive cross-link layer. Such

cross-link layer includes the following three steps: reduc-

ing dimensions of a flow feature tensor x flowl (Equ. 1),

mean-variance normalization (Equ. 2), and attention pre-

diction (Equ. 3). We use a 3d-convolutional layer to re-

duce a flow feature tensor x flowl ∈ R
Cl×Tl×Hl×Wl to

x linkl ∈ R
1×Tl×Hl×Wl :

x linkl = W3D link ⊛ x flowl. (1)

where ⊛ is a 3d-convolution operation along the channel di-

mension Cl. We initialize the filter weights W3D link to
1

Cl

in the training phase. Then, we normalize the feature tensor

x linkl by the mean µ and variance σ of all the spatial-

temporal feature activations in x linkl:

x̂l
t,h,w =

x linklt,h,w − µ

σ
. (2)

The mean-variance normalization layer transforms the

raw attention scores x linkl into a normalized range x̂l ∈
[−1, 1]. Finally, the normalized attention score x̂l is con-

verted to an attention probability score al ∈ [0, 1] by a sig-

moid function:

alt,h,w = sigmoid(x̂l
t,h,w). (3)

where alh,w ∈ R
1×Tl×Hl×Wl .

We apply the flow-guided attention map on the feature

map x rgbl of the spatial-C3D by multiplicative interac-

tion:

x rgblatt = r(al, Cl)⊙ x rgbl. (4)

where r(al, Cl) is the Cl-times replication of the predictive

attention map al along the channel dimension, and ⊙ de-

notes element-wise multiplication operation.

The attended feature map x rgblatt is forwarded into the

next layer l + 1 to learn more abstract attended features:

x rgbl+1 = f l+1

spatial C3D(x rgblatt). (5)

where f l+1

spatial C3D is the operation in the next layer (e.g.,

convolution layer). Recall that we choose to have only

one attentive cross-link layers because the activations in the

higher layers of the temporal-C3D would be more abstract

and not necessarily correspond to the notions of foreground

objects.

4. Experiments

4.1. Data sets

We evaluate the two-stream FCANs on three datasets for

action recognition.

UCF101 [24]. This dataset is among the largest avail-

able action recognition benchmarks. UCF101 has 101 ac-

tion classes and about 13320 videos (180 frames/video on

average). There are three splits of training/testing data, and

the performance is measured by mean classification accu-

racy across the splits.

HMDB51 [13]. HMDB51 has 51 action categories and

6,766 videos. The dataset has two versions (original and

motion-stabilized), and we use the original version which is

more challenging for action recognition. The dataset has di-

verse background contexts and variations in motion pattern.

It has three train/test splits with 3,570 training and 1,530

test videos.
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Hollwood2 [18]. The Hollywood2 [18] dataset has 12

categories with 1,707 videos, which consist of 823 training

and 884 test videos. The performance is measured by mean

average precision (mAP) over all classes.

4.2. Implementation details

Video preprocessing. For direct comparison with the

two-stream CNNs work [22], we sample a fixed number of

frames (i.e., 25) per video with equal temporal spacing in

both training and testing. Optical flows are computed with

TV-L1 [32]. We choose an OpenCV implementation of TV-

L1 because it has a good balance of efficiency and accuracy.

Compensated flows. Similar to the Improved Dense

Trajectories work [29], we deploy a global motion estima-

tion method based on the assumption that two consecutive

frames are related by a homography. Removal of this back-

ground motion (induced by the camera motion) renders the

optical flow magnitudes more indicative of the locations of

the human silhouettes (e.g., Figure 2). After compensation,

we extract the x−, y− optical flows and convert them into

gray-scale images [0, 255] by a linear rescaling. This rescal-

ing has two-fold benefits. First, it will reduce the size of the

flow datasets dramatically, as we now save the flow fields

as images rather than as floating point numbers (e.g., from

few TBs to dozen of GBs in UCF101). Second, by saving

the flow fields as images, we are able to fine-tune our CNNs

from models pre-trained with large-scale image dataset (i.e.,

ImageNet).

ConvNet architectures. We utilize the C3D [26] as the

main component for our two-stream FCAN network. Dur-

ing our experiments, in the C3D network, we achieve higher

performance by setting a high dropout ratio of 0.9 and 0.8

for fully connected layers fc6, fc8 respectively. We need to

have more regularization (i.e., higher dropout) in the C3D

network due to the higher risk of over-fitting for the high ca-

pacity C3D models when dealing with small datasets (e.g.,

UCF101, HMDB51). We also experiment with 2D-CNN

architecture (e.g., AlexNet), but flow-guided attentions does

not provide benefits to frame-based representations.

