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Abstract. Quasi-perpendicular supercritical shocks are char-

acterized by the presence of a magnetic foot due to the accu-

mulation of a fraction of the incoming ions that is reflected by

the shock front. There, three different plasma populations co-

exist (incoming ion core, reflected ion beam, electrons) and

can excite various two-stream instabilities (TSIs) owing to

their relative drifts. These instabilities represent local sources

of turbulence with a wide frequency range extending from

the lower hybrid to the electron cyclotron. Their linear fea-

tures are analyzed by means of both a dispersion study and

numerical PIC simulations. Three main types of TSI and cor-

respondingly excited waves are identified:

i. Oblique whistlers due to the (so-called “fast”) relative

drift between reflected ions/electrons; the waves prop-

agate toward upstream away from the shock front at a

strongly oblique angle (θ ∼ 50◦) to the ambient mag-

netic field Bo, have frequencies a few times the lower

hybrid, and have wavelengths a fraction of the ion iner-

tia length c/ωpi.

ii. Quasi-perpendicular whistlers due to the (so-called

“slow”) relative drift between incoming ions/electrons;

the waves propagate toward the shock ramp at an angle

θ a few degrees off 90◦, have frequencies around the

lower hybrid, and have wavelengths several times the

electron inertia length c/ωpe.

iii. Extended Bernstein waves which also propagate in

the quasi-perpendicular domain, yet are due to the

(so-called “fast”) relative drift between reflected

ions/electrons; the instability is an extension of the elec-

tron cyclotron drift instability (normally strictly perpen-

dicular and electrostatic) and produces waves with a

magnetic component which have frequencies close to

the electron cyclotron as well as wavelengths close to

the electron gyroradius and which propagate toward up-

stream.

Present results are compared with previous works in order to

stress some features not previously analyzed and to define a

more synthetic view of these TSIs.

Keywords. Interplanetary physics (planetary bow shocks) –

magnetospheric physics (plasma waves and instabilities) –

space plasma physics (wave–particle interactions)

1 Introduction

A hallmark of supercritical shocks in collisionless plasmas

is the presence of a sizable ion population that is reflected

off of the steep shock front. These ions carry a substantial

amount of energy: they are the source of microturbulence

within the shock front and are fundamental to the transforma-

tion of directed bulk flow energy into thermal energy, a tenet

of shock physics. For quasi-perpendicular geometries, the re-

flected ions’ velocity, as seen in the normal incidence frame,

is in large part directed at 90◦ to the magnetic field Bo. The

relative drifts across Bo between the populations of incom-

ing ions, reflected ions, and electrons enable the excitation

of several microinstabilities (Wu et al., 1984, and references

within)

Whistler waves are an attribute of collisionless fast-mode

shocks. They have been observed in association with shocks
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in space for a very long time (e.g., Rodriguez and Gurnett,

1975). The term “whistler” covers waves over a large range

of frequencies and many observations related to shocks per-

tain to the ion frequency range (a few hertz and below).

Waves with higher frequencies from the lower-hybrid to the

electron cyclotron range have also been observed. Their char-

acteristics, however, can be difficult to establish because of a

potentially important Doppler shift in frequency between the

spacecraft frame where they are measured and the plasma

frame where they can be properly identified. Whistler waves

especially in the lower-hybrid range have interested theorists

and simulationists owing to their potential role for transfer-

ring energy between ions and electrons (e.g., Wu et al., 1983;

Winske et al., 1985; Matsukiyo and Scholer, 2003, 2006).

Observationally, an important characteristic of whistlers in

this regime is that the waves appear to propagate obliquely

with respect to Bo (Krasnoselskikh et al., 1991; Hull et al.,

2012; Sundkvist et al., 2012; Dimmock et al., 2013). More-

over, when the waves can be put into their macroscopic

context, their wavevectors have been measured as equally

oblique with respect to the shock normal (Hull et al., 2012;

Dimmock et al., 2013). Since the normal presumably cor-

responds to the direction of the drift between the ion pop-

ulations, the waves appear to propagate at a sizable angle

with respect to the drift. The measurements made by the Po-

lar mission, which recorded a substantial number of whistler

waves as detailed by Hull et al. (2012), benefit from captur-

ing all components of the electric and magnetic fields. The

whistler waves in the lower-hybrid frequency range, it was

concluded, have wavevectors which are close to the copla-

narity plane and which make an angle ∼ 50◦ to Bo and ∼ 50◦

to the shock normal (where the latter is pointing upstream).

In this article, we present a synthetic view of the plasma

microinstabilities which can occur in the foot of supercritical

quasi-perpendicular shocks as the result of the relative drifts

between incoming ions, reflected ions, and electrons. Fig-

ure 1 illustrates the relations between the three plasma pop-

ulations in the shock’s foot. The resulting instabilities cover

wavelengths from the ion inertia length to the electron gyro-

radius and frequencies from the lower-hybrid to the electron

cyclotron. The study can be viewed as an extension of our

previous work, which was focussed on 90◦ propagation and

electron Bernstein waves (Muschietti and Lembège, 2013).

By contrast, we consider here various propagation angles and

lower frequencies, with a special emphasis on whistlers that

propagate obliquely and have frequencies in the lower-hybrid

range.

Our notations are as follows: VA designates the Alfvén

speed, c is the speed of light, ωpi (ωpe) is the ion (elec-

tron) plasma frequency, and �ci (�ce) is the ion (electron)

cyclotron frequency. When we use the warm plasma model,

Tj (where j = e, c, b) represents the temperature of the elec-

trons (subscript e), the incoming ion core (subscript c), and

the reflected ion beam (subscript b), respectively. The asso-

ciated betas (ratio of thermal pressure to magnetic pressure)
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Figure 1. Model of ion and electron populations in the foot region

of a supercritical perpendicular shock extracted at a given time from

a 1-D PIC simulation. (a) View of the ion phase space with profile of

the magnetic field B; (b) enlargement of the local ion core, reflected

ion beam, and electron distributions to be used for the dispersion

analysis; reference frame set such that the electrons are at rest.

are defined as βj = (8πnjTj )/Bo
2, where the densities nj

satisfies ne = nc + nb = ni. Finally Mi(me) denotes the ion

(electron) mass.

Results of linear dispersion analysis are presented in

Sect. 2 for a stable situation without beam. We first address

the cold plasma model in Sect. 2.1. In Sect. 2.2 we show

that the electrons are in a kinetic regime and that thermal

effects are very important, unless an extremely small βe is

assumed. We treat the unstable case where there is an ion

drift in Sect. 3. Again, we examine the question first within

the framework of the cold model (Sect. 3.1), then turn to the

warm plasma by numerically solving the full dispersion rela-

tion (Sect. 3.2). The extension of the electron cyclotron drift

instability (ECDI) beyond the electrostatic framework and to

quasi-perpendicular angles (close to yet off 90◦) is discussed

in Sect. 4. In Sect. 5 we present PIC simulations to illustrate

the dispersion results of Sects. 2–4. Finally, Sect. 6 discusses

our results and Sect. 7 concludes our work.
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Figure 2. Orientation of the wavevector k with respect to the

directions of the background magnetic field (0,0,Bo) and beam

(Vb,0,0). In blue are axes t1 (into the page), t2, and L (along vec-

tor k) used in 1-D oblique simulations, which are performed with a

predetermined angle θ defined from the dispersion study.

2 Whistler mode in oblique propagation

(without ion beam)

2.1 Cold approximation

In the cold plasma model, the mode which can propagate in

the frequency range above the ion cyclotron frequency is the

right-handed wave. It is often referred to as the R-X mode

because it becomes the extraordinary wave in perpendicular

propagation (e.g., Swanson, 2003). Let θ be the angle be-

tween the wavevector and the direction of the background

magnetic field Bo = (0,0,Bo), as displayed in Fig. 2. A con-

venient, approximate expression for its dispersion relation

can be obtained from the low-frequency relation that Stringer

(1963) derived using fluid equations and neglecting terms of

order me/Mi. Assuming further that the phase speed is much

larger than the acoustic speed, one can write the explicit dis-

persion relation

ω(k,θ) = kVA

[1 + (kc/ωpe)2]1/2

×
[

1 + cos2θ
(kc/ωpi)

2

1 + (kc/ωpe)2

]1/2

. (1)

In the very low-frequency (ω ≪ �ci) and long wavelength

limit (kc/ωpi ≪ 1), we recover a magnetosonic wave with

phase velocity equal to the Alfvén speed VA. When fre-

quencies become comparable to the ion cyclotron frequency,

i.e., kVA ∼ �ci, the term kc/ωpi = kVA/�ci becomes of or-

der unity, whereby an angle θ dependence appears. As the

wavenumber keeps increasing, kc/ωpi > 1, the second term

in the square bracket becomes important, the phase speed in-

creases, and the mode enters the domain of the whistler wave.

