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Abstract  

One of the major efforts in molecular biology is the computation of phylogenies for species 
sets. A longstanding open problem in this area is called the Perfect Phylogeny problem. 
For almost two decades the complexity of this problem remained open, with progress limited 
to polynomial time algorithms for a few special cases, and many relaxations of the problem 
shown to be NP-Complete. From an applications point of view, the problem is of interest 
both in its general form, where the number of characters may vary, and in its fixed-parameter 
form. The Perfect Phylogeny problem has been shown to be equivalent to the problem of 
triangulating colored graphs[30]. It has also been shown recently that for a given fixed number 
of characters the yes-instances have bounded treewidth[45], opening the possibility of applying 
methodologies for bounded treewidth to the fixed-parameter form of the problem. We show 
that the Perfect Phylogeny problem is difficult in two different ways. We show that the general 
problem is NP-Complete, and we show that the various finite-state approaches for bounded 
treewidth cannot be applied to the fixed-parameter forms of the problem. 

1 I n t r o d u c t i o n  

Historically, one of the major efforts in molecular biology has been the computation of phylogenetic 
trees, or phylogenies, which describe the evolution of a set of species from a common ancestor. A 
phylogeny for the set S of species, is a rooted tree in which the leaves represent the species in S 
and the internal nodes of the tree represent the ancestral species. The computational complexity 
of determining a most-likely phylogeny for the species set then depends, among other things, on 
how the species set is described. One of the standard models uses characters to describe species. 
Here, a character is an equivalence relation on the species set, partitioning the set into the different 
character states. Under this model, a proposed phylogeny will also assign character states to each 
of the hypothesized species indicated by the internal nodes. The desired property for the phylogeny 
is the following: 

For each state of each character, ~he set of nodes in the tree having that state should 
form a connected component. 

When ~he phylogeny has this property, it is said to be perfect, and the characters are also said 
to be perfectly compatible. The Perfect Phylogeny problem[28] (in short: PP; also known as the 
Character Compatibility problem[21]) is then as follows. 

Per fec t  Phy logeny :  For a given set of characters defining a species set S, does a 
perfect phylogeny exist? 
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If the number of characters is a fixed constant k, we call the problem the k-Perfect Phylogeny 
problem. 

This approach to constructing phylogenies was probably first discussed in the biological litera- 
ture in the 1960's (see [13, 58] for two of the earliest papers, and the series of papers by LeQuesne 
[38, 39, 40, 41]), but was given its precise mathematical formulation by Estabrook and others in 
a series of papers beginning in 1972 (see [16, 17, 18, 19]). In 1974, Buneman showed[12] that the 
Perfect Phylogeny problem reduced to a graph-theoretic problem, which we call ttte Triangulating 
Colored Graphs problem (or TCG). A graph is said to be triangnlated if every induced cycle contains 
at least four vertices. The Triangulating Colored Graphs problem is: 

I n p u t :  Graph G = (V, E), coloring c : V ~ Z. 
Ques t ion :  Does there exist a supergraph G' = (V, E ' )  of G which is properly colored 

by e and which is triangulated? 

If I is the instance of the Perfect Phylogeny problem, and GI the corresponding instance of 
the Triangulating Colored Graphs problem, then vertices of Gt correspond to the character states 
of I ,  with states of the same character having the same color. Two vertices are adjacent if their 
corresponding character states share a species in common. Thus~ the number of colors of TCG 
corresponds to the number of characters in the Perfect Phylogeny problem. 

In 1990, Kannan and Warnow [30] showed that these two problems were polynomially equiva- 
lent. Linear t ime algorithms for the case of two and three-colored graphs have been found [7, 30] 
(corresponding to two and three character compatibility), and a polynomial time algorithm for the 
case of quaternary characters has been found [31]). The latter algorithm can be used to construct 
phylogenetic trees from DNA sequences. For the general case, the best that is known is an O(n k+l) 
algorithm to triangulate (if possible) a k-colored graph [45]. 

