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Abstract A disaster inventory system is considered in which two substitutable items are 
stored for disaster management. In the event of disaster management, a particular product 
may become stock-out and the situation warrants that a demand for the particular product 
during its stock-out period may be substituted with another available similar product in the 
inventory. From the utility point of view, continuous review inventory models are quite 
appro-priate in disaster inventory management. In this paper, a continuous review two 
substitutable perishable product disaster inventory model is proposed and analyzed. Since 
the inventory is maintained for disaster management, an adjustable joint reordering policy 
for replenishment is adopted. There is no lead time and the replenishment is 
instantaneous. For this model, some measures of system performance are obtained. The 
stationary behavior of the model is also considered. Numerical examples are also provided 
to illustrate the results obtained.

1 Introduction

Perishable items are stored in disaster inventory systems to meet emergency situations. 
Some examples of perishable items are certain food items, blood-sachets in blood bank and 
medicines. Perishable items become unusable unless they are used before their expiry time. 
Because of the uncertainty in the occurrence of disastrous events such as earthquake, famine, 
tsunami and cyclone, disaster inventory has to be maintained with all essential items stored in.
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Several reviews of the research work on perishable inventory systems are available (see, for
example, Nahmias 1982; 2010; 2011; Parlar 1985). Inventory systems dealing with a single
perishable product have been analysed by several authors (see for example, Kalpakam and
Arivarignan 1988; Kalpakam and Sapna 1996; Gürler and Özkaya 2008; Baron et al. 2010;
Parlar et al. 2011). In disaster inventory systems, we come across inventories dealing with
multi perishable products. For example, in the blood bank, several groups of blood are stored.
Demand interaction can occur in multi product inventory systems. In the disaster manage-
ment, the situation warrants that a demand for a particular product during its stock-out period
may be substituted with another available similar product in the inventory. If one group of
blood is not available at the time of demand, the universal group may be accepted if it is avail-
able. Another aspect in disaster inventory systems dealing with perishable items is the move-
ment of items from the inventory to the destination point (the disaster cite). Sometimes these
inventory systems become unreliable as they operate in random environment and they are
liable to be cut-off totally from the disaster cite by the failure of logistics and communication
links. This aspect has been studied from a different point of view by Ozekici and Parlar (1999).
When talking about the maintenance of humanitarian disaster inventory and the reliable flow
of life-saving items to the victims located in the affected area, the paper of Iannoni et al. (2008)
deserves special mention. In their paper, they propose a comprehensive methodology for the
development of a humanitarian emergency management framework based on the real-time
tracking of emergency supplies and demands through the use of radio frequency identifica-
tion devices. Ozdamar et al. (2004) have analysed emergency logistics planning in natural
disasters. Sebastian et al. (2012) have considered UK blood supply chain and demonstrated
that managerial changes and training issues have a significant impact on waste reduction
and inventory management performance in perishable supply chains. They have also devel-
oped six recommendations for how managers can improve perishable inventory performance.
Ozguven and Ozbay (2014) have reviewed various aspects of emergency inventory manage-
ment for disasters including the characteristic of storage and delivery options for emergency
supplies. They use a novel classification scheme to distinguish between emergency inven-
tories and conventional inventories. Recently Perlman and Levner (2014) have considered
a problem of perishable inventory management in health-care and studied a multi-echelon,
multi-supplier inventory system and unite together aspects of perishability and outsourcing
under deterministic demand for medical products, which include both perishable and dete-
riorating goods. In their study, they have determined the optimal number of products to be
purchased from regular and out-source suppliers so as to meet the required demand at the min-
imum operating cost. All these models and analysis have focused on deterministic aspects of
inventory systems only. Further most of the models available in literature are periodic review
inventory models only. In our opinion, not much focus has been thrown on the stochastic
analysis of inventory systems dealing multi-perishable products with demand interaction in
disaster management. Yadavalli et al. (2014) have considered a temporo-spatial stochastic
model for optimal positioning of humanitarian inventories for disaster relief management.
They have not considered perishable product inventory systems with demand interaction.
However, from utility point of view of disaster inventory management, continuous review
inventory models are quite appropriate. In view of this, we propose and analyze a continuous
review two substitutable perishable product disaster inventory model. Since the inventory
is maintained for disaster management, we adopt an adjustable joint reordering policy for
replenishment. That is a reorder is placed for both the products when the sum of the inventory
levels of both the products put together reaches a preassigned level and both the products are
replenished up to their maximum level at the time of replenishment. There is no lead time and
the replenishment is instantaneous. For the model, the following measures of system perfor-
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mance are obtained: The mean number of (i) the demands satisfied; (ii) demands substituted;
(iii) demands lost; and (iv) replenishments in the interval (0, t]. The stationary behavior of
the model is also considered. Numerical examples are also provided to illustrate the results
obtained. The organization of the paper is as follows: In Sect. 2, we give the analysis of the
model. The Sects. 2.1 and 2.2 provide the assumptions and notation used in the analysis of the
model. The Sects. from 2.3 to 2.6 provide the analysis of the model. The measures of system
performance of the model are provided in the Sect. 3. The steady-state analysis is provided in
Sect. 4 and a numerical illustration is provided in Sect. 5. A Conclusion is provided in Sect. 6.