Figure 3 shows the dispersion relation in a log–log rep-

resentation for different angles θ . Colors are used to distin-

guish between three angles: quasi-parallel propagation with

10◦ (green), oblique with 55◦ (blue), and quasi-perpendicular

with 85◦ (red). The wavenumbers k (horizontal axis) range

from ωpi/c to many ωpe/c and the frequencies ω (vertical
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Figure 3. Solutions of the cold dispersion relation (without ion

beam) above the ion cyclotron frequency �ci in a log–log repre-

sentation, shown for three propagation angles for the right-handed,

whistler wave (from Eq. 1). Grey, dashed lines indicate the elec-

tron cyclotron frequency �ce and the phase speed VA. A grey star

on the θ = 85◦ solution marks the location where the dispersion

curve changes from concave to convex. For reference, electron tem-

perature effects (see Table 1) are introduced to indicate the Bern-

stein branch defined for 90◦ propagation and the electron gyrora-

dius scale (kρe = 1).

axis) range from �ci up to �ce, which is marked here with

a horizontal dashed line. The sloped dashed line indicates

the Alfvén speed. If (cosθ kc/ωpi)
2 ≫ 1, the frequency ω in-

creases quadratically with k and one can rewrite Eq. (1) into

the familiar whistler relation

ω = �ce cosθ
(kc/ωpe)

2

1 + (kc/ωpe)2
. (2)

For very short wavelengths, k ≫ ωpe/c, the dispersion

presents a resonance, becomes independent of k, and sim-

plifies to ω = �ce cosθ . Noteworthy is the double curvature

of ω(k), first concave (at low k) and then convex (at high k)

(e.g., Swanson, 2003, Fig. 3.1) (e.g., Tidman and Krall, 1971,

Fig. 2.3). As visible here in Fig. 3 for θ = 85◦, the dispersion

changes from concave to convex at the point marked with a

star. The feature plays an important role as we will see when

discussing the effect of a beam in Sect. 3.

For drawing Fig. 3, we choose parameter values such as

mass ratio and magnetization that are the same as those used

in the simulations to be shown later, namely M/m = 900 and

ωpe/�ce = 10. This will facilitate future comparisons. In ad-

dition, we refer the reader to Table 1 and assume a value of

βe = 0.22 to mark the position of the electron gyroradius as

well as the first Bernstein branch on the plot.
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Table 1. Plasma parameters in normalized units.

Alfvén speed VA = 1

Ion inertia length c/ωpi = 1

Ion gyrofrequency �ci = 1

Speed of light c = 300

Ion/electron mass Mi/me = 900

Plasma/cyclotron

Frequency ωpe/�ce = 10

Electron beta βe = 0.22

Ion beta βi = 0.22

2.2 Thermal effects on obliquely propagating whistlers

Ion temperature effects are negligible. Indeed, since vti =
VA(βi/2)1/2, where vti ≡

√
Ti/Mi is the thermal velocity of

the ions, one can substitute vti for VA in Eq. (1). It is easy

then to see that kvti/ω < (βi/2)1/2, unless one deals with

very short wavelengths such that kc/ωpe ≫ 1. One even has

kvti/ω ≪ (βi/2)1/2 if the angle θ stays away from 90◦. It

is thus clear that for moderate values of βi the ion thermal

velocity vti is much smaller than the phase velocity of the

whistlers. As an example, for βi = 0.22, kc/ωpi = 15 and

θ = 60◦, one obtains kvti/ω = 5.5×10−2. Hence it is appro-

priate to treat the ions as a cold fluid.

By contrast, the electrons’ temperature has significant ef-

fects on the dispersion properties. We first examine the im-

pact on the real part of the frequency, which is shown in

Fig. 4 versus wavenumber k and angle θ to the magnetic

field. A contour representation is used, where the frequency

expressed in units of �ci is marked on the contour. For ref-

erence, the lowest contour at ω/�ci = 30 corresponds to

the lower-hybrid frequency ωLH; the one at ω/�ci = 300

corresponds to the ion plasma frequency, and the one at

ω/�ci = 450 corresponds to half the electron cyclotron fre-

quency, for the chosen mass ratio. The two panels compare

the cold dispersion relation given by Eq. (1) (Fig. 4a) to the

solution obtained from the full dispersion tensor that includes

thermal effects of both ions and electrons (Fig. 4b). The

agreement is rather good, except in the area shaded in light

yellow. For example, if kc/ωpi = 15 and θ = 60◦, Eq. (1)

yields ω = 91 �ci. Meanwhile, the numerical solution gives

ω = 101 �ci when βe = 0.22, ω = 99 �ci when βe = 0.14,

and ω = 97 �ci when βe = 0.06. Hence, there is a modest

frequency increase associated with the electron pressure, yet

the cold plasma Eq. (1) is fairly reliable.

What about the discrepancy in the shaded area where the

wavenumbers are large? Unlike the ions, the electrons are

in a kinetic regime where they can resonate with the waves

and this causes damping. We have numerically solved the

full dispersion relation for three electron temperatures and

show the results including the damping in Fig. 5. As for

Fig. 4, contours describe the real part of the frequency ω/�ci.

The associated imaginary part γ is shown in various shades

kc/ pi 

kc/ pi 

  

  

(a) 

(b) 

Figure 4. Solutions of the dispersion relation (without ion beam) in

a linear, 2-D [k,θ ] representation. Frequency is indicated by con-

tours labeled with the value of ω/�ci. (a) Solution of the cold fluid

dispersion relation given by Eq. (1); (b) real part Re(ω) solution

to the full kinetic dispersion tensor including thermal effects for

βe = βi = 0.22. Note the discrepancy between the two panels in the

light-yellow area.

of blue. As indicated in the color code at the bottom of

Fig. 5, the shades correspond to the relative damping val-

ues γ /ω. It is evident that the damping can be very strong, in

some instances resulting in quasi-modes where |γ /ω| > 0.3.

Figure 5a displays the dispersion for our nominal electron

temperature, βe = 0.22. Modes in the lower-right corner are

indeed heavily damped, which explains the large discrep-

ancy in real frequencies we noted between the cold formula

(Fig. 4a) and the full dispersion result (Fig. 4b).

Figure 5b and c demonstrate how the damping progres-

sively weakens when the electrons become colder. When

βe = 0.06 (Fig. 5c) the damping drops under 5 % for most

wavenumbers and angles under concern. Only in the extreme

lower-right corner of the plot does it exceed 5 %. In line with

the weaker values of γ /ω, we point out that the contours for

the real frequency agree better in this instance with those of

the cold formula plotted in Fig. 4a.

The terms in the full dispersion tensor are numerous and

reflect different contributions. As shown in Appendix A,

since the electrons are magnetized, their contribution to the

tensor’s elements is made of combinations of Bessel func-

tions and derivatives with the plasma dispersion function

Z(ζn), where

Ann. Geophys., 35, 1093–1112, 2017 www.ann-geophys.net/35/1093/2017/
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Figure 5. Solutions of the full kinetic dispersion relation (without

ion beam) including thermal effects for various βe (βi = 0.22). Rep-

resentation is similar to that of Fig. 4, with contours marking the

value of ω/�ci. In addition, the damping γ relative to the real fre-

quency ω is indicated by shades of blue. Note that the relative damp-

ing is substantial in this range of wavenumbers and angles except

for very low βe.

ζn ≡ ω + n�ce√
2k cosθ vte

. (3)

We will show that the resonant velocities vrn ≡ ζn

√
2vte

which need to be considered here are the Cerenkov velocity

vr0 and the Doppler-shifted velocity vr1, respectively defined

by

vr0 ≡ ω

k cosθ
and vr1 ≡ ω − �ce

k cosθ
. (4)

Other resonant velocities fall outside the electron distribution

function. In Fig. 6a we consider the same [k,θ ] space used in

previous plots, yet display here iso-contours of the Cerenkov

velocity as obtained from the solution of the full dispersion

relation. The values marked on the contours represent the

ratio vr0/vte =
√

2ζ0, where vte =
√

Te/m. It is clear from

the values that this resonance lies on the core of the electron

distribution and so is important. What about the other res-

onances (n 6= 0), which are shifted in velocity from vr0 by

increments of �ce/(k cosθ)? For the range of wavenumbers

and angles considered in Fig. 5, let us evaluate the possible

sizes of the increment. The smallest possible increment cor-

responds to modes in the lower-right corner of the plot with

kc/ωpi = 40 and θ = 10◦. There, one has �ce/(k cosθ) =
2.3 vte. As one moves away toward other corners, the size

of the increment grows. For example, with kc/ωpi = 40 and

θ = 60◦ one obtains �ce/(k cosθ) = 4.5 vte, i.e., an incre-

ment already large compared to the width of the electron

distribution (Fig. 6d). Thus, given that vr0 itself lies within

the core of the distribution, typically vr0/vte < 1.8 (as illus-

trated in Fig. 6a), two conclusions can be drawn. First, reso-

nances with n 6= 0 play a role only for modes belonging to the

lower-right corner of the plot. Second, for these modes one

needs to consider only the three resonances n = −1,0,+1.

We tested that assertion by replacing in the dispersion tensor

the Z function by its fluid approximation (see, e.g., Swan-

son, 2003) for terms other than n = −1,0,+1. The resulting

dispersion plot (not shown) looks the same as Fig. 5a. The

n = +1 resonance interacts with electrons with a speed larger

than 3 vte and hence plays a minor role, unless the distribu-

tion includes a tail. We point out that our model of electron

distribution is a simple Maxwellian. A more realistic model

would include a halo. If core electrons with speed vte have

energy of 10 eV, a halo with 100 eV electrons would inter-

act with the waves via the n = +1 resonance. We emphasize

the asymmetry between n + 1 and n − 1 resonances. Unlike

the n + 1 resonance, the n − 1 resonance interacts with core

electrons with speeds as small as 1.4 vte. This resonance is in

fact responsible for the strong damping which affects modes

in the lower-right corner of Fig. 5a. Whistlers with wavevec-

tors in the quarter disk marked with contours in Fig. 6c (i.e.,

wavenumbers 22 < kc/ωpi < 40 and 10◦ < θ < 60◦) interact

with the electron distribution through both vr1 and vr0. For

large k and small θ , the vr1 resonance leads to the strong

damping of the waves seen in Fig. 5a. In summary, the two

important resonant velocities for damping the whistlers are

the Cerenkov velocity vr0 and the Doppler-shifted velocity

vr1.