In this paper we will show the following: 
Theorem A: Perfect Phyloge~, is NP-con~lplete. 
Theorem B: k -PERFECT PHYLOGENY is not finite-state for bounded treewidth, for k > 4. 
The significance of Theorem B is the following. There are a large number of papers, that. show 

that many problems, that are often combinatorially hard, become linear time solvable on graphs 
with bounded treewidth, given with a suitable tree-decomposition. (The latter can be found in 
O(nlogn) t ime [8, 50].) See, amongst others, [1, 4~ 5, 6, 11, 14, 29, 32, 33, 54, 59]. The underlying 
technique of all these results is - -  in a certain sense - -  the same, and can be described as follows: 
for each node of a rooted tree-representation of the input graph, some information of a certain 
type is computed. This computation for a node can be done qtfickly when given the information, 
computed for the children of the node. In many cases, this information is an element, taken from 
a finite set. In such a case, we call the problem 'finite state'. By theorem B, such an algorithm 
is not possible for k-Perfect Phylogeny for k > 4. For problems, that like k-Perfect Phylogeny 
for fixed k have no growing parameter associated with it, all general techniques to solve them on 
graphs with a given tree-decomposition of constant bonnded treewidth can be seen as special cases 
of this finite state concept. (In contrast, problems like Independent Set, with a growing pa~'ameter 
associated to it, require a generalization of the finite state concept. Here, the 'information' is a 
constant size table, with each entry an integer. However~ an extension of our m'guments show that 
such approaches also cannot yield linear time algorithms.) (The result, also shows, that the graph 
reduction method from [3] will not work for the problem with k >_ 4.) 

In contrast, for k = 2, 3, k-Perfect Phylogeny is finite state. (For k = 2~ this is trivial. For 
k = 3, it follows from the characterization in [7] that the problem can be formulated in mona.die 
second order form, and hence, by the result of Courcelle [141~ it is finite state.) 

Since a standard tool for molecular biologists involves checldng small subsets of characters for 
perfect compatibility, efficient algorithms for small k caal be of use. 
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2 P r e l i m i n a r y  d e f i n i t i o n s  a n d  r e s u l t s  

A clique in a graph G = (V, E) is a subset S of V, such that for all v, w E S, (v, w) E E. A graph 
g --- (V, E)  is triangulated, if and only if it does not contain an induced cycle of length at least four. 
It is known [52, 26] that a graph G is triangulated if and only if there exists an linear ordering of 
the vertex set vl, v2 , . . . ,  v, ,  such that for each i, the neighbors of vl which follow vi in the ordering, 
form a clique. Such an ordering is called a perfect elimination scheme. 

The following lemma is due to Dirac [15]. 

L e m m a  1 Let G = (V, E) be a triangulated graph which is not a complete graph. Then V contains 
two non.adjacent simplicial vertices. 

A graph G = (V, E) with vertex coloring c : V --~ Z is c-triangulatable if there exists a 
supergraph G'  = (V, E') ,  E C E' ,  which is properly colored by c (thus (v, w) E E '  implies c(v) r 
c(w)) and which is triangulated. The supergraph G' is said to be a c-triangulation of G. 

A useful characterization of c-trianguIable graphs is with the help of tree-decompositions. 

Def ini t ion A tree-decomposition of a graph G = (V, E) is a pair ({XI I i E t}, T = (I ,  F))  with 
{Xi I i E I} a collection of subsets of V, and T a tree, such that 

O/et X/ = v .  

, For all (v, w) E E,  there exists an i E I with v, w E Xi. 

Fox" all v E V, {i E I I v E Xi} forms a connected subtree of T. 

The treewidth of a tree-decomposltion ({Xi I i E I},  T = (I ,  F)) is maxiE~ tXil - 1. The treewidth 
of a graph is the minimum treewidth over all possible tree-decompositions of that graph. 

Consider G = (V,E)  with tree-decomposition ({XI l i E I } , T  = ( I ,F)) .  The graph H = (V,E') 
with (v, w) E E t r 3i E I ,  v, w ~ X/ contains G as a subgraph, has the same treewidth as G, 
and is triangulated. (Define T~ = {i E I [ v E Xi} ,  for all v E V. Then (v,w) E E' ,  if and only 
if T~ n T,, ~ q~. So H is the intersection graph of subtrees of a tree, hence H is triangulated, see 
[26].) The following proposition can now easily be observed. 

