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Two-tag correlations and nonequilibrium
fluctuation–response relation in ageing single-file diffusion

Ooshida, Takeshi∗

Department of Mechanical and Physical Engineering, Tottori University,
Tottori 680-8552, Japan

Otsuki, Michio

Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka
560-8531, Japan

Spatiotemporally correlated motions of interacting Brownian particles, confined in

a narrow channel of infinite length, are studied in terms of statistical quantities

involving two particles. A theoretical framework that allows analytical calculation

of two-tag correlations is presented on the basis of the Dean-Kawasaki equation

describing density fluctuations in colloidal systems. In the equilibrium case, the

time-dependent Einstein relation holds between the two-tag displacement correla-

tion and the response function corresponding to it, which is a manifestation of the

fluctuation-dissipation theorem for the correlation of density fluctuations. While

the standard procedure of closure approximation for nonlinear density fluctuations

is known to be obstructed by inconsistency with the fluctuation-dissipation theorem,

this difficulty is naturally avoided by switching from the standard Fourier represen-

tation of the density field to the label-based Fourier representation of the vacancy

field. In the case of ageing dynamics started from equidistant lattice configuration,

the time-dependent Einstein relation is violated, as the two-tag correlation depends

on the waiting time for equilibration while the response function is not sensitive to

it. Within linear approximation, however, there is a simple relation between the

density (or vacancy) fluctuations and the corresponding response function, which

is valid even if the system is out of equilibrium. This non-equilibrium fluctuation-

response relation can be extended to the case of nonlinear fluctuations by means of

closure approximation for the vacancy field.
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I. INTRODUCTION

Changes in systems tractable with statistical physics may occur endogenously as spon-
taneous fluctuations and exogenously in response to applied forces. In many cases, there
is a relationship between these two types of changes [1, 2], which is known by the name of
fluctuation–response relation (FRR) or, synonymously, fluctuation–dissipation relation. In
particular, FRRs in systems near thermal equilibrium are well established and often referred
to as the fluctuation–dissipation theorem (FDT) [1].

One of the simplest examples of FRR is the Einstein relation,

D = kBT/µ, (1.1)

between the diffusivity D and the drag coefficient µ of a free Brownian particle in a medium
(typically water) with the temperature T . The diffusivity D measures how fast the mean
square displacement (MSD) grows in time due to thermal fluctuations inside the system,
while µ, or its inverse µ−1 (referred to as the mobility), represents the particle’s response to
external forces.

FRRs are useful in several ways. They help to understand the fluctuations of the system
in terms of its response, and vice versa. Experimental verification of FRR serves as a test
of basic assumptions underlying the theoretical model: a celebrated instance is found in
Perrin’s experiments [3] on the Einstein relation (1.1). Once FRR is established and written
in the form of the Green–Kubo formula, it allows us to calculate transport coefficients, such
as the viscosity, without applying shear in the calculation. In the (generalized) Langevin
description of systems at thermal equilibrium with a fixed temperature, FDT prescribes
the spectrum for the random force to play consistently the role of the heat bath with the
temperature of the medium. FRR also concerns a certain type of theoretical approaches
to correlations of fluctuations in nonlinear systems, known by the name of mode-coupling
theory (MCT) [4–7] or direct-interaction approximation (DIA) [8, 9], as a kind of response
function (“propagator”) is involved in the procedure of the closure approximation.

To illustrate how FDT prescribes the random force term in the Langevin equation, let
us consider a case of interacting Brownian particles. With the position vector of the i-th
particle denoted with ri = ri(t), the Langevin equation reads

mr̈i = −µṙi −
∂U

∂ri
+ µfi(t) (i = 1, 2, . . . , N), (1.2)

where U = U({r}) = U(r1, r2, . . . , rN) denotes the interaction potential, and the drag term
is assumed to be expressible with a constant scalar µ for the sake of simplicity. On the
assumption that U does not affect the nature of the random force fi(t), FDT requires [1]