We point out that the two resonant velocities vr0 and vr1

are in opposite directions. A given wave which has, say, a

wavevector component kz = k cosθ > 0 is affected both by

electrons moving with vz > 0 through vr0 and by electrons

moving with vz < 0 through vr1. As an example, let us con-

sider the wave with kc/ωpi = 30 and θ = 25◦, whose location

in Fig. 6a and c is marked with a red star. This wave interacts

www.ann-geophys.net/35/1093/2017/ Ann. Geophys., 35, 1093–1112, 2017
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Figure 6. Composite figure illustrating the damping role of the resonant velocities on the electron distribution (for βe = 0.22) in the case

without ion beam. (a) Iso-contours of the Cerenkov resonant velocity vr0/vte (Eq. 4) versus [k,θ ]. The velocities, marked on the contours,

lie on the core of the electron distribution, which indicates that the terms associated with n = 0 in the dispersion tensor contribute to the

damping (see Appendix A). (b) Solution of the dispersion relation to be compared with Fig. 5a. Here, the treatment is kinetic only for the

n = 0 terms and fluid for all others. See main text for discussion. (c) Iso-contours of the Doppler-shifted resonant velocity vr1/vte (where

vr1 is defined for n = −1 in Eq. 4). (d) Location of the two resonant velocities associated with one given wave (marked with a red star in

panels a and c) in the electron distribution.

with both sides of the distribution, where many electrons can

participate in its damping, as illustrated in Fig. 6d. Accord-

ing to quasilinear theory, we could expect that the electrons

at vr0 are accelerated in the parallel direction, whereas the

electrons at vr1 are accelerated in the perpendicular direc-

tion.

We will see in Sect. 3 that the two-stream instabilities

occur at large angles (θ ∼ 50◦ and θ > 80◦). Under these

conditions the important resonance is the Cerenkov reso-

nance (n = 0). In order to understand its role in damping the

oblique whistlers, we replace the Z function in the dispersion

tensor by its fluid approximation for the n 6= 0 terms, keeping

Z for the n = 0 terms only. The resulting dispersion relation

is shown in Fig. 6b (same nominal value βe = 0.22), which

has to be compared to Fig. 5a, where no fluid approximation

is introduced. We use the same hues of blue in both plots

to facilitate the comparison. Ignoring the lower-right corner

for the moment, it is clear that Fig. 6b reproduces the fea-

tures of Fig. 5a well. One notes the same trend of increased

damping with increasing wavenumber. The angular depen-

dences of ω and γ /ω at fixed wavenumber are also well re-

produced. From quasi-parallel to quasi-perpendicular propa-

gation, let us stress the way the damping intensifies, reaches a

maximum, and then quickly decreases as 90◦ is approached.

Meanwhile, the resonant velocity vr0 remains in the bulk

of the electron distribution and does not vary dramatically.

What physically enters into the damping is not only the loca-

tion of the resonance on the electron distribution but also the

relative amplitude of the parallel component of the electric

field. Larger values of Ez lead to more electron acceleration

via the Cerenkov resonance and thus more damping of the

wave. Can we evaluate the way Ez changes as one varies

the angle θ? In order to deal with tractable algebra, we will

assume that the cold dielectric tensor is sufficient to assess

this variation in polarization and judge the assumption’s va-

lidity from the result obtained. The calculations which are

developed in Appendix B show that indeed Ez varies signifi-

cantly as θ increases. We repeat here just the final result, i.e.,

Eq. (B9):

iEz

Ey

≈ m

M

(

kc

ωpi

)3

× [1 + (kc/ωpe)
2]cosθ sinθ

[1 + (kc/ωpe)2 + (kc/ωpi)2cos2θ ]1/2
U(k), (5)

where U(k) is defined in Appendix B and is of order unity

for our parameters (ω ≥ ωLH and kc/ωpi ≥ 1). Starting from

θ = 0 and increasing the angle, Eq. (5) shows that the par-

Ann. Geophys., 35, 1093–1112, 2017 www.ann-geophys.net/35/1093/2017/
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allel electric field first rises, peaks, and then declines dra-

matically when θ approaches 90◦. We point out that |Ez|
maximizes at quite oblique propagation angles (e.g., θ ≈ 70◦

for kc/ωpi = 15). Furthermore, this maximum shifts closer to

90◦ as larger wavenumbers are considered. This behavior is

precisely what Fig. 6b indicates for the damping associated

with the Cerenkov resonance. Incidentally, the vanishing of

Ez described by Eq. (5) in either parallel or perpendicular

propagation is to be expected from the R-X mode: the po-

larization morphs to a circular R mode for θ → 0◦ and to an

X mode for θ → 90◦. To close this section, keep in mind that

the low value βe = 0.06 assumed in Fig. 5c is unrealistic. We

used it here in order to clarify the role of the electron tem-

perature. Within the context of planetary shocks at least, our

nominal value of βe = 0.22 is more probable. Thus, oblique

whistlers are indeed damped by the electrons and, if an insta-

bility occurs, this damping has to be overcome.

3 Unstable oblique whistlers due to a drifting

ion population

Consider now the situation where an ion population is drift-

ing at speed Vd with respect to the electrons, as depicted in

Fig. 1 for the core and the reflected beam. In the following,

Vd can represent either the relative fast drift of the reflected

ions/electrons or the relative slow drift of the core/electrons.

A simple way to understand the possible instabilities that can

result is to return to the cold plasma model.

3.1 Cold plasma and cold beam

We revert to Fig. 3 for the three angles considered (θ = 10,

55, 85◦), on which we superpose the Doppler frequency as-

sociated with a drift Vd,

ω = k sinθ Vd. (6)

The result is shown in Fig. 7a for a drift Vd = 8VA. The

same color convention used in Fig. 3 distinguishes the vari-

ous propagation angles: θ = 10◦ (green), 55◦ (blue), and 85◦

(red). Couplings between the beam mode and the oblique

whistlers, and hence possible instabilities, can only occur at

locations where the triplet (ω,k,θ) is the same. Thus, we

look for the intersections of dashed curves (beam mode) with

solid curves (whistler) of the same color. For quasi-parallel

waves (θ = 10◦ in green), there is no intersection because the

beam mode is at a frequency lower than the whistler every-

where. Conversely, for quasi-perpendicular waves (θ = 85◦

in red), there is no intersection because the beam mode is at a

frequency higher than the whistler everywhere. Nonetheless,

a coupling to another wave mode is possible for such a large

angle. The first Bernstein branch, which is indicated here

in purple, intersects the beam mode at a high wavenumber

kρe > 1. The location is marked ECDI for the electron cy-

clotron drift instability. In Sect. 4 we will discuss the question
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Figure 7. Similar to Fig. 3 with the addition of beam modes (colored

dashed lines) described by Eq. (6) for the three angles considered:

θ = 10, 55, 85◦. (a) Example of a fast drift Vd = 8 VA. Possible

couplings of the beam modes to the oblique whistlers (same triplet

(ω,k,θ)) can only occur at locations marked WH-A and WH-B.

Coupling to the Bernstein wave is at ECDI; see text for details.

(b) Example of a slow drift Vd = 1.5 VA. As compared to (a), the

frequency of the beam modes is now lowered. As a result, pos-

sible couplings to the oblique whistlers can only occur for very

oblique propagation at the location marked MTSI; see text for de-

tails. (c) Plot of Eq. (7), where κe ≡ kc/ωpe for the two values of

Vd = 1.5 VA and 8 VA.

of this instability for angles θ that are off 90◦. At this point,

we just note how much larger is the frequency of the ECDI

than any frequency of a whistler propagating at θ = 85◦ (full

red curve).

When whistlers propagate obliquely (for example here

θ = 55◦ in blue) two intersections exist because their dis-

persion relation ω(k) displays some curvature. The intersec-

tions are marked as WH-A and WH-B in Fig. 7a. Following

Eq. (6), their locations depend upon Vd. WH-A and WH-B
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come closer to each other as Vd increases and the dashed line

moves up. Varying θ leads to a similar, albeit a little more

complex, change since both Eqs. (6) and (1) depend upon θ .

We now derive an equation that describes the locations

of all WH intersections in a [k,θ ] space. One defines the

wavenumber in terms of electron inertia length, κe = kc/ωpe,

and introduces the parameter α ≡ (Mi/me)
1/2(VA/Vd) for

the drift. Assuming (cosθ kc/ωpi)
2 ≫ 1, one can combine

Eqs. (6) and (1) to yield the explicit relation

θ(κe) = arctan

(

ακe

1 + κ2
e

)

. (7)

The profile θ(κe) is shown in Fig. 7c for two values of the

parameter α. Where κe < 1 it rises at a rate controlled by

α: the slower the drift, the steeper the slope. The maximum

θ∗ is reached for κe = 1, beyond which the profile slowly

decreases. The value of θ∗ is given by

θ∗ = arctan
(α

2

)

= arctan

[

(

Mi

4me

)1/2
VA

Vd

]

. (8)

Hence, for a given propagation angle θ < θ∗, Eq. (7) can be

inverted to yield two possible wavenumbers:

κe = α

2
cotθ ±

(

α2

4
cot2θ − 1

)1/2

. (9)

These lower and higher wavenumbers correspond to the lo-

cations marked WH-A and WH-B, respectively, in Fig. 7a.