Data augmentation. At training time, we sample 25

(overlapping) clips per videos with a temporal length of 1

frame for the 2D-CNN and 16 frames for the C3D network.

We also adopt the corner and multi-scale cropping strategy

for training the baseline models [30]. However, for training

the FCAN models, we do not use multi-scale cropping be-

cause the attention maps already delineate which regions re-

quire more resolution and which require more of an overall

gist for background context. Note that in our case, each ran-

dom crop sample should apply to the same location of both

the RGB and flow images; without this correspondence, the

cross-link layers would be meaningless.

Pre-trained weights. In order not to overfit the CNN

models in our experiments, we follow the initialization

Figure 3: Visualizations of flow-guided attention provided

by a temporal-C3D network. The top half shows a hand-

stand walking video in UCF101, while the bottom one

shows a cartwheel video in HMDB51 dataset. From top

to bottom in each half: 16 RGB frames, flow-x, flow-y,

attentions at layers pool1, pool2, pool3, pool4 and pool5.

The spatial-temporal resolution of feature maps sequen-

tially decreases with pooling layers, but we upsample the

feature maps to have same sizes. Warm color indicates high

saliency value. Best viewed in color.

strategies in [30]. For the spatial-CNN and spatial-C3D

networks, we initialize them with the pre-trained weights

obtained from large-scale datasets (i.e., ImageNet [9] and

Sports1M [26] respectively).

Training. Our attention network is trained end-to-end

with the standard back-propagation algorithms. We use the

mini-batch stochastic gradient descent (SGD) algorithm to

optimize the cross-entropy error function. The initial learn-

ing rate is 0.0001. We use mini-batches of 256 samples for

the 2D-CNN networks, and 128 samples for the C3D archi-

tectures. For UCF101, we optimize the networks for 20K

iterations, during which the learning rate is twice decreased

with a factor of 0.1 at the 12K and 18K iterations. Due to

the smaller dataset size of HMDB51 and Hollywood2, we

run the SGD algorithm for 10K iterations and reduce the

learning rate with a factor of 0.1 at the 4K and 8K iterations.

In contrast to [26], we do not train a SVM on features fc6

extracted from the C3D models and our models are trained

and tested in an end-to-end fashion. As can be shown in

Section 4.4, the performance of our end-to-end training is
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Models
UCF101 HMDB51 Hollywood2

Clip acc. Video acc. Clip acc. Video acc. mAP

(%) (%) (%) (%) (%)

spatial-C3D 80.5 83.6 51.3 53.9 43.6

temporal-C3D 70.6 83.1 38.5 50.7 53.9

temporal-C3D-comp 72.0 84.6 42.6 55.8 67.7

VideoLSTM RGB[16] - 79.6 - 43.3 -

VideoLSTM flow[16] - 82.1 - 52.6 -

FCAN 81.5 85.4 51.6 54.6 46.9

FCAN-comp 82.7 87.2 53.5 56.9 50.3

VideoLSTM two-stream [16] - 89.2 - 56.4 -

Twostream-C3D 86.8 91.8 54.8 64.4 51.2

Twostream-C3D-comp 86.8 91.4 55.7 67.1 65.9

Twostream-FCAN 87.2 91.9 54.8 63.3 56.3

Twostream-FCAN-comp 86.7 91.9 55.9 68.2 71.1

Table 1: Results for two-stream FCAN models and their baselines on UCF101 and HMDB51 (both split 1) dataset. 3D

convolutional neural networks have inputs with temporal length of 16 frames for both the RGB and optical flow modalities.

The two-stream FCAN network has one attentive cross-link layer.

better than the results of fc6+SVM pipeline reported in [26].

Testing. For a fair comparison, we also adopt the same

testing scheme in other CNN-based works (e.g., two-stream

CNNs [22], temporal segment networks [30]). Given a test

video, we sample 25 segments of RGB or flow frames with

equal temporal spacing between them. For each segment,

we crop the center of a frame to evaluate a model. The fi-

nal score of the video is computed by averaging the scores

across different crops and segments. We find that averag-

ing the last fully connected layer (i.e., fc8) scores always

produce better results than the softmax scores.

4.3. Baselines

We compare our two-stream FCAN models with a set

of baselines proposed recently [22, 16]. The foremost

baselines for our two-stream FCAN models are two-stream

C3D. Besides, we also compare our two-stream FCAN with

the following model:

VideoLSTM [16]. VideoLSTM [16] utilizes a convo-

lutional LSTM to estimate motion-based attention. In con-

trast, we use convolution layers in a temporal-CNN network

to provide flow-based attention. The results of VideoLSTM

are directly extracted from [16].