⟨fi(t)⊗ fj(t
′)⟩ = 2kBT

µ
δijδ(t− t′)11, (1.3)

where T is the temperature of the medium.
Generalization of FDT to nonequilibrium cases, with any appropriate modification, is

one of the central problems of modern statistical physics. For example, for a class of non-
equilibrium systems describable with the Langevin equation (1.2), the Harada–Sasa relation
[10, 11] holds instead of the equilibrium FRR. In this case, the medium is in equilibrium
so that the random force still satisfies (1.3), but if finite forcing included in U drives the
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colloidal system out of equilibrium, the relation between the velocity autocorrelation of the
particles and the system’s response is modified. More generally, if a system exhibits FRR
different from the equilibrium FDT, it manifests that the system is out of equilibrium. This
violation of FDT has been observed in many nonequilibrium systems, such as glasses in
ageing [12, 13], driven polymers [14], living cells [15, 16], and models of fluid turbulence [17–
19]. Theoretical interpretation of an extra term in nonequilibrium FRR is also discussed
as suggesting a role of novel statistical quantities, such as dynamical activity or “frenesy”
[20, 21], corresponding to the role played by the entropy production in the near-equilibrium
case.

In the context of transport in narrow channels, violation of the Einstein relation due to
nonequilibrium initial configuration was recently discussed by Leibovich and Barkai [22].
They studied behavior of a tagged particle in a one-dimensional (1D) system of Brownian
particles with hardcore interaction, which is a typical case of constrained dynamics known
by the name of single-file diffusion (SFD) [22–29]. As the particles in such a system are
hindered from free motion, they can diffuse only in some cooperative manner [30–32], with
the MSD growing subdiffusively as ⟨

R2
⟩
∝

√
t (1.4)

for large t, where R is the displacement of the tagged particle in the time interval from 0
to t. Therefore, in SFD, the diffusivity in the usual sense vanishes; but it is still possible to
define the time-dependent diffusivity and discuss its relationship with the time-dependent
mobility [33], and thus the Einstein relation had been generalized to SFD and shown to
be valid in the equilibrium case [33–35]. With this validity of the Einstein relation in the
background, Leibovich and Barkai [22] compared two cases: ageing SFD started from the
equidistant lattice configuration, and SFD with the initial condition already at equilibrium.
The MSD was found to differ by the factor of

√
2, implying that the time-dependent dif-

fusivity depends on the initial condition. Contrastively, the time-dependent mobility was
found to be insensitive to the initial condition. In this way, the Einstein relation is vio-
lated in ageing SFD. An interesting point of this result is that the violation lasts forever,
showing that it takes an infinitely long time to equilibrate the single-file system completely.
This “everlasting effect” of the different initial conditions [22, 36] was recently shown to be
produced also on higher-order moments of the displacement and on multi-time correlations,
with a kind of Jepsen-like technique that makes a full use of the mapping from the SFD of
point particles to non-interacting Brownian particles [37].

In this paper, we extend the work of Leibovich and Barkai [22] in several aspects. First of
all, instead of MSD for only one tagged particle, we consider two-tag correlations to account
for the cooperativity in SFD. We focus mostly on displacement correlation [32, 38, 39],
denoting it with

χij = ⟨RiRj⟩ (1.5)

for the i-th and j-th particles. Correspondingly, the response function (i.e. the time-
dependent mobility) is also treated as a two-body quantity gij. In relating χij and gij,
we also establish a connection with density fluctuations [39], beyond the linear approxima-
tion already known for a long time [26]. The approach to SFD based on density fluctuations
(or, to be precise, fluctuations of elongation) has a wider applicability than the Jepsen-line
approach, which means that we can generalize the result for point particles [22] to the case
of particles with a finite diameter σ. While a linear analysis of density fluctuations suf-
fices to reproduce the asymptotic behavior of MSD in (1.4), the nonlinear theory gives a
subdominant term as a correction.
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The paper is organized as follows. We start with background information about the time-
dependent Einstein relation (subsection II.A), spatiotemporally correlated motions in SFD
(subsection II.B), and description of the dynamics of interacting Brownian particles in terms
of density fluctuations (subsection II.C). The equation for density fluctuations is called the
Dean–Kawasaki equation. Subsequently, in section III, we specify the single-file system and
define two-tag quantities such as χij, gij and χ+