2 Model description

The assumptions and notation used in the model are given below:

2.1 Assumptions

1. The inventory system deals with two perishable products say product 1 and product 2.
Separate inventories are maintained for the products.

2. The maximum inventory level of product i is Si ; i = 1, 2.

3. Demands for product i occur at rate λi , i = 1, 2.

4. Product i perishes with rate ηi , i = 1, 2.

5. An adjustable joint reordering policy is adopted for replenishment. That is, a reorder is
placed for both the products when the sum of the inventory levels of both the products put
together reaches the level s and both the products are replenished up to their maximum
level Si at the time of replenishment.

6. There is no lead time and hence the replenishment is instantaneous.
7. When ever a demand for product i(i = 1, 2) occurs during its stock out period, the

demand can be satisfied with the other product j with some probability pi j , if that
product j is available ( j = 1, 2; j �= i).

2.2 Notation

X i (t): The inventory level of product i(i = 1, 2) at time t.

Z(t): The vector process (X1(t), X2(t)) representing the state of the system at time t.
′r ′: Event that represents a replenishment.
′a′

1: Event that a demand for product 1 is satisfied.
′a′

2: Event that a demand for product 1 is lost.
′a′

3: Event that a demand for product 1 is substituted by the other product.
′b′

1: Event that a demand for product 2 is satisfied.
′b′

2: Event that a demand for product 2 is lost.
′b′

3: Event that a demand for product 2 is substituted.

′E ′
0: Represents the initial condition that an ′r ′ event has occurred at t = 0.

pi j : probability that a demand for product i is satisfied
with product j, i, j = 1, 2; i �= j.

qi j : = 1 − pi j

©: convolution symbol
f ∗(θ) =

∫ ∞
0 e−θ t f (t)dt Laplace transform of an arbitrary function f (t).

δi j =

{

1 if i = j,

0 otherwise.
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H(i) =

{

1 if i ≥ 0,

0 otherwise.
N (η, t): Number of ′η′ events in (0, t], η = a, b, c etc.,
E[N (η, t)]: Expected number of ′η′ events in (0, t].

E[N (η,∞)]: Mean stationary rate of ′η′ events.

2.3 Analysis

The stochastic process Z(t) = (X1(t), X2(t)) has the state space E = {(i, j) : i =

0, 1, 2, . . . , S1, j = 0, 1, 2, . . . , S2 such that i + j > s}. Since there is no lead time and
the replenishment is instantaneous, the r−events form a renewal process. The factor that
simplifies the analysis of the model is that

(i) the life of an item is exponentially distributed.
(ii) the demands for product 1 arrive according to a Poisson process with rate λ1.

(iii) the demands for product 2 arrive according to a Poisson process with rate λ2.

To describe the behavior of the process Z(t) at any time t, it is enough to obtain the probability
density function of the interval between any two successive r−events and the distribution of
Z(t) in a cycle (the interval between any two successive r−events). To this end, we consider
certain auxiliary functions and restrict their usage to a cycle.

2.4 The auxiliary function p̃(i, j, t |l, m)

We define

p̃(i, j, t |l, m) = P{Z(t) = (i, j)|Z(0) = (l, m)},

where (i, j), (l, m) ∈ E . Then p̃(i, j, t |l, m) gives the inventory level distribution in a
renewal cycle. To derive an expression for this function, we note that a change in the inventory
level may occur due to any one of the following possibilities.

1. A demand for a product 1 occurs and is satisfied by product 1.
2. Product 1 perishes.
3. A demand for a product 2 occurs and is satisfied by product 2.
4. Product 2 perishes.
5. A demand for product 1 occurs during its stock-out period and is substituted by the other

product if available.
6. A demand for product 2 occurs during its stock-out period and is substituted by the other

product if available.