4.4. Results and analysis

This section reports the performances of our two-stream

FCAN models, effects of compensated flows on the FCAN

models, and the results of some exploratory studies.

Performance of two-stream FCAN networks. Ta-

ble 1 shows performance of the two-stream FCAN on three

datasets. With compensated flows, our two-stream FCAN

demonstrates better performances than two baselines: two-

stream C3D and videoLSTM two-stream [16]. In particu-

lar, two-stream FCAN-comp (with compensated flows) out-

performs two-stream C3D-comp 0.5% on UCF101, 1.1%

on HMDB51 and 1.5% on Hollywood2, and the perfor-

mance gain over the baseline videoLSTM two-stream [16]

is much more significant: 2.7% on UCF101 and 11.8%

on HMDB51. Focusing just on the FCAN networks (re-

call from Figure 1 that FCAN is largely the spatial part

of our architecture), we too observe consistent improve-

ments over spatial-C3D and “videoLSTM RGB” in terms of

video-level accuracy. Lastly, it is also evident that motion

compensation is important in improving the performance

of our FCAN networks. The improvement is more signif-

icant in HMDB51 than in UCF101 because many videos

in HMDB51 contain more complex camera motions. Only

with compensated flows, human foregrounds stand out from

the background (e.g., Figure 2). Therefore, attentive effects

in FCANs become more substantial. Figure 4 also shows

that FCAN models learned on compensated flows have bet-

ter generalization ability than on normal flows, especially

on HMDB51 dataset.

Exploration study. We evaluate the effects of varying

the number of cross-link layers from the lower to the higher

layers. In particular, we start with just one cross-link layer

at layer pool1, and then successively add more cross-link

layers until all five layers are connected. Table 2 shows

the performance of FCAN when we gradually increase the

cross-link layers from the lower to higher layers. In general,

the performance of FCAN-comp gradually decreases when

the number of cross-link layers increases from one to five
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Models
UCF101 HMDB51

Clip acc. (%) Video acc. (%) Clip acc. (%) Video acc. (%)

FCAN-comp pool1 82.7 87.2 53.5 56.9

FCAN-comp pool2 82.1 86.3 52.7 57.7

FCAN-comp pool3 81.6 86.1 52.0 57.1

FCAN-comp pool4 79.9 86.2 48.2 52.2

FCAN-comp pool5 78.3 85.0 45.1 49.1

Table 2: Evaluations of FCAN-comp with different numbers of cross-link layers on UCF101 (split 1) and HMDB51 (split 1)

dataset. The suffix pool-n means that there are cross-link layers from layer 1 to layer n. 3D convolutional neural networks

have inputs with temporal length of 16 frames for both the RGB and optical flow modalities. All flows in this experiment are

compensated flows.
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Figure 4: Training loss and validation accuracy of FCAN and FCAN-comp models on UCF101 and HMDB51 (both split 1)

dataset.

layers. FCAN-comp achieves peak performance at the first

pooling layer pool1 in UCF101, while its peak performance

in the HMDB51 is attained at adding the pooling layer

pool2 (i.e., with 87.2% and 57.7% respectively in video ac-

curacy). From the visualizations of the activation maps in

Figure 3, it can be seen that those in the higher layers (e.g.,

pool3, pool4, pool5) are no longer retinotopic, and may not

correspond to the human silhouettes. Therefore, creating

cross-link at these layers is counter-productive, usually de-

grading the performance of our classifiers.

Visualization of attention layers. In Figure 3, we

provide a visualization of the attention maps provided by

the flows in Equ. 3, using two video sequences from the

UCF101 and HMDB51 dataset. In the cartwheel sequence,

the motions of the actor are significant, and our attention

maps in the pool1 and pool2 cross-link layers are indeed

indicative of the actor’s silhouettes. Attention map from

the pool3 layer begins to be blurry. At higher layers (e.g.,

pool4, pool5), the attention maps have more abstract and

complex patterns. Similar trends also appear in the hand-

stand walking sequence. These observations and the quan-

titative results in Table 2 corroborate our design choice of

having one attentive cross-link layers.