P ropos i t i on  1 A graph G = (V,E)  with coloring c : V -~ C, (C a set of colors), is c- 
t~ia.gulata~te, if a .d  onty if there e~ists a tree-d~eompositio~ ({X/ [ i ~ I}, T = (L F)) of e ,  
such that for all i 6 I,  v, w 6 is: if v r w, aud v, w E -u then c(v) r c(w). 

In [9] a short proof of the following fact can be found: 

P r o p o s i t i o n  2 Let ({Xi I i E 1}, T = (I, F)) be a tree-decomposition of G = (V, E). Let W C V 
form a clique in G. Then there exists an i E I with W C X;. 

One can also easily verify the following propositions. 

Proposition 3 Let ({X/]  i E I},  T = (I, F) ) be a tree-decomposition of G = ( V, E ). Let io E I be 
such that X/o is not a separator of G, i.e., G[V -X/0]  is connected. Then there exists a set I '  C 1, 
such that ({Xi [ i E I '} ,T[I '])  is a tree-decomposition of G, and io is a leaf o fT .  

P r o p o s i t i o n  4 Let ({Xi l i E I } , T  = ( I ,F ) )  be a tree-decomposition of G = (V,E) .  Suppose 
x l , x~ , . . .~xr  form a path in G, xl E X/o, :v2 E Xil.  Then for every i~ E I,  that lies on the path 
from io to it in T:  Xi2 N {x l , x~ , . . . , x~}  ~ O. 
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Figure 1: The Decision Component 

3 Perfect Phylogeny is NP-complete  

This section is devoted to the proof of the following result: 

T h e o r e m  1 Triangulating Colored Graphs is NP-Coraplete, even when every color is given to 
exactly two vertices. 

As TCG and PP are polynomial equivalent, it directly follows from this result that Perfect 
Phylogeny is NP-complete. 

That Triangulating Colored Graphs is in NP is obvious: given the colored graph G = (V, E), 
present a triangulation G I = (V, E~), and in polynomial time we can check that G' is properly 
colored and triangulated. 

We now show that TCG is NP-hard, by a reduction from 3-SAT to TCG. 
For a given instance I of 3-SAT, we create a graph, Gt, which consists of decision components 

and clause components. We assume that no clause contains both a. variable and its complement. 
For each variable X and for each clause i containing either X or X ~, we have the decision component 
given by figure 1. 

We call the variable H the head, F is called tile foot~ the variables Sx and S y  are called the 
shoulders, and Kjr and I (~  are called knees. For each variable X, we will superimpose the r copies 
of the decision component (corresponding to the r clauses containing X or X) ,  so that only K~c 
and K~- are not identified with other vertices. Thus, there will be one vertex H, one vertex F, 
and for every variable X, if X or X appear in r clauses it, i~ . . . . .  it, then there will be one pair of 
shoulders Sx and S-Z, and r pairs of knees, K~,. I(.y,"i' Kx  itX,...~I<x,.12 ";" II~. 

We assign colors so that every color class consists of exactly two vertices. The head H and foot 
F are given the same color, each pair of shoulders, Sx and S:?- is given the same color, and each 
pair of knees Kjr and I ( ~  is given the same color. 

Note that there are exactly two color-respecting triangulations for the variable component for 
X: you either add the edges in all paths H - K~. - Sx - F, or you add the edges in all paths 
H - K - ~ -  S Z -  .F. Each way of triangulating the graph can be described as adding a Mark of Zorro 
in one of two possible orientations. Thus, a triangulation either includes all edges (H, K[,) or all 
edges (H, K~).  We will refer to the first orientation as the positive orientation, and the second as 
the negative orientation. When the triangulation is positively oriented, we will set X to true, and 
otherwise we will set X to false. 

We now describe the clause components. For the i a' clanse (X, Y, Z) we have the graph given 
by Figure 2. 

Note that we do not add any new vertices, but only add edges between knees which already 
exist. The knees I(~,, g ~ ,  and K} are said to be active, while the complements K~,  It'~ and K-~ 
are said to be inactive. In general, if the literal L appears in ~he i *h clause, then K L is said to be 
active, and its complement .((~- is said to be inactive, Thus, for each pair of knees K~ and I<'~E, 
exactly one will be active, and the other inactive. 