When the angle reaches θ = θ∗, they merge at the loca-

tion defined by κe = kc/ωpe = 1 and ω = ωLH(VA
2/Vd

2 +
4me/Mi)

−1/2 ≈ ωLH(Vd/VA), where ωLH ≡ (�ci�ce)
1/2.

For angles larger than θ∗, no intersection exists; hence, no

instability is possible with the given drift. For example, in

the case shown in Fig. 7a, where the drift is Vd = 8 VA, the

maximum angle is θ∗ = 62◦.

Let us now suppose that we want to destabilize waves

propagating at very large angles, close to θ ≈ 90◦. Equa-

tion (8) can be inverted to find the required drift. The latter

clearly needs to be modest, namely Vd&VA, a condition that

can be satisfied by the ion core drifting versus the electrons

(see Fig. 1). The case is shown in Fig. 7b, which is drawn for

Vd = 1.5 VA. No intersection exists at either θ = 10◦ (green)

or θ = 55◦ (blue). On the other hand, at θ = 85◦ the two

roots on the red curve are indeed merging, the wavenumber is

close to kc/ωpe = 1 (or kc/ωpi = 30 for the chosen mass ra-

tio Mi/me = 900) and the frequency is close to ω = 1.5 ωLH.

This instability which has a propagation angle close to 90◦

is known in the literature as MTSI which stands for modi-

fied two-stream instability (e.g., McBride et al., 1972; Mat-

sukiyo and Scholer, 2003; Umeda et al., 2012). Hence, we

have marked it correspondingly in Fig. 7. Because the waves

are destabilized by the drift of the ion core versus the elec-

trons, these waves clearly propagate in a direction opposite

to the oblique whistlers of WH-A and the Bernstein waves of

the ECDI. As for the other whistlers at location WH-B, we

will show in Sect. 3.2 that they are strongly damped by the

electrons once thermal effects are taken into account.

3.2 Warm plasma and warm beam

Section 2.2 has stressed that a population of warm electrons

substantially damps the obliquely propagating whistlers at

most wavenumbers and angles. The damping rate even be-

comes very strong for large wavenumbers (see Fig. 5a). In

order to have an effective instability, this damping rate needs

to be overcome by a sufficient growth rate driven by the ion

drift. We investigate the question by numerically solving the

full electromagnetic dispersion relation for varying param-

eters. In the spirit of the lower-hybrid regime, the ions are

taken as unmagnetized, whereas the electrons are magne-

tized. We work in the frame where the total momentum den-

sity vanishes, sometimes called the “proper frame”. We em-

phasize that the drift and density values of the reflected ion

beam and the incoming ion core cannot be arbitrarily cho-

sen yet must satisfy the zero current condition for an appli-

cation to the shock’s foot, namely nbVb + ncVc = 0. Hence-

forth, the values selected for the numerical results that follow

differ slightly from those discussed in Sect. 3.1. The param-

eter values, which are summarized in Table 2, assume that

the reflected ion beam of Fig. 1 has density nb = 0.2 ne and

drifts at speed Vb = 10 VA versus the electron population at

rest. The incoming ion core drifts in the opposite direction

with Vc = −2.5 VA and has a density nc = 0.8 ne. Both ion

populations have the same thermal velocity vtc = vtb with

βc + βb = 0.22. Electron temperature will vary as specified.

Details concerning the dielectric tensor entering our calcula-

tions can be found in Appendix A.

3.2.1 Reflected ion beam

Let us first examine the case where an ion population drifts

fast with respect to the electrons, a situation represented by

the reflected beam in Fig. 1b. The cold model then predicts

two zones of instability for oblique whistlers at fixed θ which

are labeled WH-A and WH-B in Fig. 7a. Now, from the study

on electron damping and Fig. 5a, we can expect that whistlers

in WH-B are more damped than those in WH-A due to their

larger wavenumbers. That is indeed the case, as illustrated

in Fig. 8, which shows the effect of the electron tempera-

ture. Profiles of γ (k) at the fixed propagation angle θ = 50◦

are displayed for two βe values. When electrons are very

cold, namely βe = 0.02, the profile exhibits the two zones

of growth (γ > 0) corresponding to WH-A and WH-B, as

expected from the cold model. However, the electron tem-

perature has a dramatic effect, since already with βe = 0.04

the instability at high wavenumbers (for kc/ωpi > 40) is sup-

pressed due to electron damping (γ < 0).

Numerical solutions of the dispersion relation in [k,θ ]
space for two electron temperatures (βe = 0.06,0.14) are dis-

Ann. Geophys., 35, 1093–1112, 2017 www.ann-geophys.net/35/1093/2017/



L. Muschietti and B. Lembège: Two-stream instabilities within quasi-perpendicular shock front 1101

Table 2. Species characteristics in normalized units.

Electrons Ion core Ion beam

density ne = 1.0 nc = 0.8 nb = 0.2

Drift Ve = 0. Vc = −2.5 Vb = +10

Gyrofrequency �ce = 900 �cc = 1 �cb = 1

Plasma frequency ωpe = 9000 ωpc = 268 ωpb = 134

Gyroradius ρe = 0.0111 ρc = 0.332 ρb = 0.332

Debye length λde = 1.22 × 10−3 λdc = 1.24 × 10−3 λdb = 2.47 × 10−3

Temperature Te = 1 Tc = 1 Tb = 1

Thermal velocity vte = 10 vtc = 0.332 vtb = 0.332

Beta βe = 0.22 βc = 0.197 βb = 0.0984

c
i

Figure 8. Effect of the electron temperature on the growth rate. So-

lution of the full dispersion relation for oblique whistlers (θ = 50◦

fixed) destabilized by an ion beam drifting at Vd = 10 VA (parame-

ters of Table 2). Of the two potential candidates for growth, WH-A

and WH-B (see Fig. 7a), the instability at high wavenumbers is dra-

matically quenched (γ < 0) by even slightly warm electrons (com-

pare βe = 0.04 with βe = 0.02).

played in Fig. 9a, b. We use red hues to indicate growth

rates and blue hues for damping rates. In addition, solid con-

tours as in previous plots mark the real frequency ω/�ci.

Figure 9a and b exhibit unstable and damped domains and

demonstrate that the electron temperature quenches the un-

stable locations at high wavenumbers. Recall Fig. 7c of the

cold model and its predicted profile for the unstable loca-

tions in the [k,θ ] space. This profile is noticeable through

the reddish area in Fig. 9a and has a maximum at about

θ ∼ 59◦ and kc/ωpi ∼ 30, viz. kc/ωpe ∼ 1, as predicted by

Eq. (7). The plot is drawn for the same very cold temper-

ature βe = 0.06 used in Fig. 5c. When electrons warm up,

more of the high wavenumbers are stabilized as demon-

strated with Fig. 9b. The maximum growth rate is then dis-

placed toward lower wavenumbers: here kc/ωpi ∼ 20 and

θ ∼ 55◦ for βe = 0.14. For even warmer electrons such as for

our nominal electron temperature of βe = 0.22, the unstable

domain is further shifted toward lower wavenumbers with

almost no instability beyond kc/ωpi ∼ 30, viz. kc/ωpe ∼ 1.

Figure 9c provides a zoomed-in view of the unstable domain

in this instance. The most unstable waves (dark-red area)

have kc/ωpi = 16.5 ± 4.5 and θ = 53◦ ± 4◦.

3.2.2 Incoming ion core

Section 3.1 has demonstrated that the relatively slow drift

of the incoming ion core/electrons enables destabilization

of quasi-perpendicularly propagating whistlers with frequen-

cies around ωLH. We have numerically solved the warm dis-

persion relation in the case where the ion core with a rela-

tive density nc = 0.8 ne drifts at Vd = 2.5 VA. Figure 10 pro-

vides a zoomed-in view of the domain of maximum growth

in [k,θ ] space. As previously, red hues indicate growth rates

and blue hues damping rates. Comparing this plot to Fig. 9c

(fast drift case), one notes two points: first, the growth rate is

somewhat larger; second, the aspect ratio of the plot is quite

different. The wavenumber range is more extended yet the

angular range is more limited. This feature is in fact consis-

tent with the profile θ(κe) of Fig. 7c. The maximum growth

is now centered about wavenumbers kc/ωpi = 30 (or κe ≡
kc/ωpe = 1), where the profile is quite flat. Hence, the cor-

responding spread δ(kc/ωpi) is large, whereas the spread δθ

is limited to a few degrees. By contrast, in the fast drift case

of Fig. 9c the maximum growth is centered about wavenum-

bers kc/ωpi = 16.5 (or κe ≡ kc/ωpe = 0.55). Here the pro-

file marked “fast” has a clear positive slope, which leads to a

larger δθ spread. Accordingly, the numerical solution plotted

in Fig. 9c shows the angular spread to be at least 10◦.