Errors analysis. Now, delving into the performance

gain of FCAN over spatial-C3D, we find that FCAN has

better accuracy in all five action types in UCF101. Specif-

ically, the performance gain is more noticeable on the ac-

tion types of “human-human interaction”, “human-object

interaction” and “body-motion only”. These action classes

mostly tend to be those categories which have significant

motions, allowing the compensated optical flows to pick up

vividly the human form. In UCF101, some classes gain re-

markable performance over spatial-C3D, such as Jumping-

Jack (76% vs. 65%), JumpRope (95% vs. 58%), Hand-

standWalking (44% vs. 29%), HandstandPushups (82%

vs. 68%), Lunges (57% vs. 43%), MilitaryParade (94%

vs. 82%), WallPushups (77% vs. 60%) and SalsaSpin

(98% vs 78%) (see details in Figure 5). FCAN obtains

marginal improvements over spatial-C3D on “playing mu-

sical instruments” because there are not much motions in

the video sequences. In some “sports” sequences, FCAN’s

performance gain over spatial-C3D is also significant, such

as Clean&Jerk (97% vs. 85%), CricketBowling (72% vs.

56%), and CricketShot (63% vs. 53%). Scene contexts play

important roles in sports sequences, and if the motions are

also difficult to be picked up (e.g. the swing of a golf club),

then the improvement of FCAN over spatial-C3D is limited

compared to other types of actions.
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Models
UCF101 HMDB51

Clip acc. (%) Video acc. (%) Clip acc. (%) Video acc. (%)

Twostream-TSN [30] 2 81.3 91.5 49.1 64.5

Twostream-FCAN-comp 86.7 91.9 55.9 68.2

Twostream-FCAN-comp + Twostream-TSN 88.9 93.4 61.3 70.1

Table 3: Ensemble of TSN-BatchNorm-Inception [30] and FCAN features on UCF101 (split 1) and HMDB51 (split 1)

dataset. 3D convolutional neural networks have inputs with temporal length of 16 frames for both RGB and optical flow

modalities. All features are combined with equal weights.

Figure 6 presents some examples of flow-guided atten-

tion for selected sequences of UCF101 dataset. We show

in the top half selected sequences from classes in which

our FCAN model outperforms spatial-C3D, specifically,

JumpingJack, JumpRope, HandstandWalking, Handstand-

Pushups, Lunges, WallPushups, SalsaSpin, Clean&Jerk,

CricketBowling, CricketShot. As can be observed, the

FCAN model focuses on the spatio-temporally varying hu-

man torsos to make predictions. FCAN does eliminate some

effects of background context by putting attention values

of nearly 0.5 for background regions. We also highlight in

the bottom half some cases in which our FCAN does not

perform well. In these sequences, the compensated flows

are erroneous due to a variety of reasons. For example, in

the Front Crawl sequence, there are additional areas of fo-

cus in the swimming pool due to wave motions there that

are not compensated. Similarly, in the HandstandWalking

sequence, there are two distinct planes in the background

which causes failure in the homography-based compensa-

tion. In the HammerThow and PlayingViolin sequences,

the pertinent motions (e.g., hand swing, bow movement)

are small and/or elongated and the flow algorithm lacks the

quality to clearly delineate these fine motions. Lastly, in the

BlowingCandles sequence, 3D-FCAN wrongly focuses on

the cake; this is due to the erroneous optical flow estimation

caused by the varying candle-light illumination.

Ensemble of FCAN and frame-based CNN mod-

els. Table 3 shows the results of our two-stream FCAN-

comp and its ensemble with Temporal Segment Networks

(TSN) [30]. The latter is essentially a two-stream frame-

based CNN model; however, it takes into account frames

over longer temporal range (with short snippets randomly

sampled from each segment). We re-implement TSN

with BatchNorm-Inception architecture for each stream of

RGB and compensated flows. With our implementations,

our two-stream FCAN-comp out-performs two-stream TSN

[30] 0.4% and 3.7% on UCF101 and HMDB51 split 1 re-

spectively. However, when we combine two kinds of fea-

tures including spatio-temporal models (i.e., two-stream

FCAN-comp) and frame-based models (i.e., two-stream

2The results are reproduced with our own implementations and data.
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Figure 5: Classwise accuracy of FCAN-comp compared to

spatial-C3D model. If a bar has only one color (red), both

models have the same performance on the corresponding

class. If green is on top of a bar, our FCAN-comp improves

the accuracy, and vice versa.

TSN), we achieve significantly better performances. Our

conjecture is that while our 3D spatio-temporal FCAN

model should in principle subsume the TSN (which only

randomly samples some snippets), its 3D CNN architec-

tures may have difficulties in learning all the information,

and thus there is some complementarity between the two

sets of features.

