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Abstract

Fusing multi-modality information is known to be able

to effectively bring significant improvement in video clas-

sification. However, the most popular method up to now is

still simply fusing each stream’s prediction scores at the last

stage. A valid question is whether there exists a more effec-

tive method to fuse information cross modality. With the de-

velopment of attention mechanism in natural language pro-

cessing, there emerge many successful applications of at-

tention in the field of computer vision. In this paper, we pro-

pose a cross-modality attention operation, which can obtain

information from other modality in a more effective way

than two-stream. Correspondingly we implement a compat-

ible block named CMA block, which is a wrapper of our pro-

posed attention operation. CMA can be plugged into many

existing architectures. In the experiments, we comprehen-

sively compare our method with two-stream and non-local

models widely used in video classification. All experiments

clearly demonstrate strong performance superiority by our

proposed method. We also analyze the advantages of the

CMA block by visualizing the attention map, which intu-

itively shows how the block helps the final prediction.

1. Introduction

In recent years, thanks to the emergence of massive

video datasets [1, 14], applications of deep learning in video

classification have witnessed a rapid development. How-

ever, there is still a considerable improvement space to-

wards human-level video understanding. The state-of-the-

art video classification methods are mainly based on convo-

lutional neural networks. Despite tremendous progress has

been recently made in designing highly discriminative net-

work architectures, there still remain many open research

problems. This research essentially concerns the following

two problems:

Firstly, an insufficiently explore problem in video under-

standing is a more powerful way to capture the dynamic
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information or motions in videos. As one of the main differ-

entiators between videos and images, dynamic information

is regarded to be indispensable for effective video classifi-

cation. For example, it is a difficult task even for a human

being to discriminate from different kinds of dances (e.g.,

salsa dancing, tango dancing and dancing macarena) by

only having a glimpse at a single frame. A large number

of widely-known video semantic categories, such as danc-

ing and other sports, can be faithfully classified when we

can extract sufficient motion-related information like mov-

ing trajectories.

Secondly, subtle details are key for recognizing some

video categories or actions. The literature still lacks some

in-depth analysis on effectively attending to those discrim-

inative video details. Attention plays an important role in

the field of natural language processing and image recogni-

tion. But it is still a nascent research topic in video action

recognition. By grasping subtle details, humans can eas-

ily distinguish many classes. Considering the action sword

fighting or playing cricket, only a single frame is enough as

long as you can find a sword or a cricket. Generally, video

motions attract more human attention and are likely to be re-

lated to key clues. For example, for the two actions making

a sandwich and making pizza, their key objects sandwich or

pizza are both around the moving hands. In this situation,

motion can help attention.

Motivated by these observations, we propose a cross-

modality attention operation, which can make full use of

both static and motion information. Unlike the classic two-

stream framework [28] that fuses information from two

modalities in a late stage, we fuse the information in a more

hierarchical and effective way.

Our proposed cross-modality attention operation devises

such an attention mechanism that it encourages one modal-

ity absorbs most complementary information from other

modalities. In contrast to the recently-proposed non-local

operation [38], the proposed cross-modality attention can

pay attention to other modalities rather than being con-

strained in the same modality. When two modalities under

investigation are identical, our proposed method boils down

to the non-local operation. Another key trait is that atten-



tions are computed in a global manner. Specifically, spir-

itually alike the non-local operation, our proposed method

computes the response as a weighted sum of the features of

the other modality at all positions.

There are three main advantages of using the proposed

cross-modality attention operation, sketched briefly as be-

low: 1) It can effectively fuse the information between two

or more modalities; 2) It can capture long-range dependen-

cies by globally investigating the feature maps; 3) It can be

wrapped as a highly compatible block that can be inserted

into almost all existing neural networks and frameworks.

The rest of this paper is organized as: we first review re-

lated work in Section 2 and detail the novel cross-modality

attention operation / network design in Sections 3 and 4.

Section 5 shows the experiments and detailed analysis of

our module.