As Gr can be constructed in polynomial time, given I ,  NP-hardness of TCG follows from the 
following lemma. 
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Figure 2: The Clause Component 

L e m m a  2 The 3-SAT instance I is satisfiable if and only if G! can be triangulated without intro- 
ducing edges between vertices of the same color. 

Proof :  We first show that if GI has a color-respecting triangulation, then I can be satisfied. So 
let us assume that G1 is a color-respecting triangulation of GI. As we mentioned before, G1 defines 
for us a truth assignment for the variables. We need to show that under this truth assignment each 
clause contains at least one literal, set to true. 

Suppose that the truth flmction we derive from Gl does not satisfy the clause i = (X, ]I, Z) in 
I;  i.e. we assume that the graph G1 does not contain any of the edges between H and K~;, I({,, or 
I(~. We will show that this contradicts G1 being both properly colored by c and triaaagulated. 

By our comments earlier, G1 must contain the Mark of Zorro in one of the two possible orienta- 
tions; since we exclude the edges (H, It'/), for a E {X, Y, Z}, it must include the negative orienta- 
tions of the Mark of Zorro in the decision components for X, Y and Z. Thus, we assume that each of 
the following edges is in G,: (H, It'/), (S~, It'/), (S~-, F),  for each variable a E {X, Y, Z} and clause 
i containing a. Consider the subgraph G2 of Gl induced by the vertex set {H, F, S~, I(~, I(~ : a 
in {X, ]I, Z}}. This subgraph G2 is triangulated, since GI is triangulated. However, we will show 
that G2 does not admit a perfect elimination scheme (which respects the coloring), and hence is 
not triangulated. 

Since G2 is triangulated, it must contain at least two simplicial vertices (see Lemma 1). Because 
G~ is properly colored, only H can possibly be simplicial (every other vertex is adjacent to two 
vertices of the same color). Therefore, we see that G~ can not be both triangulated and properly 
colored, contradicting our hypothesis. 

Thus, we have shown that a color-respecting triangulation of GI implies satisfiability of I. 
We now show the converse. Suppose I is satisfiable, and that GI is the graph we derive from I ,  

and that f is a satisfying truth assignment for I. We will show that we can triangulate G1 without 
adding edges between vertices of the same color, using the truth assignment f .  

We will assume that we have renamed the variables so that X is always true, and X always 
false. We now describe some terminology we use in defining the triangulated supergraph of GI. 
Recall that we distinguish between active and inactive knees (see our discussion following the 
definition of the clause component). We now describe another way of distinguishing vertices. If 
variable X is true, we call Sx and Kix true, thus each Sx is a true shoulder, and each I(~ is a true 
knee. Similarly, the complements are called false shouhlers or false knees. 

To triangulate GI, add the following edges: the positively oriented Maa'k of Zorro in each decision 
component, the complete graph on {true shoulders, true knees}, and the complete bipartite graph 
on {true shoulders, false knees}. 

Thus, we have added to the neighbor set of each true shoulder the foot F, the head H, and 
every knee and every true shoulder. We have added to the neighbor set of each true knee the head 
H and every true knee as well. It is obvious that this enlarged graph G' is properly colored. We 
will now show it is triangulated by exhibiting a perfect elimination scheme for G'. 

Consider the following partition of the verte)~ set of GI into five subsets: $1 -- { False shoulders, 
inactive false knees}, $2 = { The head H}, .93 = { Active false knees adjacent to inactive false 
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knees}, 84 = { Active false knees adjacent to inactive true knees}, and Ss = { True knees It'~, true 
shoulders Sx, and foot F }. 

These sets constitute a partition of the vertices of Gx into five pair-wise disjoint sets. We use 
these sets to produce a perfect elimination scheme, by first listing all the vertices in 5'1, then those 
in $2, and so forth, down to Ss. A tedious, but not very complicated case analysis shows that 
every vertex in simplicial in the graph which remains after the previous vertices have been deleted. 
We omit this analysis from this version of the paper. It now follows that G' is a properly colored 
triangulated supergraph of Gx. | 

4 Non-cutset-regularity of the problem with four colors 

In [20], Fellows and Abrahamson developed the theory of cutset regularity of graphs. To describe 
the theory, we first define some terminology used in it. 