ij, along with quantities in Fourier repre-
sentations that bridge between these two-tag quantities and the Dean–Kawasaki equation.
Main results are presented in sections IV and V: the former concerns the equilibrium case,
while the ageing SFD is discussed in the latter. On the basis of density fluctuations in SFD,
the time-dependent Einstein relation for MSD is generalized to the two-tag displacement
correlation and the corresponding response function. The first main result is represented
by Eq. (5.7), showing the same everlasting effect of the initial condition on the two-tag dis-
placement correlation, as was found previously in one-tag cases [22, 36]. It is also discussed
how to treat the effect of mode coupling due to the nonlinearity of the Dean–Kawasaki
equation, using a closure approximation (MCT or DIA). While the standard approach is
known to suffer from inconsistency with the FDT [5], this difficulty can be avoided with a
suitable change of variables [38]. We apply this formalism to the non-equilibrium FRR with
an extra (“frenesy”) term [20, 40], showing that a closed relation between the correlation
and the response is obtained without causing inconsistency. This is our second main result.
Section VI is allotted for concluding remarks.

Some readers may find the background section too long, especially if they are already
familiar with the time-dependent Einstein relation in SFD. In such a case, the readers
would be advised to skip section II, except for figure 1 and the text around (2.20) which
are necessary in the result sections. Readers who are more interested in the results than the
methodology may also skim through section III, checking only important definitions such as
(3.7), (3.13), (3.27) and (3.28), and then concentrate on sections IV and V.

II. BACKGROUND

A. Einstein relation

Before discussing SFD, let us begin with a brief review of the Einstein relation for free
Brownian particles in the nd-dimensional space. By the word “free” we mean the case in
which the interaction U is negligible in (1.2).

The diffusivity D represents undriven changes of r due to thermal fluctuations, through
the definition

D = lim
t−s→∞

⟨[R(t, s)]2⟩
2nd(t− s)

, (2.1)

whereR(t, s) = r(t)−r(s). Contrastively, application of a weak driving force (“probe force”)
to the same Brownian particle causes driven changes of its position, to be measured with
the mobility µ−1; if a constant probe force Fp

∞ changes r(t) to r+(t) = r(t)+∆r(t), the drift
velocity is given by (d/dt)∆r(t) = (d/dt) ⟨r+(t)⟩, which should be proportional to Fp

∞ and
therefore allows introducing µ such that

d

dt

⟨
r+(t)

⟩
= µ−1Fp

∞ (2.2)
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in the steady state. The two constants defined in (2.1) and (2.2), namely D and µ, are
connected by the Einstein relation (1.1). Note that (1.1) makes it possible to determine kB
experimentally and to evaluate thereby the Avogadro number, which played the historic role
of demonstrating the reality of atoms [3].

More details on the motion of free Brownian particles may be given by solving the
Langevin equation, i.e. (1.2) with U = 0. Let us utilize this example with m > 0 (though
we will focus on the overdamped case in the remainder of this paper) to illustrate how the
concept of mobility in (2.2) is generalized to the time-dependent response. For the sake of
simplicity, we focus on the 1D case (nd = 1), rewriting (1.2) as(

m
d2

dt2
+ µ

d

dt

)
X = µf(t), (2.3)

with X = X(t) denoting the position of the particle. With the initial values of X and Ẋ = v
given at the time s, the solution for t > s is

X(t) = X(s) +mv(s)G(t− s) + µ

∫ t

s

duG(t− u)f(u) (2.4)

where

G(t′) = 1− e−t′/τB

µ
(t′ > 0) (2.5)

and τB = m/µ. The function G represents the response of X to the forcing term on the
right side of (2.3), which can be understood also as the response to the probe force in the
following way. Suppose that an infinitesimal probe force F p = F p(t), added to the right side
of (2.3), changes the solution from X to X+:(

m
d2

dt2
+ µ

d

dt

)
X+ = µf(t) + F p(t). (2.6)

The change due to the probe force is expressible in terms of G given in (2.5), as

X+(t) = X(t) +

∫ t

duG(t− u)F p(u), (2.7)

where the lower limit of the integral is understood as the time when the probe force is
“switched on”.