2. Related Work

With the significant development of deep learning in im-

age recognition [15, 29, 9, 10], a large number of active

researches have emerged in the field of video classification.

Karpathy et al. [13] contributed significant breakthrough in

the video classification task. Their major contribution is

3-D convolutional neural networks trained on the Sports-

1M data, which far exceeds traditional methods [35, 21] in

terms of top-1 or top-5 classification accuracies. This sem-

inal work demonstrates the power of temporal information

in video-related tasks.

Optical flow fields are known as conceptually simple and

empirically effective when attempting to capture the tem-

poral information. A variety of approaches have been de-

veloped to utilize optical flow in video classification. A

large body of existing works [28, 39, 3, 31] has re-iteratively

found that feeding the optical flow fields into a deep model

can bring comparable performance with the RGB stream

in video classification. After properly fused via late-stage

fusion, one can accomplish a performance better than ei-

ther stream. Recent endeavor along this research thrust in-

cludes direct mapping two adjacent frames to the optical

flow field [18, 11]. Researchers have also investigated using

deep neural networks for computing optical flows, which

can be expedited by modern GPU hardware. However, the

major obstacle stems from the lack of high-quality train-

ing data. To mitigate the data scarcity, some train an op-

tical flow model from synthesized datasets [18], or predict

the label of videos in an end-to-end way for improving the

accuracy[26, 19]. In addition, the optimization ideas in the

traditional methods are integrated into the design of the neu-

ral networks. Fan et al. [7] unfold the optimization itera-

tions in TV-L1 [41] as neural layers, and Sun et al. [31]

propose neural networks to learn the representations orthog-

onal to the optical flow. We would point out that, though

tremendous efforts have been noticed in computing optical

flows, litter has been done to explore how to effectively us-

ing optical flow in video classification.

Optical flow can be regarded as an explicit way to utilize

motion information to video classification. More recent re-

search is pursuing other alternatives that rely on deep neu-

ral networks is automatically distill spatio-temporal video

information. Typical examples include inflating 2D con-

volution into 3D convolution [12, 32, 33]. One of key

weaknesses of these models are the gigantic parameters

used for defining high-dimensional convolutions etc. Us-

ing pre-trained models is a popularly-verified effective strat-

egy for easing the model training in many tasks [24, 4, 5],

such as transferring deep models pre-trained on ImageNet

to 3D CNN. A naive solution is to duplicate the parame-

ters of the 2D filters T times along the time dimension,

and rescale all parameters by dividing by T [3]. This en-

sures a same response from the convolution filters. To re-

duce parameter number in 3D CNNs, some works factorize

3D convolutional filters into separate spatial and temporal

components and strike a compromise in accuracy and effi-

cacy [23, 33, 40]. Other relevant works mix 3D convolution

with 2D convolution in a neural network [36, 40, 44]. De-

spite the empirical success on indicative video benchmarks,

3D CNNs are far from reaching the point of fully acquir-

ing the motion information and replacing the optical flow.

Fusing with the optical flow stream is still an effective prac-

tice [3, 36]. In fact, we can regard 3D CNNs as a general

tool that acquires relation among adjacent frames. It can be

fed with either RGB frames or other modalities (e.g., optical

flow).

For complex video objects, other information also pro-

vide complementary information, including audio [17], hu-

man pose [6, 16], and semantic body part [43] etc. Learning

how to efficiently integrate multi-modality information is an

emerging research direction. Existing researches, such as

pooling at different stages [13, 20] or modeling long-range

temporal structure using LSTM [39], mainly concern fusing

in the temporal dimension. There are rarely relevant stud-

ies about the fusion of different modalities [39]. To date, the

mainstream method is still the two-stream method [28]. Our

primary goal is to design a network structure that is more

effective than two-stream and meanwhile achieves higher

precision.