A i-boundary graph G contains a distinguished ordered subset of t nodes, called bd(G)). The 
binary operator @ on two t-boundary graphs is defined as follows: G @ H is the t-boundaried graph 
obtained by identifying the i th boundary nodes in bd(G) with the i th boundary node in bd(H), for 
each i = 1, 2 , . . . ,  t. For a fixed graph family F, we then define an eqnivalence relation on the set 
of t-boundary graphs as follows: Two t-boundary graphs X and Y are equivalent (X "JR Y) if and 
only if for every t-boundary graph Z, X @ Z E F r Y @ Z E F. The "small" universe U~,,~ u 
is defined to be the set of all t-boundaried graphs that arise in the parsing of graphs of treewidth 
at most t. A graph family F is t-cutset regular iff "~g has finite index on U~,,~ m 

One of the main results in [20] is the following: 

T h e o r e m  2 (Fellows and Abrahamson [20]) A graph family F is t-finite state if and only if F is 
t-cutset regular. 

An important consequence of this result is that, if a graph family is t-finite state, then recognition 
of this family can be done efficiently, and without computing obstruction sets. 

Using this theorem, we can show that the class of triangulatable t-colored graphs is not t-finite 
state, for t > 4. 

Consider the following two classes of 4-colored 4-boundary graphs: 
For r > 2, let Gr = (V~,Er, B , f )  with 

* K = {wl,w2,wz, w4}U { z j l l  _<j <_4r}, 

. E, = {(w,,z,),  (w2,z~), (wl,z2), (w2, z,), (wa, z4,.-:), (w4,z,,.), (w3,z,r), (w4,z4,-,)} U 

{~j,~j+,) 11 _<j <4 r } ,  

. B = {wl,.,~, u,3, w4}, and 

| f (w~) = j(1 < j < 4). 

Let c : V~ ~ {1,2,3,4} be the coloring of G~, defined by c(wj) = j (1 < j <_ 4), and c(zj) = 
(j + 1) rood 4 + 1 (1 _< j _< 4r). See Figure 3 for an example. 

For s >_ 2, let H, = (V', E~,, B'~, f~) with 

. V : = { y j I l < j _ _ 4 s } ,  

* E~ = {(Yi,,YJ~) I 1 _< j~,J2 <_ 4s, j ,  ~ j2, Jj~ - J21 <- 2}, 

o B~ -- {Yl, Y2, Y4~-1, y4,}, and 

$ f~(Yl)  = 1, f~(Y2) = 2, f~(Y4s-1) ~--- 3, f~(Y4s) ~--- 4. 
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1 2 3 4 

Z I Z 2 Z 3 Z 4 Z5 Z 6 Z? Z 8 

Figure 3:G2 

Yl Y2 Y3 Y,~ Y5 Y6 Y7 Y8 

I ~  -~undatyv~ 

Figure 4 : / /2  

Let c :  V~ --~ {1,2,3,4} be the coloring of G,, defined by c(yj) = (j - 1) mod4 4- 1. See Figure 4 
for an example. 

Note that for every r, s > 2, c is a coloring of G, �9 Hs. 

L e m m a  3 I f  s <_ v, then G, ~ H8 is c-triangulatable. 

Proof :  First add an edge between z2 and za(r-,)+z. (If r = s, then omit this step.) We now 
triangulate the cycle on the edge (z~, z4(r-,)+3), and the remainder of the graph independently. 
The cycle with edges (z~,z4(r-4+a), and (zl, zi+~) for i < i < 4(r - s) + 3 can be triangulated, as 
the vertices on the cycle contain more than two different colors (see [30], theorem 3.1.) Further, 
add edges (yj, zj+4(,-o)-~) for all j ,  2 < j ___ 4s - 1, (yj',zj+4(r-,)) for all j ,  2 < j < 4s - 1, and 
(Yj, zj+4(,-4+1) for all j ,  2 < j < 4s - 1. The graph now looks as depicted in Figure 6. 