4 Perpendicular/quasi-perpendicular electromagnetic

ECDI

Reverting to the schematic plot in Fig. 7a, which treats the

case where an ion population drifts fast with respect to the

electrons, one sees that for nearly perpendicular propaga-

tion (here θ = 85◦ in red) the beam mode can intersect the

first Bernstein branch. The frequency is near �ce and the

wavenumber near kρe ∼ vte/(Vd sinθ) ∼ 1. Of course, Bern-

stein modes are commonly defined with wavevectors at ex-

actly 90◦ to Bo and experience no damping. However, they

belong to a larger class of modes, called the electron cy-

clotron harmonic waves (ECHWs), which can propagate in

a narrow angular range between θo and 90◦ with minimal
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Figure 9. Numerical solutions of the dispersion relation in [k,θ ]
space for the case of a fast ion beam with Vd = 10 VA and nb/ne =
0.2. Zones made unstable by the beam are marked with red hues,

while blue hues denote damping. Note the changes in the color code

between the three panels (a, b, c). The real frequency is indicated

by contours labeled with the value of ω/�ci. An increased elec-

tron temperature quenches the instability at the higher wavenum-

bers (compare panels a and b). (c) Zoomed-in view of the unstable

region for βe = 0.22, relevant temperature for the simulation pre-

sented in Sect. 5.2.

  

kc/ pi 
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Figure 10. Zoomed-in view similar to Fig. 9c for a slow drift case

such as the ion core with Vd = 2.5 VA, nc/ne = 0.8, and βe = 0.22.

damping as compared to their frequencies (Lembege, 1979a,

and references therein). The angle θo is typically a few de-

grees less than 90◦ and depends upon the wavenumber and

the frequency. For θ < θo the damping increases dramatically

due to the Doppler-shifted resonant velocity on the electrons.

Incidentally, the direction of the ECHW’s group speed is

given by the normal to the undamped part of the (k⊥,k‖) di-

agram. This undamped part can be either convex or concave

depending on the wave frequency ratio ω/�ce within a given

dispersion branch, which allows the direction of the group

speed to cover a very large spatial range. This explains why

the waves can be spatially detected in all directions in real

space around a source, even though low-damped wavevec-

tors are themselves confined within the narrow angular range

(θo, 90◦) in k space (Lembege and Gonfalone, 1978; Lem-

bege, 1979b; Thiel and Lembège, 1982).

For the present work, the important feature to note is

the quasi-absence of damping for waves with θ > θo, which

means that the waves can exist in a cone angle about 90◦

that is finite and not zero as often believed. This is illus-

trated in Fig. 11a, which displays dispersion results com-

puted numerically with the full EM tensor (see Appendix A)

for directions off perpendicular. One sees that the damping

is less than 10−3�ce (lighter hue of blue) for a few degrees

off θ = 90◦. In the presence of an ion beam, this damp-

ing can easily be overcome, leading to unstable modes. Fig-

ure 11b shows the area in [k,θ ] space that is unstable due

to the same ion beam we used in Fig. 9 for the oblique

whistlers. Beam parameters are nb/ne = 0.2 and Vd/VA =
10. The maximum growth rates (marked with dark-red hues)

are γ > 3×10−2�ce. These are larger than the rates obtained

for the oblique whistlers, which peak at γ ≈ 8�ci, by over a

factor of 3.
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Figure 11. Waves with much larger wavenumbers and frequencies

than those in Fig. 9c can also be destabilized by the same ion beam

(with Vd = 10 VA and nc/ne = 0.2). They belong to an extension of

the first Bernstein branch and are not strictly perpendicular. Disper-

sion relation without (a) and with (b) the ion beam. Real frequen-

cies are indicated by contours labeled with the values of ω/�ce.

Wavenumbers are normalized by the electron gyroradius ρe. Damp-

ing (due to electrons) is indicated by hues of blue, while the zones

made unstable by the beam are marked with red hues.

5 Simulations

5.1 Description of 1-D PIC simulation

We employ a 1-D electromagnetic PIC code with periodic

boundary conditions and initially load a plasma made of the

three components depicted in Fig. 1b. The simulation is car-

ried out in the same frame as used for the dispersion analysis,

often known as the proper frame, where the total momen-

tum vanishes. The components, namely electrons, ion beam,

and ion core, are given identical characteristics (defined in

Table 2) to those used for the dispersion computations of

Sects. 3.2 and 4. In the spirit of lower-hybrid instabilities,

the simulation treats the ions as unmagnetized, whereas the

electrons are magnetized. Since we are restricted to a 1-D

3V code, the direction of the unstable wavevector k is prede-

termined by the simulation setup to one spatial direction (1-

D), while particle velocities can have three spatial directions

(3V). Oblique simulations are performed where the angle θ

between k and the background magnetic field Bo is prede-

fined following the information obtained from the dispersion

analysis in Sects. 3–4. Figure 2 shows in blue the orienta-

tion of the three axes associated with the simulations. With

respect to the system of axes defined by the direction of V d

and Bo used in previous sections, the simulation system is

rotated by π/2−θ within the plane [k,Bo] and composed of

the directions L (for longitudinal field) along the wave vector

and two directions t1 and t2 (for transverse field). The direc-

tion t2 is contained in the plane [k,Bo] and thus partially

projects along Bo, while t1 is perpendicular to the plane and

has no projection along Bo.

Two series of simulations are performed – one along

an oblique direction θ = 55◦ and one along a quasi-

perpendicular direction θ = 84◦. The angle θ = 55◦ is cho-

sen to capture the oblique whistlers destabilized by the

fast ion beam which have maximum growth according to

Fig. 9c. The angle θ = 84◦ is chosen to capture the quasi-

perpendicular whistlers destabilized by the slow ion core

which have the maximum growth according to Fig. 10. The

box is long enough to include the most unstable wavelengths

for the oblique whistlers as predicted from Fig. 9c. The grid

consists of 8192 cells and spans 16 384 λde, where λde is the

electron Debye length (or equivalently 546 electron inertia

lengths or 18 ion inertia lengths). The grid cells are small

enough (cell size 1 = 2λde) to describe the short-wavelength

Bernstein waves expected from Fig. 11b (kρe = 1.4 implies

a wavelength λ ≈ 45λde). The electric and magnetic fields

have five components: Et1 , Et2 , EL, Bt1 , and Bt2 , where EL is

the longitudinal component satisfying Poisson equation. Fi-

nally, we use 2000 macroparticles per population (ion beam,

ion core, and electrons) and per cell for achieving good statis-

tics.

The simulation results presented here are preliminary due

to the use of a 1-D code. Our objectives are twofold. First, we

want to confirm by actual PIC results the dispersion analysis

which makes up the bulk of this paper. Second, the aim is

to “calibrate” the various instabilities and prepare the stage

for 2-D simulations to come. In this light the simulation runs

will be limited to the “linear” stage. The nonlinear stage has

to be addressed with 2-D simulations since coupling between

waves propagating at various angles can be expected in this

regime.

5.2 Unstable oblique whistlers

Here, we set θ = 55◦ and run the simulation for several hun-

dreds of �−1
ce , or a few tens of ω−1

LH, while the instability is

in its “linear” regime. A sample of the results is visible in

Figs. 12 and 13. The wave energy is heavily dominated by

the magnetic part. We normalized the latter to the kinetic en-

ergy of the electrons at t = 0 and show its time history in

Fig. 12a. A power spectrum is shown at time tA = 780 �−1
ce

in Fig. 12b. The power is clearly concentrated in wavenum-

bers around kc/ωpi = 18, as expected from the dispersion
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Figure 12. Whistler instability for oblique propagation, θ = 55◦

and βe = 0.22. (a) Time history of the magnetic wave energy, which

shows the slow development of the instability. For reference, we

show the time τLH ≡ 2π/ωLH, which was characteristic of our pre-

vious simulations on the ECDI (Muschietti and Lembège, 2013).

Note that the ion cyclotron period τci = 5.7 × 103 �−1
ce is much

longer than the present simulation’s time. (b) Power spectra of the

two magnetic components Bt1 and Bt2 at time tA = 780 �−1
ce indi-

cated in (a). The spectra agree with the results obtained from the dis-

persion study: wavenumbers extend over the range 14 < kc/ωpi <

22 (destabilized by the fast drift of the ion beam).

analysis shown in Fig. 9c. One can also observe that the mag-

netic component Bt1 is somewhat larger than Bt2 . This fea-

ture is consistent with the asymmetry noted above between

the two transverse directions. For wave frequencies in the

lower-hybrid range, the electrons are magnetized, whereby

their motion in the direction t1 is inhibited as compared to

that in the direction t2, which has a component along Bo.

One can therefore expect the electron current jt1 to be smaller

than jt2 , resulting in Bt1 being larger than Bt2 .

Figure 13 further documents the characteristics of the

waves excited in the simulation. In order to check whether

the frequencies are those expected from the dispersion anal-

ysis, we set up probes at fixed positions and register the lo-

cal magnetic field versus time. A sample of such a record is

shown in Fig. 13a, which exhibits oscillations with a period

on the order of 40 �−1
ce . The associated power spectrum is

shown in Fig. 13b, where the frequency is normalized with

respect to �ci for an easy comparison with the frequencies of

Fig. 9c. The power is peaked at ω ≈ 140±10 �ci, which is in

very good agreement with the dispersion study that predicts

a frequency ω = 138 �ci for kc/ωpi = 18 and θ = 55◦.

Another feature to analyze is the polarization of the ex-

cited waves. To this end, we construct hodograms of the

magnetic and transverse electric fields by means of the fol-

lowing procedure. The components Bt1 , Bt2 , Et1 , and Et2

are assumed to have a phase which varies according to

B
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Figure 13. Whistler instability for oblique propagation, θ = 55◦

and βe = 0.22. (a) Time variation of the wave components Bt1
and Bt2 . (b) Power spectrum showing the frequency ω ∼ 140 ±
10 �ci, in agreement with predictions from the dispersion analysis.