Attention networks have been originally popularized in

natural language processing [2, 34], used for comprehen-

sion and abstractive summarization etc. Recent years have

observed a quick spread in computer vision [27, 8, 42]. Xie

et al [40] place a feature gating module after some convo-

lutional layers to weight the features in each channel in an

adaptive, data-dependent way. Long et al [17] propose at-

tention clusters, which aggregates local features to generate

a valid global representations for video classification. Non-

local networks [38] can weight all information (including



space and time) by adopting a mechanism similar to self-

attention. Our motivating observation is the lack of cross

modality attention block, which works globally as non-local

block but can make full use of cross-modality information.

Importantly, this block shall be compatibly inserted into

most existing network structures including the classic two-

stream inputs.

3. Cross Modality Attention

In this section, we give detailed description of the pro-

posed Cross Modality Attention(CMA) operation and its

implementation.

3.1. Formulation

Our proposed Cross Modality Attention(CMA) opera-

tion can be precisely described in the Q-K-V language,

namely matching a query from one modality with a set of

key-value pairs from the other modality and thereby extract-

ing most critical cross-modality information. Following the

notations in [34], we define the generic CMA operation as:

CMA(Q1,K2, V2) = softmax

(

Q1K
T
2√

dk

)

V2, (1)

where the index 1 or 2 represents different modality. Q is

the set of queries, K is a matrix of the memory keys and

V contains memory values. All Q, K and V are of feature

dimension dk.

Here we give a concrete instance of the CMA operation

in neural networks. Given a typical two-stream data (RGB

+ flow), a CMA operation can be written as:

zi =
1

C(x,y)
∑

∀j

f(xi,yj)v(yj) (2)

f(xi,yj) = eq(xi)k(yj)
T

/
√

dk (3)

C(x,y) =
∑

∀j

f(xi,yj), (4)

where x is from the feature maps of specific stage of the

RGB branch, such as the output of res4 in ResNet [9]. y

is from the feature maps in the flow branch. zi denotes the

output of the CMA operation. i and j are both indices of

feature maps (can be in space, time, or spacetime). q, k and

v are linear embeddings which map x or y to queries, keys

and values of dk dimensions respectively. The function f
can be flexibly defined, with many instantiations discussed

in [38]. For simplicity, we choose the embedded Gaussian

version in this paper.

The non-local operation [38] is essentially self-attention

and only pays attention to intra-modality. In comparison,

our proposed CMA is cross-modal. Moreover, the non-local

operation can be regarded as a special case of CMA when

K, Q and V are all from the same modality.

Figure 1: An example of CMA block. We show the shape of fea-

ture maps at each stage, such as H×W ×1024, where 1024 is the

number of channels. Let X be the feature maps of the RGB branch

and Y be the feature maps of flow branch. The number of chan-

nels is halved via 1× 1 convolutions. Reshaping or transposing is

performed whenever needed. “
⊗

” denotes matrix multiplication,

and “
⊕

” denotes element-wise sum.

3.2. CMA Block

A CMA block is a wrapper of the CMA operation that

can be inserted into many existing neural networks, which

is defined as:

outi = Woutzi + xi, (5)

where xi and zi are given in Eqn. (2). Wout defines a linear

embedding that can be implemented by convolution opera-

tion.

Figure 1 presents an example of the CMA block, where

Q comes from the RGB branch and V , K come from the

flow branch. This allows the RGB branch to attend over all

positions in the flow branch at a specific stage. As a result,

it can get more valuable information selectively from the

flow branch which may be weak or even missing in itself.

A CMA block can be added into any location of deep neural

networks, since it can be fed with input of any shape and en-

sure a same-shaped output. This flexibility allows us to fuse

richer hierarchical features between different modalities. To

make the CMA block more compatible, we add a residual

connection “+xi” [9]. This guarantees a non-worse accu-

racy with the CMA block by some simple means (e.g., ze-

roing Wout).