Using probabilistic arguments, we derive the following equations:
Case 1 l > 0, m > 0, s < i + j < l + m:

p̃(i, j, t |l, m) = e−(λ1+λ2+lν1+mν2)t (λ1 + lν1)© p̃(i, j, t |l − 1, m)

+ e−(λ1+λ2+lν1+mν2)t (λ2 + mν2)© p̃(i, j, t |l, m − 1). (2.1)

Case 2 l > 0, m > 0, s < i + j = l + m:

p̃(i, j, t |l, m) = e−(λ1+λ2+lν1+mν2)t . (2.2)

Case 3 l = 0, s < j < m:

p̃(0, j, t |0, m) = e−(λ1 p12+λ2+mν2)t (λ2 + λ1 p12 + mν2)© p̃(0, j, t |0, m − 1). (2.3)
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Case 4 l = 0, j = m > s:

p̃(0, m, t |0, m) = e−(λ1 p12+λ2+mν2)t . (2.4)

Case 5 m = 0, s < i < l:

p̃(i, 0, t |l, 0) = e−(λ1+λ2 p21+lν1)t (λ1 + λ2 p21 + lν1)© p̃(i, 0, t |l − 1, 0). (2.5)

Case 6 m = 0, i = l > s:

p̃(l, 0, t |l, 0) = e−(λ1+λ2 p21+lν1)t . (2.6)

The Eqs. (2.1)–(2.6) can be solved by Laplace transform technique and the probabilities
p̃(i, j, t |l, m) are obtained.

2.5 The probability density function ψ(t)

Let ψ(t) be defined by

ψ(t) = lim
�→0

P[r − event in (t, t + �), N (r, t) = 0|r − event at t = 0]/�.

Then ψ(t) is the probability density function of the interval between any two successive
r−events. To derive an expression for ψ(t), let K (i, j, t) = p̃(i, j, t |E0). We note that an
′r ′ event occurs when the system enters the state (i, j) such that i + j = s. This can occur
in the following ways:

(i) The inventory level may be in (i, s + 1 − i), i > 0 and a demand for product 1 occurs
or a demand for product 2 occurs, or one unit of product 1 or product 2 perishes.

(ii) The inventory level may be in (0, s + 1) and a demand for product 1 occurs and is
substituted by product 2 or a demand for product 2 occurs and is satisfied or one unit
of product 2 perishes.

(iii) The inventory level may be in (s + 1, 0) and a demand for product 1 occurs and is
satisfied or a demand for product 2 occurs and is substituted by product 1 or one unit
of product 1 perishes.

Then we get explicitly

ψ(t) =

s
∑

i=1

K (i, s − i + 1, t)(λ1 + λ2 + iν1 + (s − i + 1)ν2)

+ K (0, s + 1, t)[λ2 + λ1 p12 + (s + 1)ν2]

+ K (s + 1, 0, t)[λ1 + λ2 p21 + (s + 1)ν1]. (2.7)

2.6 The renewal density function hr (t)

Let hr (t) be the renewal density of r−events. Then

hr (t) = lim
�→0

P[an r − event in (t, t + �)|r − event at t = 0]/�.

We note that

hr (t) =

∞
∑

n=1

ψ (n)(t). (2.8)
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3 Measures of system performance

3.1 Distribution of the inventory level

The joint distribution of the inventory levels of product 1 and product 2 at any time t is given
by the function

P(i, j, t) = K (i, j, t) + hr (t)©K (i, j, t), (i, j) ∈ E . (3.1)

3.2 Mean number of events

Let ′η′ represent any one of the events ′r ′,′ a′
i ,

′ b′
i , i = 1, 2, 3.

Define hη(t) = lim
�→0

Pr{an ′η′ event in (t, t + �]|E0}/�. Then hη(t) represents the first

order product density (Srinivasan 1974) of the ′η′ events. Consequently, the mean number of
′η′ events that have occurred up to time t is given by

E(N (η, t)) =

∫ t

0
hη(u)du.

Hence we derive expressions for the first order product densities of the events to get the
mean number in (0, t].