(c) Hodograms of the transverse electric and magnetic fields after

filtering (see text). The direction of rotation follows the electron gy-

romotion, which confirms the whistler nature of the wave.

(kξ −ωt +φ), where ξ measures the distance along the wave

normal and φ is a constant specific to each component. After

examining snapshots at increasing times we safely conclude

that the phase speed is positive; hence, k and ω are positive

numbers. Now, one can construct hodograms either by fix-

ing ξ and letting the time t vary or, conversely, by fixing t

and letting ξ vary. We choose the latter method because of

a better data sampling. The magnetic signal in ξ evidences

very clear waveforms which are similar to those shown in

Fig. 13a and translates in the well-peaked power spectra

shown in Fig. 12b. On the other hand, the electric signal

is very noisy even with the large number of macroparticles

employed. Its power spectrum (not shown here) nonetheless

includes a peak at kc/ωpi = 18, which is clearly associated

with that in the magnetic spectrum. Therefore, in order to

deal with the noisy electric signal, we design a filter centered

around kc/ωpi = 18 that is wide enough to fit the magnetic

spectrum and its well-defined peak. The filter is then applied

to the electric signal in order to isolate the electric part, which

is related to the magnetic waveforms. Figure 13c displays the

resulting hodograms. The direction of the field rotation, indi-

cated by a red arrow, corresponds to that of the electron gy-

romotion. Therefore the wave is right-polarized, which con-

firms its whistler nature. Applying Faraday’s law enables us

to check another point for consistency. Since Bt/Et = c/vph,

we can independently estimate the phase speed vph of the

waves. One obtains vph = c/35, which yields vph = 8.6 VA
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Figure 14. Quasi-perpendicular instability for θ = 84◦ (MTSI and ECDI). (a) Time history of the electrostatic and magnetic energy. For

reference we show the lower-hybrid period τLH as in Fig. 12. (b) Spectra at tA = 288 �−1
ce agree with predictions from the dispersion study:

wavenumbers extend in the range 20 < kc/ωpi < 45 for the whistler (destabilized by the slow drift of the ion core) and kc/ωpi ∼ 130 (viz.

kρe ∼ 1.44) for the extended Bernstein wave (destabilized by the fast drift of the ion beam). (c) Spectra at tB = 550 �−1
ce show that the

whistler has grown manyfold (compare the different amplitudes of the magnetic component Bt1 at tA and tB). Its electrostatic component

remains modest though. The Bernstein wave has died out due to trapping of the beam ions.

using the value c of Table 1. This value is very close to the

projection of the beam speed (see Table 2) along the direc-

tion of the wave normal: sin(55◦) × 10 VA = 8.2 VA. It also

confirms that the wave is carried by the ion beam.

5.3 Unstable quasi-perpendicular whistlers and

Bernstein waves

Here, we set θ = 84◦ and run the simulation for a somewhat

shorter time than in the previous case as the instability devel-

ops faster. The simulation in fact exhibits two instabilities:

one at early time which has significant electrostatic energy

and one at later time which is dominated by magnetic energy.

Figure 14a shows the time history of the electrostatic energy

E2
L/8π and the magnetic energy B2/8π , both normalized as

in Sect. 5.2 by the kinetic energy of the electrons at t = 0.

Early in the run, the electrostatic energy dominates the mag-

netic energy. At time �cet = 288, both electrostatic and mag-

netic energy equal 1.9 × 10−4nTe0 and B2 crosses over E2
L.

Thereafter, B2 dominates E2
L, which reaches a maximum at

�cet = 360 and saturates on levels E2
L/(8π) ≤ 4×10−4nTe0.

On the other hand, B2/(8π) ∼ 10−2nTe0 by the end of the

run, namely over an order of magnitude larger and still keeps

increasing.

Let us now examine the power spectra of the fields at time

tA = 288 �−1
ce . Figure 14b shows both the magnetic spec-

trum associated with Bt1 (comparable to Bt2 ) and the elec-

trostatic spectrum of EL. The magnetic spectrum clearly ex-

hibits two types of waves. The short wavelength type with

kc/ωpi ≈ 130 ± 5 is attributed to the ECDI and corresponds

to an extension of Bernstein mode for propagation angles

off 90◦ (Muschietti and Lembège, 2013). Indeed, the disper-

sion analysis of Fig. 11b predicts that for θ = 84◦ the beam

can excite waves with wavenumbers in the range 1.44 <

kρe < 1.51, or equivalently 130 < kc/ωpi < 136 after using

Tables 1 and 2. The waves have a strong electrostatic compo-

nent visible in the spectrum of EL and a magnetic component

showing up here in the spectrum of Bt1 . They are destabilized

by the fast drift of the ion beam versus the electrons, which

is confirmed by their signature in the ion phase space (not

shown). The long wavelength type with 20 < kc/ωpi < 45 is

due to the slow drift of the ion core versus the electrons (see

Fig. 1b). Indeed, the dispersion analysis of Fig. 10 predicts

that for θ = 84◦ the ion core excites waves with wavenum-

bers precisely in this range. The waves do have an electro-

static part too weak to show up in the spectrum of EL at this

early time. Being excited and carried by the ion core, they

propagate in the direction opposite to the Bernstein waves.

Figure 14c shows the spectra of Bt1 and EL at late

time tB = 550 �−1
ce . The quasi-perpendicular whistlers have

grown tremendously, as evidenced by comparing the scales

between Fig. 14b and c. Their level is now so high that their

presence is visible in the phase space of the ion core (not

shown). They show up equally in the spectrum of EL. At

such a late time the ECDI has saturated by trapping the ion

beam as explained in Muschietti and Lembège (2013) and

the short-wavelength Bernstein wave has died out.
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Figure 15. Quasi-perpendicular instability for θ = 84◦ (MTSI and

ECDI) and βe = 0.22. (a) Time variation of the magnetic compo-

nent Bt2 showing both the growing low-frequency whistler and the

high-frequency extended Bernstein wave. The concurrent electro-

static signal EL confirms the identification of the Bernstein wave.

We note that the two waves are moving in opposite directions.

We now investigate the frequencies involved in the two

types of waves in order to further the link between the sim-

ulation run and the dispersion analysis presented in Sects. 3

and 4. Probes at fixed positions record the local magnetic and

electric fields versus time. Figure 15 shows a sample of such

recordings. The magnetic signal, which is illustrated by Bt2

in Fig. 15a, clearly exhibits a slow oscillation with period

of order �cet = 90 on which a fast oscillation is superim-

posed; the fast oscillations appear in the electrostatic signal

EL too. The slow oscillation (period 3–4 ω−1
LH) is due to the

growing quasi-perpendicular whistler, whereas the fast oscil-

lation (period 0.15 ω−1
LH) is attributed to the Bernstein wave.

Indeed, the power spectrum of the electrostatic signal, shown

in Fig. 15b, indicates a frequency close to 1.35 �ce, which

is exactly the value expected for a Bernstein wave excited by

the relative fast drift of the ion beam versus the electrons (see

Fig. 11b).

The quasi-perpendicular whistlers are the result of an in-

stability that has been known for a long time and is gener-

ally referred to as modified two-stream instability (MTSI)

(e.g., McBride et al., 1972; Matsukiyo and Scholer, 2003).

A reason this instability has attracted a lot of attention is that

it has the remarkable property of requiring only a modest

drift between ion and electron populations and, unlike the

ion-acoustic instability, does not need a large ratio of elec-

tron to ion temperatures. For example, here one has |Vc| =
0.25 vte and Te = Tc. Even though the waves have a large

magnetic energy, indeed much larger than the electrostatic

energy as evident in Fig. 14 at time tB, their electric field

is mostly electrostatic. For propagation angles close to per-

pendicular (here θ = 84◦), the longitudinal component EL

completely dominates the transverse component Et, in agree-

ment with the results of Wu et al. (1983) such as in their

Fig. 7. The apparent paradox derives from the large refrac-

tion index of the excited waves. As we have seen in Figs. 10

and 14, the wavelengths of these whistlers are such that

kc/ωpe ≈ 1. Hence, the refraction index kc/ω ≈ ωpe/ω ≈
ωpe/�ce

√
M/m ≫ 1. Thus, applying Faraday’s law, one can

write E2
L/E2

t = (M/m)(E2
L/B2), which shows that thanks to

the large mass ratio the electric field can be mostly electro-

static (|EL|/|Et| ≫ 1), while simultaneously the ratio E2
L/B2

is small.

Because a quasi-perpendicular whistler has a wavevector

at a slight angle off 90◦ to Bo, its longitudinal electric field

drives the electrons in two distinct motions: a simple paral-

lel acceleration along Bo and a EL × Bo drift in the direc-

tion t1 defined in Fig. 2. The two associated fluctuating elec-

tron currents j‖ and j⊥ drive the magnetic oscillation with

Bt1 ≈ (4π/c)(j‖/k) and Bt2 ≈ (4π/c)(j⊥/k). As discussed

by Matsukiyo and Scholer (2003), the ratio |Bt1 |/|Bt2 | of the

unstable waves depends upon βe: the ratio is equal to 1 for

very small values of βe yet increases for warm plasmas. Mat-

sukiyo and Scholer (2003) attribute this change to a decrease

in the fluctuating current j⊥ in a warm plasma. Indeed, con-

sidering that kρe = kc/ωpe

√
βe/2 ≈

√
βe/2 for the unstable

waves, it is physically clear that, as βe approaches 1, the gy-

roradius becomes comparable to the wavelength for a grow-

ing part of the electron population. These electrons cease to

EL × Bo drift, whereby the current j⊥ decreases.