Implementation of CMA Blocks: We implement func-

tions q, k, and v as 1× 1 convolutions in space or 1× 1× 1



Figure 2: An overview of the video classification model. This model contains both RGB branch and Flow branch. In each branch, we

insert n CMA blocks, which play an important role in transmitting information between different branches. There are three outputs in this

model. Operations in dotted box are not essential since practically we can only use the output of the RGB branch for prediction.

convolution in space-time, denoted as convq , convk and

convv respectively. To reduce the computational complex-

ity and GPU memory consumption, we let convq reduce the

number of channels to be half of that in x, and convk and

convv have same number of channels as convq . Note that

we also insert a spatial max-pooling layer with stride 2 be-

fore k and v, further simplifying the computation. Inspired

by [38], a batch normalization layer is added after Wout and

has the scale parameters initialized to be zeros, which sets

the entire CMA block as an identity mapping.

4. Network Architecture

This section elaborates on our proposed video classifica-

tion model. We first introduce two branches in our model

and how the CMA blocks are inserted. Then, we depict the

whole network architecture and finally describe the details

of training strategy and implementation.

4.1. Two Branches for video classification

As shown in Figure 2, our model contains two branches,

including the RGB branch and Flow branch. As mentioned

in [28], the RGB branch carries visual information about

scenes and objects in the video, while the Flow branch con-

veys the motion. All the information from both branches

are crucial for video classification. In two-stream [28], they

simply average the scores of the two branches to make the

final prediction.

We add several CMA blocks at some intermediate

stages of each branch, obtaining information from the other

branch. Compared with the two-stream method, this fuses

two modalities much earlier and hierarchically. There are

three classification scores in our model. The first two scores

are from the RGB branch and the Flow branch respectively,

and the last one is a weighted summation of RGB / Flow

branches. Empirical investigation deferred to Section 5

shows that any of these three scores can make an excellent

prediction. In fact, in the scenario of highly-budgeted pa-

rameters, one can just use the scores of the RGB branch

without much loss of performance.

Implementation: Both branches adopt ResNet-50 [9] as

base network. Considering the limited GPU memory and

precise spatial information, we add 5 CMA blocks in res3
and res4 to every other residual block, which is also sim-

ilar to the setting in non-local neural networks [38]. The

RGB branch takes only one RGB frame as input, while the

Flow branch stacks five consecutive optical flow fields as

input. The RGB branch can be directly initialized from

the ResNet weights pre-trained on ImageNet [25]. Since

the number of input channels of the Flow branch is differ-

ent from that of the models pre-trained on ImageNet, we

initialize the weights of the first convolution by replicating

the means of the pre-trained weights across channels. The

CMA blocks are initialized via the same scheme in [9]. We

zero the scale parameters of the last BN layer as previously

mentioned in Section 3.2.

4.2. TSN Framework

Temporal Segment Networks (TSN) has been proved

to be powerful in modeling long-range temporal struc-

ture [37, 36, 31]. We also incorporate this effective albeit

simple framework. Given a video, we divide it into K seg-

ments, ensuring the duration of each segment equal. For

each segment, a snippet (1 RGB frame for the RGB branch

and 5 consecutive optical flow fields for the Flow branch)

is randomly sampled. We average the scores produced by

each segment to get the final video-level score, namely

G =
1

K

K
∑

i

Gi, (6)



where K is the number of segments and Gi is the score of

one specific snippet.

The overall loss function can be defined as:

L(y,G) = −
C
∑

c=1

yc(Gc − log
C
∑

j=1

eGj ), (7)

where C is the number of video classes and yc is the ground-

truth label concerning class c. Gc are the scores of the same

class on all snippets.

4.3. Training Strategy

Since the Flow models converge much slowly than RGB

models [37], we firstly train the flow branch on Kinetics

data [14]. After that, considering the limited GPU memory,

we train the CMA Model in an iterative way between two

branches. Thinking that the CMA blocks is initially an iden-

tity mapping and the Flow branch has been trained on the

kinetics, the Flow branch can provide more reliable infor-

mation to the RGB branch before the iterative training stage.

Therefore, we train the RGB branch in iter1, iter3, iter5...
and train the Flow branch in iter2, iter4, iter6, .... When

training the RGB branch, its parameters are optimized ac-

cording to the loss of the current branch and we freeze all

the layers in the Flow branch, including CMA blocks of

the Flow branch. Similar treatment for training the Flow

branch. The total number of epochs at each iteration is set

to 30.