3.3 Mean number of replenishments

We have already obtained the renewal density hr (t) in the Eq. (2.8). Hence we get

E[N (r, t)] =

∫ t

0
hr (u)du. (3.2)

3.4 Mean number of demands satisfied

A demand for a product will be satisfied with probability 1 if the inventory level of that
product is greater than zero at the epoch of its occurrence and with probability pi j with the
other product if the inventory level of that product is zero and the other product is greater
than zero. Hence we have

ha1(t) =

S1
∑

i=1

S2
∑

j=0i+ j=s+1

P(i, j, t |E0)λ1 +

S2
∑

j=s+1

P(0, j, t |E0)p12λ1, (3.3)

hb1(t) =

S1
∑

i=0

S2
∑

j=1i+ j=s+1

P(i, j, t |E0)λ2 +

S1
∑

i=s+1

P(i, 0, t |E0)p21λ2. (3.4)

3.5 Mean number of demands lost

A demand for a product will be lost with probability 1 if the inventory level of both the
products is zero at the time of its occurrence and with probability qi j if the inventory level
of that product is zero and the other product is greater than zero. Hence we have
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ha2(t) =

S2
∑

j=s+1

P(0, j, t |E0)q12λ1, (3.5)

hb2(t) =

S1
∑

i=s+1

P(i, 0, t |E0)q21λ2. (3.6)

3.6 Mean number of demands substituted

A demand for a product will be substituted with probability pi j with the other product if the
inventory level of that product is zero and the other product is greater than zero at the epoch
of its occurrence. Hence we have

ha3(t) =

S2
∑

j=s+1

P(0, j, t |E0)p12λ1, (3.7)

hb3(t) =

S1
∑

i=s+1

P(i, 0, t |E0)p21λ2. (3.8)

4 Steady state analysis

Let us define

P(i, j) = lim
t→∞

P(i, j, t |E0).

Then P(i, j) is the stationary joint distribution of the inventory levels of both the products.
Using the principle of flow balance, we derive the following equations satisfied by P(i, j);

Case 1(a) i = 0 and j > s:

(λ2 + jν2 + λ1 p12)P(0, j) = λ1q12 P(0, j) + (λ1 + ν1)P(1, j)

+ (p12λ1 + ( j + 1)ν2 + λ2)P(0, j + 1). (4.1)

Case 1(b) i > s and j = 0:

(λ1 + iν1 + λ2 p21)P(i, 0) = λ2q21 P(i, 0) + (λ2 + ν2)P(i, 1)

+ (p21λ2 + (i + 1)ν1 + λ1)P(i + 1, 0). (4.2)

Case 1(c) i, j > 0 and i + j > s:

(λ1 + λ2 + iν1 + jν2)P(i, j) = (λ1 + (i + 1)ν1)P(i + 1, j)

+ (λ2 + ( j + 1)ν2)P(i, j + 1). (4.3)

The set of Eqs. (4.1)–(4.3) can be solved along with the constraint

S1
∑

i=0

S2
∑

j=0i+ j=s+1

P(i, j) = 1 (4.4)

to obtain explicitly the steady-state distribution P(i, j).
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4.1 Mean stationary rate of events

The mean stationary rate of η events is given by E[N (η,∞)] = lim
t→∞

1

t
E[N (η, t)].

4.1.1 Mean stationary rate of replenishments

E[N (r,∞)] =

s
∑

i=1

P(i, s − i + 1)(λ1 + λ2 + iν1 + (s − i + 1)ν2)

+ P(0, s + 1)[λ2 + λ1 p12 + (s + 1)ν2]

+ P(s + 1, 0)[λ1 + λ2 p21 + (s + 1)ν1]. (4.5)

4.1.2 Mean stationary rate of demands satisfied

E[N (a1,∞)] =

S1
∑

i=1

S2
∑

j=0i+ j>s

P(i, j)λ1 +

S2
∑

j>s

P(0, j)p12λ1. (4.6)

E[N (b1,∞)] =

S1
∑

i=0

S2
∑

j=1i+ j>s

P(i, j)λ2 +

S1
∑

i>s

P(i, 0)p21λ2. (4.7)

4.1.3 Mean stationary rate of demands lost

E[N (a2,∞)] =

S2
∑

j>s

P(0, j)q12λ1, (4.8)

E[N (b2,∞)] =

S1
∑

i>s

P(i, 0)q21λ2. (4.9)

4.1.4 Mean stationary rate of demands substituted

E[N (a3,∞)] =

S2
∑

j>s

P(0, j)p12λ1, (4.10)

E[N (b3,∞)] =

S1
∑

i>s

P(i, 0)p21λ2. (4.11)

5 A numerical illustration

As an illustration, let us consider the simple situation: S1 = 1, S2 = 2, s = 1. Then the state
space is given by

E = {(i, j) : i = 0, 1, j = 0, 1, 2 such that i + j > 1} = {(1, 2), (1, 1), (0, 2)}.