4.5. Comparison with the state of the art

In Table 4, we compare our results to the state-of-the-art

on UCF101 and HMDB51 dataset. Different methods are

grouped into three categories: hand-crafted features, deep

learning approaches, and attention-based networks. Note

that most of methods are not directly comparable to our re-

sults because of using different network architectures and

improvement schemes. Although combining hand-crafted

features IDT with Fisher Vector encoding [29] is a strong

baseline, our two-stream FCAN comfortably outperforms

them by a margin of 6.1% and 9.5% on UCF101 and

HMDB51 respectively. We also observe a noticeable im-

provement over the original two-stream 2D-CNN [22] with

4.0% and 7.3% increase in UCF101 and HMDB51 respec-

tively. We also compare to longer temporal models (e.g.,

LTC[28], I3D [3]), although they are not directly compara-
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Method UCF101 HMDB HW2

[29] IDT+FV 85.9 57.2 64.3

[19] IDT+HSV 87.9 61.1 -

[17] IDT+Actionness - 60.4 -

[8] VideoDarwin - 63.7 73.7

[7] RankPool + IDT 91.4 66.9 76.7

[22] Two-stream (avg) 86.9 58.0 -

[22] Two-stream (SVM) 88.0 59.4 -

[31] Two-stream LSTM 88.6 - -

[28] LTC 91.7 64.8 -

[30] TSN (2 modalities) 94.0 68.5 -

[30] TSN (3 modalities) 94.2 69.4 -

[3] Two-stream I3D 98.0 80.7 -

[6] Two-stream fusion 92.5 65.4 -

[5] ST-ResNet 93.4 66.4 -

[21] Soft attention - 41.3 -

[16] VideoLSTM 89.2 56.4 -

Two-stream FCAN-comp 92.0 66.7 71.1

Ensemble (4 models) 93.4 68.2 78.4

Table 4: Comparison with the state-of-the-art on UCF101,

HMDB51 and Hollywood2(HW2) with mean accuracy

across 3 splits. We only compare with deep learning ap-

proaches with equal length in the temporal models, and not

with handcrafted features such as IDT[29]. We would ex-

pect our results to be better after combining with IDT fea-

tures.

ble to our work. Our temporal length is 16 frames, while

they are 100 and 64 frames in LTC and I3D respectively.

Our results are on par with LTC in the UCF101 dataset, but

are better than LTC on HMDB51 (i.e., 66.7% vs. 64.8%).

Two-stream I3D [3] achieves astonishing performance since

they train a 3D-CNN architecture on big video dataset and

fine-tune on UCF101 and HMDB51. We also achieve en-

couraging results compared to TSN[30] (3 modalities) on

UCF101 and HMDB51, although they improve accuracy

by using a better 2D-CNN architecture. In the regime of

attention-based models, our method shows promising re-

sults compared to other related works. First, we outper-

form VideoLSTM [16] by a margin of 2.8% on UCF101

(i.e., 92.0% vs. 89.2%), of 10.3% on HMDB51 (i.e., 66.7%

vs. 56.4%). Furthermore, we also see a large margin of

improvement in the performance of our two-stream FCAN

model on HMDB51 when compared to that of the soft at-

tention model [21] (i.e., 66.7% vs. 41.3%). We also obtain

a new state-of-the-art result on Hollywood2 dataset. We

attribute these successes to the explicit temporal modeling

in the C3D architectures and the attentive property of the

(compensated) flows.

JumpingJack

JumpRope

HandstandWalking

HandstandPushups

Lunges

WallPushups

MilitaryParade

SalsaSpin

CleanAndJerk

CricketBowling

CricketShot

FrontCrawl

HandstandWalking

HammerThrow

PlayingViolin

BlowingCandles

Jet color map

Figure 6: Rows represent examples of attention over time

in videos in UCF101 dataset. The top half shows exam-

ples from UCF101 of successful classes with large improve-

ments brought about by our FCAN, while the bottom one

shows examples of classes with decreases in performance.

For each pair of sequences, we show original images and

attention maps overlaid on images. The attention map is

encoded by jet color map. The intensities are in the range

[0,1], and the color scheme looks like the last row. Best

viewed in color.

5. Conclusion

This paper introduces two-stream flow-guided convolu-

tional attention network (two-stream FCAN) and shows that

it can improve performances of the two-stream C3D. We

also show that while compensated optical flows can pro-

vide some form of attention guidance, the advantage of this

attention is prominent when there is explicit temporal mod-

eling in the CNN model. The attention in our approach is

modeled simply, but it shows good performances compared

to the recurrent attention models for action recognition.
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