4.4. Implementation Details

Input: The video frames are scaled to size 256 × 256.

We choose the TVL1 optical flow algorithm [41] to extract

optical flow for the Flow branch, based on the GPU version

from the OpenCV toolbox. The pixel values of optical flow

are truncated to the range [−20, 20], and then re-scaled be-

tween -1 and 1. The input size of two branches are both

224 × 224, cropped from the video frames or optical flow

fields. The RGB branch takes only one frame (framet)
as the input and the Flow branch reads a stack of consecu-

tive optical flow fields ([oft,oft+1,oft+2,oft+3,oft+4]). In

other words, the input shapes of two branches are N×224×
224× 3 and N × 224× 224× 10 respectively, where N is

the batch size and the last dimension represents the number

of channels. It’s important to note that the RGB frame is

corresponding to the first optical flow field in the temporal

dimension, and all RGB frame / optical flows are spatially

aligned. For data augmentation, we use random horizontal

flipping, random cropping and scale jittering [37]. And the

number of segments is set to 3.

Training: We use a standard cross-entropy loss and

mini-batch stochastic gradient descent algorithm to opti-

mize the network parameters, where the batch size is 128.

We train the model with BN enabled, which is the same

to [38]. To make the statistics of each BN layer more ac-

curate, we use the synchronized batch normalization [22].

The learning rate is initialized as 0.01 and get reduced by

a factor of 10 when the accuracy is stuck in some plateau.

At the beginning of each iteration, we reset the learning rate

to the initial value. The dropout ratio is 0.7 and the weight

decay is 5−4, which are introduced to reduce over-fitting.

Testing: During test time we use ten-croppings and flip

four corners and the center of the frame or optical flow filed

as [15]. The number of segments is set to 25 and the tempo-

ral spacing between each segment is equal. We average the

scores across all the samples and crops of them to get the

final video-level score. For the fusion score, we firstly get

the frame-level scores via weighted sum and then average

all the scores to get the video-level score. We will provide

an empirical study on the fusion weights in Section 5.2.

5. Experiment

We evaluate the proposed methods and perform ablation

studies on two popular datasets, UCF101 [30] and Kinet-

ics [14]. For clarity, let CMA iteri be the model trained

after ith iterations. We add the suffix “-R”, “-F”, “-S” for

the RGB / Flow streams or two-stream respectively.

5.1. Dataset

UCF-101 [30] consists of 101 action classes and over

13-K clips. All the videos are downloaded from YouTube,

and all of them are recorded in unconstrained environments,

including various lighting conditions, partial occlusion, low

quality frames etc.

Kinetics [14] is a large-scale trimmed video dataset

which contains more than 300-K video clips in total, and

each clip has a duration of around 10 seconds. The dataset

covers 400 human-centric classes and each class has at least

400 video clips. For unknown reasons, there are some in-

valid urls and we are unable to crawl some of the videos.

We get 232,679 videos for training and 19,169 for valida-

tion. We skip processing the testing set since their labels

are not provided.

5.2. Investigation of Fusion Weights

To get the fusion score, two-stream [28] averages the

scores from two modalities and [37] gives more credits to

the Flow modality by setting its weight as 1.5 and that of

RGB modality as 1. But our proposed model contains two

branches which are interdependent, consequently, training

one branch inevitably have an effect on the other one. In

this situation, exploring suitable fusion weights is neces-

sary. Figure 3 shows the top-1 accuracy with different fu-

sion weights. We use the two-stream as a baseline whose

base model is the same as ours (ResNet50). The two-stream

model can achieve a higher accuracy when the weight of

the two branches is almost the same. But for the CMA



Figure 3: The top-1 accuracies with different fusion weights.