The state transition probabilities are

p̃(1, 2, t |1, 2) = e−(λ1+λ2+ν1+2ν2)t ; p̃(1, 1, t |1, 1) = e−(λ1+λ2+ν1+ν2)t ;

p̃(0, 2, t |0, 2) = e−(λ1 p12+λ2+2ν2)t ;

8



p̃(1, 1, t |1, 2) = e−(λ1+λ2+ν1+2ν2)t (λ2 + 2ν2)©e−(λ1+λ2+ν1+ν2)t ;

p̃(0, 2, t |1, 2) = e−(λ1+λ2+ν1+2ν2)t (λ1 + ν1)©e−(λ1 p12+λ2++2ν2)t .

Then the probability density function ψ(t) is given by

ψ(t) = K (1, 1, t)(λ1 + λ2 + ν1 + ν2) + K (0, 2, t)(λ2 + λ1 p12 + 2ν2),

where we have

K (1, 1, t) = p̃(1, 1, t |1, 2) = e−(λ1+λ2+ν1+2ν2)t (λ2 + 2ν2)©e−(λ1+λ2+ν1+ν2)t ;

K (0, 2, t) = p̃(0, 2, t |1, 2) = e−(λ1+λ2+ν1+2ν2)t (λ1 + ν1)©e−(λ1 p12+λ2+2ν2)t .

Taking Laplace transform, we get

K ∗(1, 1, θ) =
(λ2 + 2ν2)

(θ + λ1 + λ2 + ν1 + 2ν2)

1

(θ + λ1 + λ2 + ν1 + ν2)
;

K ∗(0, 2, θ) =
(λ1 + ν1)

(θ + λ1 + λ2 + ν1 + 2ν2)

1

(θ + λ1 p12 + λ2 + 2ν2)
.

Consequently, we obtain

ψ∗(θ) = K ∗(1, 1, θ)(λ1 + λ2 + ν1 + ν2) + K ∗(0, 2, θ)(λ2 + λ1 p12 + 2ν2)

=
(λ2 + 2ν2)

(θ + λ1 + λ2 + ν1 + 2ν2)

(λ1 + λ2 + ν1 + ν2)

(θ + λ1 + λ2 + ν1 + ν2)

+
(λ1 + ν1)

(θ + λ1 + λ2 + ν1 + 2ν2)

(λ2 + λ1 p12 + 2ν2)

(θ + λ1 p12 + λ2 + 2ν2)
.

We note that ψ∗(0) = 1, confirming that ψ(t) is indeed a probability density function.
Inverting ψ∗(θ), we obtain

ψ(t) =
(λ2 + 2ν2)(λ1 + λ2 + ν1 + ν2)

ν2

[

e−(λ1+λ2+ν1+ν2)t − e−(λ1+λ2+ν1+2ν2)t
]

+
(λ1 + ν1)(λ2 + λ1 p12 + 2ν2)

λ1q12 + ν1

[

e−(λ1 p12+λ2+2ν2)t − e−(λ1+λ2+ν1+2ν2)t
]

.

For the above illustration, the steady-state probabilities are given by the following flow-
balance equations:

(λ2 + 2ν2 + λ1 p12 + λ1q12)P(0, 2) = λ1q12 P(0, 2) + (λ1 + ν1)P(1, 2);

(λ1 + λ2 + ν1 + 2ν2)P(1, 2)=(λ2 + 2ν2 + λ1 p12)P(0, 2)+(λ1 + λ2 + ν1 + ν2)P(1, 1);

(λ1 + λ2 + ν1 + ν2)P(1, 1) = (λ2 + 2ν2)P(1, 2).

Solving the above equations along with the constraint

P(0, 2) + P(1, 1) + P(1, 2) = 1,

we obtain

P(1, 1) =
λ2 + 2ν2

λ1 + λ2 + ν1 + ν2
P(1, 2);

P(0, 2) =
λ1 + ν1

λ2 + 2ν2 + λ1 p12
P(1, 2);

P(1, 2) =

[

1 +
λ1 + ν1

λ2 + 2ν2 + λ1 p12
+

λ2 + 2ν2

λ1 + λ2 + ν1 + ν2

]−1

.
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In the above illustration, the inventory level of product 2 never reaches the level 0 and hence
the demand for product 2 is always satisfied. So we consider another illustration where
both the inventories may reach level 0 before replenishment. For the purpose of numerical
illustration, we assume the following values for the parameters:

S1 = 2; S2 = 3; s = 1.