The other, parallel fluctuating current j‖ is linked with the

damping that comes from the Cerenkov resonance vr0 (de-

fined in Eq. 4). Even for as large an angle as 84◦, vr0 still

lies on the electron distribution: a wave with kc/ωpe = 1 has

vr0 ≈ 2 vte according to Fig. 6a, and an associated damp-

ing on the electrons of γ ≈ −0.12 ω = −7 �ci according to

Fig. 5a. This damping is overcome by the destabilizing effect

caused by the slow drift of the ion core versus the electrons,

leading to unstable quasi-perpendicular whistlers. Our argu-

mentation shows again that the electrons have to be treated

kinetically when computing the instability’s growth rate (Wu

et al., 1983; Matsukiyo and Scholer, 2003). Warm electrons

both cut the range of unstable wavenumbers and reduce their

growth rates, as shown in Fig. 4 of Matsukiyo and Scholer

(2003). Owing to this unavoidable kinetic nature of the elec-

trons, Wu et al. (1983) renamed the instability “kinetic cross-

field streaming instability”. However, the moniker MTSI has

stuck in the literature.

6 Discussion

We now further discuss the relation of the two-stream insta-

bilities studied in this paper with work published previously.

Our aim is to provide a unified context while remaining in

a “linear” regime. We believe that nonlinear stages need be
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addressed with 2-D simulations due to the potential coupling

between waves that propagate at various angles once they

reach large amplitudes.

For perpendicular and quasi-perpendicular propagation,

two different instabilities can arise. By quasi-perpendicular,

we mean here a few degrees off 90◦: an angle sufficient

to enable the electrons to run along Bo under the action

of the wave electric field, yet modest enough to keep the

wavenumber k‖ small, in case the wave experiences strong

damping on the electron distribution. The first instability is

also the one which occurs at the highest frequency and has

the fastest growth rate: the ECDI takes its free energy from

the fast drift of the reflected ion beam versus the electrons

and excites waves close to the electron cyclotron frequency.

The wavevectors are directed within a narrow cone about

an axis perpendicular to Bo and along the direction of the

beam toward upstream. Wavelengths are such that kρe ∼ 1.

The instability has been identified in 1-D shock simulations

(Muschietti and Lembège, 2006), reported in the 2-D simula-

tions of Matsukiyo and Scholer (2006), and studied in detail

in Muschietti and Lembège (2013) for strictly perpendicu-

lar propagation. We encounter it here again for an angle 6◦

off perpendicular as visible in Figs. 14 and 15. An important

consequence of this slight angle is that ECDI acquires a mag-

netic component induced by the electrons’ motion along Bo

The waves have similarities to those reported by Wind and

STEREO (Breneman et al., 2013; Wilson III et al., 2011).

The second instability occurs around the lower-hybrid fre-

quency and is due to the slow drift of the ion core ver-

sus the electrons. The wavevectors are thus directed to-

ward the shock ramp. As shown with Eq. (7) and Fig. 7c,

a slow drift, on the order of the Alfvén speed, yields un-

stable wavevectors close to (yet distinct from) 90◦. Wave-

lengths are several times the electron inertia length such that

kc/ωpe ∼ 1. This instability is known in the literature under

the moniker MTSI, which stands for “modified two-stream

instability”. The “two-stream” denomination stems from ear-

liest investigations based on a simple, electrostatic, and fluid

dispersion relation in which the susceptibility of the elec-

trons associated with their unimpeded motion along Bo re-

duces to (ωpe/ω)2(cosθ)2. This term provided one of the

“stream”, whereas the other was the unmagnetized ion term

ω2
pi/(ω − kVd)

2. If θ is close to 90◦ and the angular term

cosθ ∼
√

me/Mi, the electrons acquire an effective mass

comparable to the ions, which gives rise to a two-stream-like

instability (McBride et al., 1972). On the other hand, the in-

stability has very little similarity to a classic two-stream in-

stability such as the Buneman instability. We have seen in

Sect. 5.3 that (i) the magnetic energy is larger than the elec-

trostatic energy and (ii) the electrons’ behavior is not fluid yet

kinetic in nature and provides a significant Cerenkov damp-

ing that has to be overcome by the destabilizing effect of

the relative drift of the ion core/electrons. Even though those

points have been noted by a few authors since the study by

Wu et al. (1983), the MTSI terminology has remained in use.

The third instability generates whistlers that propagate

obliquely with respect to Bo and have longer wavelengths.

It takes its free energy from the fast drift (many times VA)

of the reflected ion beam versus the electrons and is thus di-

rected toward upstream. Which wavevectors are excited is the

result of a competition between the destabilizing effect of the

beam and the damping on the electrons due to the Cerenkov

resonance. The wavelength is a fraction of the ion inertia

length and the frequency a few times the lower-hybrid fre-

quency. Specifically, with our nominal parameters, we have

maximum growth for λ ≈ 0.3 c/ωpi and ω ≈ 4–5 ωLH, while

θ = 55◦. Let us emphasize the variability of these values. As

we have seen from Fig. 9, a range of wavenumbers and angles

can be excited. Generally speaking, colder electrons enable

the peak growth to shift toward shorter wavelengths and more

oblique propagation angles. Further, as was discussed in con-

nection with the location marked WH-A in Fig. 7a, decreas-

ing the beam drift increases the wavelength. The waves share

many similarities to the obliquely propagating whistlers mea-

sured in detail by Polar (Hull et al., 2012).

Our present study is at the crossroads of the works of

Hellinger and Mangeney (1997) and Matsukiyo and Sc-

holer (2006). Hellinger and Mangeney (1997) carried out

simulations of quasi-perpendicular shock with a 2-D hybrid

code in which they observed a right-handed mode appearing

to belong to the whistler branch of the fast magnetosonic.

This wave propagated toward upstream obliquely to both the

shock normal and the background magnetic field. The au-

thors suggested that these whistlers were generated by the re-

flected ion beam, which was supported by a dispersion analy-

sis. The wavelengths and frequencies involved were typically

λ ≈ c/ωpi and ω ≈ 30 �ci. On the other hand, Matsukiyo and

Scholer (2006) carried out a full PIC simulation in 2-D in or-

der to study the evolution of the MTSI in the foot of a per-

pendicular shock. Besides the expected quasi-perpendicular

whistlers excited by the drift of the ion core, the simula-

tion exhibited oblique whistlers that propagated in the op-

posite direction and were driven by the reflected ion beam.

Matsukiyo and Scholer (2006) named this other instability

MTSI-2, a name which was reused by Umeda et al. (2012).

The wavelengths and frequencies involved were typically

λ ≈ 6c/ωpe (λ ≈ 0.14 c/ωpi) and ω ≈ 8 ωLH (ω ≈ 350 �ci).

These wavelengths are twice shorter and those frequencies

twice higher than the oblique whistlers of our paper. This is

consistent with the much colder electrons Matsukiyo and Sc-

holer (2006) used in their simulations: βe = 0.05 instead of

our nominal βe = 0.25. Indeed, Fig. 9a shows the predictions

of our dispersion analysis for cold electrons with βe = 0.06:

the most unstable whistlers have λ ≈ 0.2 c/ωpi = 6 c/ωpe

and ω ≈ 240 �ci = 8 ωLH (precisely as in Matsukiyo and

Scholer, 2006). As for the whistlers reported by Hellinger

and Mangeney (1997), they have considerably longer wave-

lengths (by a factor of 3) and lower frequencies (ω < ωLH)
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than the whistlers of Matsukiyo and Scholer (2006) and the

present paper. Nonetheless, we propose that Hellinger and

Mangeney (1997) did indeed study the same instability in

a regime with longer wavelengths. Returning to Fig. 5, we

note that for all three electron temperatures the damping of

the waves drops under 5 % when long wavelengths such as

kc/ωpi ≤ 5 are considered. This suggests that at such large

scales as compared to the electron scales the role of the elec-

trons becomes secondary, as requested for the use of a hybrid

code (Hellinger and Mangeney, 1997).

Finally, we should mention that the MMS mission, with

its four spacecraft, has made measurements of whistlers in

the Earth’s bowshock which can establish wavevector char-

acteristics together with plasma populations down to the sub-

ion inertia scales. While a typical lower-hybrid period is

τLH ∼ 100 ms, the fluxgate magnetometer can sample wave-

forms in all the magnetic field components at the rate of

128 samples per second (Russell et al., 2016). Simultane-

ously, the Fast Plasma Investigation (Pollock et al., 2016) can

provide electron distributions down to 30 ms and ion distri-

butions down to 150 ms. These cadences are certainly high

enough to study the role of the ions with respect to the lower-

hybrid whistlers and the effects the latter have on the elec-

trons.

7 Conclusion

In this study we have examined the wave activity that can

possibly develop in the foot of quasi-perpendicular shocks, as

it arises from the relative drifts across the background mag-

netic field Bo of three particle populations: incoming ions,

reflected ions, and electrons. Our main goal was to consider

the role of different wave propagation angles with respect to

Bo and compare the corresponding two-stream instabilities.