The CMA models perform better than the two-stream when we

give higher weight to the more reliable branch.

models, at the first training iteration, we just train the RGB

branch with the Flow branch fixed, so the RGB branch per-

forms better than the Flow branch. In other words, the

RGB branch is more reliable. Giving the RGB branch more

weight will make the final accuracy higher, but too much

weight will make the other branch almost completely ig-

nored. At the second iteration, we should similarly give

more weight to the Flow branch. From Figure 3 one can see

that the fusion accuracy of CMA models is always higher

than the baseline, as long as we give more weight to the

more reliable branch.

Based on the above analysis, we give the equal weights

to the two branches in two-stream, identical to [28], and

set the weights of the RGB / Flow branches as 5 : 1 at

iter1, iter3, ... and 1 : 5 at iter2, iter4, .... For all the fol-

lowing experiments we adopt such setting.

5.3. Performance at Each Iteration

Iteration
RGB Flow two-stream

top-1 top-5 top-1 top-5 top-1 top-5

0 67.73 87.94 55.73 79.04 71.21 89.92

1 72.17 90.70 55.73 79.04 72.62 91.04

2 68.45 88.54 71.17 90.12 71.55 90.24

3 72.19 90.63 69.81 89.41 72.55 90.82

Table 1: Accuracies at each iteration on the Kinetics dataset.

In Section 4.3, we introduce the iterative training strat-

egy. Here let us study how many iterations we need for con-

vergence. Table 1 lists the accuracy at different iterations.

iter0 represents the baseline that has the two branches

trained independently. The fusion accuracy is equal to two-

stream 1. After iter1, the RGB branch has exceeded the

1Although we name the baseline as iter0, we don’t initialize the CMA

model with the parameters in iter0. The train strategy keep the same as

described in Section 4.3

two-stream, and the Flow branch keeps the same as the

baseline because we have not trained on it at this iteration

and the CMA blocks in this branch are now just an iden-

tity mapping. Additionally, the accuracy of fusion is much

higher than others. In order to achieve higher accuracy for

the Flow branch, we train the Flow branch with the RGB

branch freezed at the second iteration. As expected, the ac-

curacy of the Flow branch is improved and can be compa-

rable to the two-stream. But the performance of the RGB

branch drops due to that the distribution of the feature maps

of the Flow branch has changed, which can affect the RGB

branch through the CMA blocks. After iter3, the accuracy

of the RGB branch returns to the relative high level while

the Flow branch degrades slightly. The fusion score doesn’t

be improved any more. It is thus observed that the first iter-

ation is almost sufficient for our models.

5.4. Analysis and Visualization

model params top-1 top-5

ResNet50-R 1× 67.73 87.94

two-stream 2× 71.21 89.92

CMA iter1-R 1.8× 72.17 90.70

Table 2: CMA model vs two-stream in terms of parameter num-

ber and accuracy. The number of parameters are relative to the

ResNet50 baseline.

Table 2 compares our method with two-stream in terms

of a few key factors, including number of parameters and

final accuracy. CMA iter1-R is more accurate than two-

stream, though fewer parameters are used. That validates

that our CMA model is more effective than two-stream for

fusing.

groundtruth confusing category

gargling trimming or shaving beard

tying tie tying bow tie

yawning baby waking up

cracking neck massaging back

kissing hugging

rock scissors paper shaking hands

running on treadmill waxing leg

water sliding jumping into pool

sneezing crying

breading or breadcrumbing cooking chicken

Table 3: The top-10 confusing categories on which the CMA

model achieves the largest gain compared with two-stream in Ki-

netics. The gain is the improved accuracy (%).

Figure 4 showed the top-20 most improved categories

and compare between our CMA model / two-stream. We



Figure 4: Comparing top-20 most improved categories between the proposed CMA model and two-stream.

also list the top-10 confusing categories in Table 3. Com-

pared with two-stream, the proposed CMA model is more

sensitive about the motion trajectories, such as water sliding

and jumping into pool, although the background is similar.

Due to the fact that almost all of the samples of yawning are

about babies, it’s very easy to confuse with baby waking

up. But our model can improve the performance according

to the different motion between two categories. Addition-

ally, the CMA model can pay more attention to the moving

objects, such as jaw or mouth, or the tools (cup or razor)

held on the hand, while discriminating between gargling

and trimming or shaving beard. We also visualize some at-

tention maps in Figure 5.