Then the state space is

E = {(2, 3), (2, 2), (1, 3), (2, 1), (1, 2), (0, 3), (1, 1), (2, 0), (0, 2)}.

5.1 Stationary distribution of the inventory level

Using the principle of flow balance, we obtain the following system of linear equations:

a111 P(1, 1) + a120 P(2, 0) + a102 P(0, 2) − a123 P(2, 3) = 0,

a213 P(1, 3) − a223 P(2, 3) = 0,

a322 P(2, 2) − a323 P(2, 3) = 0,

a412 P(1, 2) − a422 P(2, 2) − a413 P(1, 3) = 0,

a521 P(2, 1) − a522 P(2, 2) = 0,

a603 P(0, 3) − a613 P(1, 3) = 0,

a711 P(1, 1) − a712 P(1, 2) − a721 P(2, 1) = 0,

a820 P(2, 0) − a821 P(2, 1) = 0,

a902 P(0, 2) − a912 P(1, 2) − a903 P(0, 3) = 0,

where

a111 = λ1 + ν1 + λ2 + ν2, a120 = λ1 + 2ν1 + λ2 p21, a102 = λ2 + 2ν2 + λ1 p12,

a123 = λ1 + 2ν1 + λ2 + 3ν2; a213 = λ1 + ν1 + λ2 + 3ν2, a223 = λ1 + 2ν1;

a322 = λ1 + 2ν1 + λ2 + 2ν2, a323 = λ2 + 3ν2; a412 = λ1 + ν1 + λ2 + 2ν2,

a422 = λ1 + 2ν1; a413 = λ2 + 3ν2; a521 = λ1 + 2ν1 + λ2 + ν2,

a522 = λ2 + 2ν2; a603 = λ2 + 3ν2 + λ1 p12, a613 = λ1 + ν1;

a711 = λ1 + ν1 + λ2 + ν2, a712 = λ2 + 2ν2; a721 = λ1 + 2ν1;

a820 = λ1 + 2ν1 + λ2 p21, a821 = λ2 + ν2; a902 = λ2 + 2ν2 + λ1 p12,

a912 = λ1 + ν1; a903 = λ2 + 3ν2 + λ1 p12.

The above system of linear equations can be solved along with the constraint

2
∑

i=0

3
∑

j=0i+ j>1

P(i, j) = 1.

We fix the following values for the parameters:

ν1 = 3.000; ν2 = 4.000; λ1 = 1.100; λ2 = 2.000.

Table 1 gives the distribution of the joint inventory level for values of p12 = 0.25, 0.5, 0.75
and p21 = 0.25, 0.5, 0.75.

5.2 Mean stationary rate of replenishment versus perishing rate for product 1

We fix ν2 = 4.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν1.

Table 2/Fig. 1 gives the mean stationary rate of replenishments for values ν1 increasing from
1 to 10. We observe that as ν1 increases (that is, the mean perishing time for product 1
decreases), the mean stationary rate of replenishments increases as expected.
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Table 1 Joint inventory level distribution

(p12, p21) P(2, 3) P(1, 3) P(2, 2) P(1, 2) P(2, 1) P(0, 3) P(1, 1) P(2, 0) P(0, 2)

(0.25, 0.25) 0.1663 0.0735 0.1361 0.1415 0.1039 0.0211 0.2132 0.0649 0.0794

(0.25, 0.50) 0.1668 0.0737 0.1366 0.1420 0.1043 0.0212 0.2139 0.0619 0.0797

(0.25, 0.75) 0.1673 0.0739 0.1370 0.1424 0.1046 0.0212 0.2145 0.0592 0.0799

(0.50, 0.25) 0.1663 0.0735 0.1362 0.1416 0.1040 0.0207 0.2133 0.0650 0.0795

(0.50, 0.50) 0.1669 0.0738 0.1366 0.1420 0.1043 0.0208 0.2139 0.0620 0.0797

(0.50, 0.75) 0.1674 0.0740 0.1370 0.1425 0.1046 0.0208 0.2146 0.0592 0.0799

(0.75, 0.25) 0.1664 0.0736 0.1362 0.1416 0.1040 0.0203 0.2133 0.0650 0.0795

(0.75, 0.50) 0.1669 0.0738 0.1367 0.1421 0.1043 0.0204 0.2140 0.0620 0.0797

(0.75, 0.75) 0.1674 0.0740 0.1371 0.1425 0.1046 0.0205 0.2147 0.0592 0.0800

Table 2 Mean Stationary rate of replenishment versus perishing rate for product 1

ν1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (r, ∞)) 2.2575 2.9744 3.5036 3.9123 4.2365 4.4980 4.7116 4.8876 5.0338 5.1559

Fig. 1 Mean stationary rate of replenishment versus perishing rate for product 1

5.3 Mean stationary rate of replenishment versus perishing rate for product 2

We fix ν1 = 3.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν2.