Three main types of instabilities and correspondingly excited

waves are identified:

– Generalized Bernstein waves with wavelengths close

to the electron gyroradius which propagate toward up-

stream at angles within a few degrees off 90◦ to Bo. Fre-

quencies are close to the electron cyclotron. Their free

energy is provided by the “fast” relative drift between

the reflected ions/electrons.

– Quasi-perpendicular whistlers with wavelength cover-

ing several times the electron inertia length (such that

kc/ωpe ∼ 1) which propagate downstream toward the

ramp at angles larger than 80◦ to Bo. Frequencies are

close to the lower hybrid. Their free energy is pro-

vided by the “slow” relative drift between the incoming

ions/electrons.

– Oblique whistlers with wavelengths close to the ion in-

ertia length which propagate toward upstream at angles

about 50◦ to Bo. Frequencies are a few times the lower

hybrid. Their free energy is provided by the “fast” rela-

tive drift between the reflected ions/electrons.

Data availability. Access to the raw data may be provided upon

reasonable request to the authors.
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Appendix A: The dielectric tensor

The geometry used is displayed in Fig. 2: the background

magnetic field Bo points in the ẑ direction and the wave vec-

tor lies in the plane containing x̂ and ẑ, where it makes an

angle θ to ẑ. For convenience in this appendix, we adopt the

notation that indicates a one-dimensional array by one under-

line and a two-dimensional array by two underlines.

The dielectric tensor ǫ combines with the wave propaga-

tion terms to form the wave equation for the electric field

[

ǫ −
(

kc

ω

)2

I
T

]

· E = 0, (A1)

where I
T

≡ I−k k/k2 with I the unit tensor and I
T

the trans-

verse projection tensor (see, e.g., Ichimaru, 1973).

When the plasma is made of various populations, it is con-

venient to write the dielectric tensor as

ǫ = I + Q, (A2)

where the contributions of the various populations are added

into Q. If a population is magnetized, then its contribu-

tions satisfy the symmetries: Qyx = −Qxy , Qyz = −Qzy ,

and Qzx = +Qxz. If it is considered as unmagnetized, then

one has Qyx = Qxy = 0 and Qyz = Qzy = 0.

In our case, we are interested in waves with frequencies

ranging from the lower hybrid up to the electron cyclotron.

Therefore, the ions will be unmagnetized but the electrons

magnetized.

For the ions’ contribution we have four integrals of the

following type to evaluate:

Iαβ =
∫

dvxdvydvz

vαvβ

k · v − ω
k · ∂F

∂v
. (A3)

The ion distribution is modeled by a Maxwellian drifting

perpendicularly to Bo. Since the maximum growth rate is

obtained when the wavevector k lies within the plane de-

fined by Bo and the drift V d, one chooses V d = (Vx,0,0)

and k = (kx,0,kz). After some algebra, we can express the

integrals in terms of the plasma dispersion function Z:

Z(ζ ) ≡ 1

π1/2

+∞
∫

−∞

dt
e−t2

t − ζ
. (A4)

Elements of the tensor Q, where the argument ζ = (ω/k −
Vx sinθ)/

√
2vti, are given by

Qxx =
ω2

pi

ω2

{

cos2θ ζZ(ζ ) −
(

Vx√
2vti

+ ζ sinθ

)2

Z′(ζ )
}

, (A5)

Qxz = −
ω2

pi

ω2
cosθ

{

sinθ ζ
[

Z(ζ ) + ζZ′(ζ )
]

+ Vx√
2vti

ζZ′(ζ )

}

, (A6)

Qyy = −
ω2

pi

ω2

[

1 + 1

2
Z′(ζ )

]

, (A7)

Qzz =
ω2

pi

ω2

[

sin2θ ζZ(ζ ) − cos2θ ζ 2Z′(ζ )
]

. (A8)

We can perform a few checks on those expressions. For ex-

ample, if θ = π/2, then one can verify that Iαβ+Qαβ reduces

to the usual 1-D expressions for longitudinal and transverse

dielectric

1 + Qxx = 1 −
ω2

pi

2k2v2
ti

Z′(ζ ),

1 + Qyy = 1 + Qzz = 1 +
ω2

pi

ω2
ζZ(ζ ). (A9)

The electron distribution is modeled by an isotropic

Maxwellian without drift. However, the electrons being mag-

netized, their contributions to the dielectric tensor are made

of the usual sums combining modified Bessel functions and

plasma dispersion function. The Bessel functions In of order

n have η ≡ (k sinθ vte/�ce)
2 for argument, while the Z func-

tion has the parallel phase velocity shifted according to the

nth harmonic for argument,

ζn ≡ ω + n�ce√
2k cosθ vte

. (A10)

Elements of the tensor Q associated with the electrons are

listed here:

Qxx =
ω2

pe

ω2

1

η

n=+∞
∑

n=−∞
n2Ine

−ηζ0Z(ζn), (A11)

Qxy = −i
ω2

pe

ω2

n=+∞
∑

n=−∞
n(In − I ′

n)e
−ηζ0Z(ζn), (A12)

Qxz =
4ω2

pe�ce

ωk2v2
te sin2θ

n=+∞
∑

n=−∞
nIne

−ηZ′(ζn), (A13)

Qyy =
ω2

pe

ω2

1

η

n=+∞
∑

n=−∞

[

n2In + 2η2(In − I ′
n)
]

e−ηζ0Z(ζn), (A14)

Qyz = −i
ω2

pe tanθ

2ω�ce

n=+∞
∑

n=−∞
(In − I ′

n)e
−ηZ′(ζn), (A15)

Qzz = −
ω2

pe

ω2

n=+∞
∑

n=−∞
Ine

−ηζnζ0Z
′(ζn). (A16)

The other elements are found via the symmetries already

mentioned for magnetized species.
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Appendix B: Parallel electric field

Our purpose here is to assess how the parallel component of

the electric field Ez varies with the direction of the whistler

wave. For the sake of tractability we will assume the cold

plasma model, for which the terms Qαβ of the dielectric ten-

sor simplify considerably. One has (see, e.g., Swanson, 2003)

Qxx = Qyy = −
ω2

pe

ω2 − �2
ce

−
ω2

pi

ω2 − �2
ci

, (B1)

Qyx = −Qxy = −i
�ce

ω

ω2
pe

ω2 − �2
ce

+ i
�ci

ω

ω2
pi

ω2 − �2
ci

, (B2)

Qzz = −
ω2

pe

ω2
−

ω2
pi

ω2
. (B3)

All other terms are null.

The wave Eq. (A1) includes a 3×3 matrix, which leads to

three scalar equations. For the cold model, the last two scalar

equations read

QyxEx +
[

Qyy + 1 −
(

kc

ω

)2
]

Ey = 0, (B4)

(
kc

ω
)2 cosθ sinθ Ex +

[

Qzz + 1 − (
kc

ω
)2sin2θ

]

Ez = 0. (B5)

After eliminating Ex , one can express the parallel compo-

nent of the electric field Ez as a ratio to Ey , viz. the compo-

nent that is both transverse and perpendicular:

Ez

Ey

=
(

kc

ω

)2

cosθ sinθ
Qyy + 1 −

(

kc
ω

)2

Qyx

[

Qzz + 1 −
(

kc
ω

)2
sin2θ

] . (B6)

Note that Qyx is imaginary, which means that the phases of

Ez and Ey are in quadrature. It is also noteworthy that the

parallel component vanishes both for parallel propagation,

θ → 0, and for perpendicular propagation, θ → π/2. In the

latter case, one has an extraordinary wave, where the polar-

ization is linear with the electric field oscillating perpendicu-

larly to Bo. In the former case, one has a circularly polarized

transverse wave with the electric field rotating in the [x,y]
plane.

In order to extract further information from Eq. (B6), we

need to introduce approximations to Qα,β which result from

the ordering of frequencies for the oblique whistlers: �ci ≪
ω ≪ �ce ≪ ωpe. We then have

Qyy ≈
(

ωpe

�ce

)2
(

1 − ω2
LH

ω2

)

Qyx ≈ i
ω2

pe

�ce ω

Qzz ≈ −
ω2

pe

ω2
,

which are substituted in Eq. (B6) to yield

iEz

Ey

= m

M

(

kc

ωpi

)4
�ci

ω
cosθ sinθ

1 −
(ωpi

kc

)2
(

ω2

ω2
LH

− 1

)

1 +
(

kc
ωpe

)2
sin2θ

. (B7)

This equation still has an implicit angular dependence via ω

in the denominator. Let us define the function of order unity

U(k) ≡
1 −

(ωpi

kc

)2
(

ω2

ω2
LH

− 1

)

1 +
(

kc
ωpe

)2
sin2θ

(B8)

and use Eq. (1) to eliminate the frequency dependence in the

denominator of Eq. (B7). We obtain

iEz

Ey

≈ m

M

(

kc

ωpi

)3

× [1 + (kc/ωpe)
2]cosθ sinθ

[1 + (kc/ωpe)2 + (kc/ωpi)2cos2θ ]1/2
U(k). (B9)

Two remarks are in order. First, due the mass ratio, one

can expect the parallel electric field to remain modest, i.e.,

|Ez| < |Ey | for wavenumbers less than the electron iner-

tia length. For example, if kc/ωpi = 15 and M/m = 900

one has |Ez|/|Ey |.0.25. Second, the angular dependence

maximizes about θ ∼ 70◦ and this angle gets larger as the

wavenumber increases.
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