5.5. Comparison with Non-local Blocks

model non-local modality top-1 top-5

ResNet50 - RGB 67.73 87.94

ResNet50 - Flow 55.73 79.04

ResNet50 - RGB + Flow 71.21 89.92

ResNet50 Yes RGB 68.74 88.43

ResNet50 Yes Flow 56.66 80.11

ResNet50 Yes RGB + Flow 71.67 89.87

CMA iter1-R - RGB + Flow 72.17 90.70

CMA iter1-S - RGB + Flow 72.62 91.04

CMA iter1-R Yes RGB + Flow 72.27 90.76

CMA iter1-S Yes RGB + Flow 72.60 91.01

Table 4: Comparisons with non-local networks on Kinetics.

Non-local block [38] is also a kind of attention-based

model which pays attention to the intra-modality features.

It also shows good performance in video classification.

In order to compare the performance and mutual influ-

ence between self-attention blocks and our proposed cross-

modality attention blocks, we carry out some experiments,

and the results are shown in Table 4. Following [38], we add

five blocks to ResNet50 in res3 and res4, the same numbers

and locations as that of the CMA blocks. To explore the in-

fluence between these two kinds of blocks, we conduct the

experiments that adding CMA blocks just behind the non-

local blocks. To ensure the comparisons more tractable, we

only add the nonlocal blocks in the RGB branch, which im-

plies that the Flow branch is the same to the Flow modality

of the ResNet50 model.

From the results in Table 4, we find that non-local blocks

can roughly improve top-1 accuracy by 1% in both RGB

and Flow modalities of ResNet50 model. For our proposed

model, even only the results of the RGB branch outperform

the fusion results of ResNet50 with nonlocal blocks. More

importantly, the non-local blocks seem unnecessary while

using our CMA blocks, which shows that the CMA blocks

can also play a role of non-local blocks while fusing differ-

ent modalities. In other words, the CMA blocks can also

capture global information.

5.6. 3D-CMA Blocks

model # input frames RGB Flow two-stream

P3D 12 70.98 63.80 73.91

P3D 16 71.50 66.20 74.62

CMA iter1 12 74.41 63.80 75.22

CMA iter1 16 74.86 66.20 75.98

Table 5: Performance of P3D and 3D-CMA models on Kinetics

when varying the count of input frames. All models adopt ResNet-

152 as the backbone, and the input of CMA blocks are all 3D.

To illustrate that the proposed CMA blocks can also be

compatible with 3D convolutional neural networks and fur-

ther improve its performance, we insert this operation into

P3D ResNet [23]. We initialize the P3D network with the



Figure 5: Examples of the attention maps. We train CMA iter1-R on Kinetics and visualize the attention maps of the last CMA block

in res4 since the last block is the most related to the final classification. These samples are taken from Kinetics randomly. Each set contains

three images, including (from left to right) RGB frame, optical flow fields, and the attention map. In the attention map, we draw some

arrows that start from the query location and point to the more interesting parts in the CMA block. We observe that the block can easily

focus on moving objects, such as the moving hand in the top-left set and the swimming person in the bottom-left set. And as a result, the

RGB branch can take important information from the Flow branch as much as possible within limited capacity. We also find that the CMA

operation is global. Looking at the example in the top-right, the pixel on the right person can not only focus on the nearby region but also

pay attention to the other boxer, which shows our CMA block can capture long-range dependencies. Moreover, not all the moving objects

can attract the attention, only key information does. In the last example tying bow tie, the block pays more attention to the region around

the hand although the whole upper body is moving, because that the object held in hands often has more impact on the prediction. And

more attention maps can be found in supplemental material.

weights duplicated from the official caffemodel2 and fine-

tune it using data augmentation. For the CMA model, con-

sidering the limited GPU memory, we only add one CMA

block after the last layer in res4, and train the CMA block

and all layers behind it. We train our CMA model with dif-

ferent numbers of input frames. Table 5 summarizes the ex-

perimental results. As seen, the CMA block can also bring

an improvement for P3D compared with two-stream. Fu-

sion with two branches can further improve the accuracy.