Table 3/Fig. 2 gives the mean stationary rate of replenishments for values ν2 increasing from
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Table 3 Mean Stationary rate of replenishment versus perishing rate for product 2

ν2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (r, ∞)) 1.98977 2.6464 3.1293 3.5036 3.8061 4.0582 4.2730 4.4592 4.6228 4.7680

Fig. 2 Mean stationary rate of replenishment versus perishing rate for product 2

Table 4 Mean Stationary rate of demands satisfied versus perishing rate of product 1

ν1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (a1,∞)) 1.0829 1.0653 1.0447 1.0226 1.0000 0.9777 0.9561 0.9355 0.9160 0.8978

E(N (b1,∞)) 2.1147 2.0827 2.0620 2.0477 2.0376 2.0301 2.0245 2.0201 2.0168 2.0141

1 to 10. We observe that as ν2 increases (that is, the mean perishing time for product 2
decreases), the mean stationary rate of replenishments increases as expected.

5.4 Mean stationary rate of demands satisfied versus perishing rate of product 1

We fix ν2 = 4.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν1.

Table 4/Fig. 3 gives the mean stationary rate of demands for product 1 and product 2 satisfied
for values ν1 increasing from 1 to 10. We observe that as ν1 increases (that is, the mean time
for product 1 to perish decreases), the mean stationary rate of demands satisfied increases as
expected. Further, the demand rate for product 2 (λ2 = 2) is higher than the demand rate of
product 1 (λ1 = 1) the mean stationary rate of demands satisfied by product 2 is more than
the corresponding value of product 1.
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Fig. 3 Mean stationary rate of demands satisfied versus perishing rate of product 1

Table 5 Mean Stationary rate of demands satisfied versus perishing rate of product 2

ν2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (a1,∞)) 0.9185 0.9858 1.0228 1.0447 1.0586 1.0679 1.0745 1.0792 1.0827 1.0854

E(N (b1,∞)) 2.0204 2.0360 2.0499 2.0620 2.0724 2.0814 2.0894 2.0964 2.1026 2.1082

5.5 Mean stationary rate of demands satisfied versus perishing rate of product 2

We fix ν1 = 3.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν2.

Table 5/Fig. 4 gives the mean stationary rate of demands for product 1 and product 2 satisfied
for values ν2 increasing from 1 to 10. We observe that as ν2 increases (that is, the mean time
for product 2 to perish decreases), the mean stationary rate of demands satisfied increases as
expected. Further, the demand rate for product 2 (λ2 = 2) is higher than the demand rate of
product 1 (λ1 = 1) the mean stationary rate of demands satisfied by product 2 is more than
the corresponding value of product 1.

5.6 Mean stationary rate of demands lost versus ν1

We fix ν2 = 4.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν1.

Table 6/Fig. 5 gives the mean stationary rate of demands for product 1 and product 2 lost
for values of ν1 increasing from 1 to 10. We observe that as ν1 increases (that is the mean
time for product 1 to perish decreases), the mean stationary rate of demands lost decreases
as expected. Further, the demand rate for product 2 (λ2 = 2) is higher than the demand rate
of product 1 (λ1 = 1) the mean stationary rate of demands for product 2 lost is more than
the corresponding value of product 1.
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Fig. 4 Mean stationary rate of demands satisfied versus perishing rate of product 2

Table 6 Mean Stationary rate of demands lost versus ν1

ν1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (a2, ∞)) 0.0171 0.0347 0.0553 0.0774 0.1000 0.1223 0.1439 0.1645 0.1840 0.2022

E(N (b2, ∞)) 0.1147 0.0827 0.0620 0.0477 0.0376 0.0301 0.0245 0.0201 0.0168 0.0141

5.7 Mean stationary rate of demands lost versus ν2

We fix ν1 = 3.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν2.