One can easily verify that this graph is triangulated. There are no edges between vertices of 
the same color. | 

Suppose s > r. Let G = Gr@H,. Suppose we have a tree-decomposition ( X i l i  6 I},  T = (I, F)) 
of G, with for all i E I ,  for all v,w C V, if v # w and v,w C .u then c(v) # c(w). Let 
H be the triangulated graph (V,{(v,w) I 3i, v ,w e X~, v # w}). (See Proposition 1.) From 
Proposition 2, it follows that there exists an io E I with Xio = {yl,y2, zl,z2}, and an il C I with 

Figure 5 : G ~ G H 2  
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.X~, = {y4,-a,y~,z~-~,z4~}. By Proposition 3, we may assume that io and i~ are leaves from T. 
Write Y = {y~, y2 . . . .  , y,,}, and Z = {zl, z2, . . . ,  z4,}. 

Note from Proposition 4, that every node i~ on the path in T between i0 and it contains at 
least one vertex in Z, and hence at most three vertices in Y. 

Claim 1 For every j ,  1 < j < 4s - 2, there exists a node i2 ~ I on the path between io and i~ in 
T, with {yl, y1+~, Y1+2} C_ Xt,. 

P roof :  Suppose the claim does not hold for certain j ,  1 < j < 4s - 2. There exists a node ia E I 
with {Yj, Yj+x,Yj+2} C Xi~. By assumption, i3 lies not on the path from i0 to il in T. Let i4 be 
the unique node that lies on each of the paths between i0 and il, i0 and i~, and il and i2. There 
must exist a vertex Y2 ~- Xi, ,  with j '  E { j , j  + 1,j + 2}. Note that there exist four paths in G[Y], 
from {YJ, YJ+~, Yj+2} to {y~, Y2, Y4,-~, Y4~} that are vertex disjoint, except that two paths share the 
vertex yj,. Now, by Proposition 4, Xi4 contains at least one vertex of each path, and, as Y2 ~ Xi, ,  
we have that IXi4 [3 YI > 4, contradiction. | 

Note that for such i2 on the path between io and i~ with Xi~ D {yj, Yj+l, Yj+2}, there must be 

Claim 2 Suppose i2, i3 lie on the path between io and il in T, and -u = { Y4~+ l,y4,,+ 2, y4~+3, zj~ } , 
Xi, = {Y4a+,, Y4a+2, Y4a+a, zi2 }, 0 < a, fl < s, c~ r  Then c(zj, ) = c(zj2) = 4, and Jl r J2. 

Proof." By case analysis. Omitted from this extended abstract. | 

It follows that there mast be at least s different vertices zj with c(zj) = 4. So Gr (~ H~ can only 
be e-triangulatable, when s < r. Hence we have the following theorem. 

L e m m a  4 G~ @ H, is c-triangulatabIe, if and only if s < r. 

It follows that every graph G~ must be in a different equivalence class, and hence TCG with four 
colors and 4-Perfect Phylogeny are not cutset-regular, and hence, by theorem 2 not finite-state. 
Clearly, the same results also hold for a larger number of colors or characteristics. 

T h e o r e m  3 For every k > 4, k-Perfect Ph, ylogeny~ and Triangulating Colored Graphs with k colors 
are not finite stale for bounded treewidth. 

With ~ slightly more complex, but further more or less similar construction one can show 
that the number of equivalence classes can be exponential in the mtmber of vertices of the graphs 
involved. From this, it follows that not only the problem is not only not finite state, but also that 
no other linear time table based approach is possible. (For instance, consider Independent Set. As 
the size of independent sets is a parameter that can be O(n) large, it is not finite state. However, 
there exists a 'table based' linear time algorithm for the problem, when restricted to graphs, given 
with a tree-decomposition of constant bounded treewidth (see e.g. [1].) When this situation occurs, 
then the number of equivalence classes is still polynomial Hence, it cannot occur for the Perfect 
Phylogeny problem.) 

Refe rences  

[1] S. Arnborg. Efficient algorithms for combinatoriM problems ell graphs with bounded decomposability 
- A survey. BIT, 25:2-23, 1985. 

[2] S. Arnborg, D. Corneil, and A. Proskurowski. Comple• of finding embeddings in a k-tree. SIAM 
J. Alg. Discr. Math., 8:277-284, 1987. 



281 
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