5.7. Transfer learning

We also conduct transfer learning experiments from Ki-

netics to UCF-101. We only fine-tune the last fc layer of

our 2-D CMA model. Table 6 shows the results. We find

that our model is somewhat easier to over-fit on the small

dataset. Nonetheless, the proposed CMA iter1-S can out-

perform most of the state-of-the-art 2D models. It even ap-

proximates the performance of 3D models (e.g., I3D with

64 RGB frames and 64 flows as its input) although only 2D

convolutional network as base model is used.

6. Conclusion and Future work

We have shown that cross-modality operations can sig-

nificantly improve the performance in video classification.

The proposed CMA block can be compatibly inserted to

2https://github.com/ZhaofanQiu/pseudo-3d-residual-networks

model use 3D-Conv top-1

ECO [44] Yes 94.8

ARTNet [36] Yes 94.3

I3D [3] Yes 98.0

Two-stream[28] No 88.0

TSN [37] No 94.0

Attention Cluster [17] No 94.6

ResNet50-R No 90.9

ResNet50-F No 92.4

ResNet50-S No 95.5

CMA iter1-R No 95.3

CMA iter1-S No 96.5

Table 6: Comparison with state-of-the-art on the UCF-101. The

first set is the results reported by other papers, and the second set

is our results of transfer learning.

most existing neural networks. It proves very effective to

fuse information between different modalities. Our future

works include extending to more sophisticated deep mod-

els, and evaluating the CMA operation among more modal-

ities beyond the RGB and Flow branches.
Acknowledgments: This work is supported by Beijing Mu-

nicipal Commission of Science and Technology under Grant

Z181100008918005, National Natural Science Foundation of

China (NSFC) under Grant 61772037.



References

[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m:

A large-scale video classification benchmark. CoRR,

abs/1609.08675, 2016.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine

translation by jointly learning to align and translate. CoRR,

abs/1409.0473, 2014.

[3] J. Carreira and A. Zisserman. Quo vadis, action recognition?

A new model and the kinetics dataset. In CVPR, pages 4724–

4733, 2017.

[4] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun.

Cascaded pyramid network for multi-person pose estimation.

CoRR, abs/1711.07319, 2017.

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-

training of deep bidirectional transformers for language un-

derstanding. CoRR, abs/1810.04805, 2018.

[6] W. Du, Y. Wang, and Y. Qiao. Rpan: An end-to-end recurrent

pose-attention network for action recognition in videos. In

ICCV, volume 2, 2017.

[7] L. Fan, W. Huang, S. E. Chuang Gan, B. Gong, and J. Huang.

End-to-end learning of motion representation for video un-

derstanding. In CVPR, pages 6016–6025, 2018.

[8] J. Fu, J. Liu, H. Tian, Z. Fang, and H. Lu. Dual attention net-

work for scene segmentation. CoRR, abs/1809.02983, 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016.

[10] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In CVPR, pages

2261–2269, 2017.

[11] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In CVPR, pages 1647–1655, 2017.

[12] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural

networks for human action recognition. IEEE Trans. Pattern

Anal. Mach. Intell., 35(1):221–231, 2013.

[13] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and F. Li. Large-scale video classification with convolutional

neural networks. In CVPR, pages 1725–1732, 2014.

[14] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,

S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev,

M. Suleyman, and A. Zisserman. The kinetics human action

video dataset. CoRR, abs/1705.06950, 2017.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[16] M. Liu and J. Yuan. Recognizing human actions as the evo-

lution of pose estimation maps. In CVPR, pages 1159–1168,

2018.

[17] X. Long, C. Gan, G. de Melo, J. Wu, X. Liu, and S. Wen.

Attention clusters: Purely attention based local feature inte-

gration for video classification. In CVPR, pages 7834–7843,

2018.
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