Table 7/Fig. 6 gives the mean stationary rate of demands for product 1 and product 2 lost
for values of ν2 increasing from 1 to 10. We observe that as ν2 increases (that is the mean
time for product 2 to perish decreases), the mean stationary rate of demands lost decreases
as expected. Further, the demand rate for product 2 (λ2 = 2) is higher than the demand rate
of product 1 (λ1 = 1) the mean stationary rate of demands for product 2 lost is more than
the corresponding value of product 1.

5.8 Mean stationary rate of demands substituted versus ν1

We fix ν2 = 4.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν1.

Table 8/Fig. 7 gives the mean stationary rate of demands for product 1 substituted with
product 2 and product 2 with product 1 for values of ν1 increasing from 1 to 10. We observe
that as ν1 increases (that is the mean time for product 1 to perish decreases), the mean
stationary rate of demands for product 1 substituted with product 2 increases and the mean
stationary rate of demands for product 2 substituted with product 1 decreases.
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Fig. 5 Mean stationary rate of demands lost versus ν1

Table 7 Mean Stationary rate of demands lost versus ν2

ν2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (a2, ∞)) 0.1815 0.1142 0.0772 0.0553 0.0414 0.0321 0.0255 0.0208 0.0173 0.0146

E(N (b2, ∞)) 0.0204 0.0360 0.0499 0.0620 0.0724 0.0814 0.0894 0.0964 0.1026 0.1082

Fig. 6 Mean stationary rate of demands lost versus ν2
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Table 8 Mean Stationary rate of demands substituted versus ν1

ν2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (a3,∞)) 0.0171 0.0347 0.0553 0.0774 0.1000 0.1223 0.1439 0.1645 0.1840 0.2022

E(N (b3,∞)) 0.1147 0.0827 0.0620 0.0477 0.0376 0.0301 0.0245 0.0201 0.0168 0.0141

Fig. 7 Mean stationary rate of demands substituted versus ν1

Table 9 Mean Stationary rate of demands substituted versus ν2

ν2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

E(N (a3,∞)) 0.1815 0.1142 0.0772 0.0553 0.0414 0.0321 0.0255 0.0208 0.0173 0.0146

E(N (b3,∞)) 0.0204 0.0360 0.0499 0.0620 0.0724 0.0814 0.0894 0.0964 0.1026 0.1082

5.9 Mean stationary rate of demands substituted versus ν2

We fix ν1 = 3.000; λ1 = 1.100; λ2 = 2.000; p12 = 0.50; p21 = 0.50 and vary ν2.

Table 9/Fig. 8 gives the mean stationary rate of demands for product 1 substituted with
product 2 and product 2 with product 1 for values of ν2 increasing from 1 to 10. We observe
that as ν2 increases (that is the mean time for product 2 to perish decreases), the mean
stationary rate of demands for product 1 substituted with product 2 decreases and the mean
stationary rate of demands for product 2 substituted with product 1 increases.
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Fig. 8 Mean stationary rate of demands substituted versus ν2

6 Conclusion

We considered a disaster inventory system which stores two substitutable perishable product.
Formulating a two-dimensional stochastic process, we made a continuous-review analysis of
the disaster inventory. Since the inventory is maintained for disaster management, we adopted
an adjustable joint reordering policy for replenishment. Assuming no lead time for the replen-
ishment, we obtained the mean number of (i) the demands satisfied; (ii) demands substituted;
(iii) demands lost; and (iv) replenishments in the interval (0, t]. We also obtained the sta-
tionary distribution for the state of the system and validated the performance measures by a
numerical example. From the numerical illustration, we observed that the system performed
as expected:

(a) As the mean perishing time for product 1 decreases, the mean stationary rate of replen-
ishments increases.

(b) As the mean perishing time for product 2 decreases, the mean stationary rate of replen-
ishments increases.

(c) As the mean time for product 1 to perish decreases, the mean stationary rate of demands
satisfied increases.

(d) As the mean time for product 2 to perish decreases, the mean stationary rate of demands
satisfied increases.

(e) As the mean time for product 1 to perish decreases), the mean stationary rate of demands
lost decreases.

(f) As the mean time for product 2 to perish decreases, the mean stationary rate of demands
lost decreases.

(g) As the mean time for product 1 to perish decreases, the mean stationary rate of demands
for product 1 substituted with product 2 increases and the mean stationary rate of demands
for product 2 substituted with product 1 decreases.
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(h) As the mean time for product 2 to perish decreases, the mean stationary rate of demands
for product 1 substituted with product 2 decreases and the mean stationary rate of
demands for product 2 substituted with product 1 increases.

Consequently, we conclude that the mean perishing times of the products control the flow of
the demands for the products.
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