Now let us regard (2.7), instead of (2.5), as the definition of G that describes the response
of X to F p. By comparing (2.2) with (2.7) in the case of

F p(t) =

{
F p
∞ (t > s)

0 (t < s)
(2.8)

and taking (d/dt) ⟨X(t)⟩ = 0 into account, we find that the steady-state value of the re-
sponse, G(+∞), should be equal to the mobility µ−1, as is readily verified by taking the limit
of t′ → ∞ in (2.5). In other words, G can be regarded as a time-dependent generalization
of the mobility.
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To discuss the Einstein relation for G, let us return to the solution (2.4) and calculate
the MSD. Using the 1D version of (1.3) in regard to the noise statistics and averaging over
the initial velocity v(s) as well, we find⟨

R2
⟩
=

2kBT

µ

[
t∆ − τB

(
1− e−t∆/τB

)]
+ τB

2

(⟨
v2
⟩
init

− kBT

m

)(
1− e−t∆/τB

)2
, (2.9)

where R = R(t, s) = X(t) −X(s) and t∆ = t − s > 0. The mean value of [v(s)]2, denoted
with ⟨v2⟩init, must be equal to kBT/m at equilibrium, so that the last term in (2.9) vanishes.
The derivative of the MSD with regard to t is then calculated as

∂t
⟨
[R(t, s)]2

⟩
=

2kBT

µ

d

dt∆

[
t∆ − τB

(
1− e−t∆/τB

)]
=

2kBT

µ

(
1− e−t∆/τB

)
; (2.10)

by comparing (2.10) with G in (2.5), we find

∂t
⟨
R2
⟩
= 2kBTG(t− s), (2.11)

which is an instance of the time-dependent version of the Einstein relation. Note that, if
the response to the step force (2.8) is denoted with⟨

R+(t, s)
⟩
= F p

∞

∫ t

s

G(t− u)du

= F p
∞

∫ t−s

0

G(t′)dt′, (2.12)

then (2.11) can be re-expressed as⟨
R+(t, s)

⟩
=

⟨[R(t, s)]2⟩
2kBT

F p
∞. (2.13)

It should also be noted that nonequilibrium initial condition, in which ⟨v2⟩init differs from
kBT/m, results in violation of (2.13) on the timescale of τB.

Having reviewed the time-dependent Einstein relation, let us proceed to the case of inter-
acting particles in SFD. The system is governed by the 1D version of (1.2) with short-ranged
repulsive interaction potential, as will be specified later in section III. We consider the equa-
tion of motion in the overdamped limit (m → 0), focusing on timescales greater than τB.
Since SFD is subdiffusive, with the MSD behaving asymptotically as ⟨[R(t, s)]2⟩ ∝

√
t∆

(where t∆ = t−s), the diffusivity vanishes according to the original definition in (2.1). Nev-
ertheless, the time-dependent Einstein relation in the form of (2.13) is known to hold true
for SFD at equilibrium [33–35]. For example, in the case of point particles with hardcore
interaction, the MSD is given concretely in terms of the free-particle diffusivity D = kBT/µ
and the mean density ρ0 as ⟨

R2
⟩
=

2

ρ0

√
D t∆
π

, (2.14)

while the response of this system to the infinitesimal step force (2.8) is

⟨
R+
⟩
=

F p
∞

ρ0kBT

√
D t∆
π

. (2.15)
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FIG. 1 The function φ(θ) in (2.20) describing the asymptotic behavior of the two-tag displacement

correlation χij .

Comparing (2.14) and (2.15), we notice readily that ⟨R2⟩ and ⟨R+⟩ satisfy the time-
dependent Einstein relation in (2.13), because they are expressible as⟨

R2
⟩
= K

√
t∆,

⟨
R+
⟩
=
KF p

∞
2kBT

√
t∆ (2.16)

with the same constant K. This result holds true also for SFD of particles with finite
diameter [35] and SFD on a lattice [33], with appropriate changes in K, as long as the
system is at equilibrium. Contrastively, in the case of non-equilibrium SFD studied by
Leibovich and Barkai [22], the Einstein relation (2.13) is violated.

The above-mentioned studies on (2.13) involve statistical quantities for a single tagged
particle alone, such as the MSD. In SFD, however, we will find it more informative to
understand the MSD as a limiting case of a two-tag correlation, taking the cooperativity
into account. This is what motivates us to generalize the Einstein relation (2.13) to two-tag
quantities.

B. Cooperativity in single-file diffusion

Let us consider SFD in a system at equilibrium, statistically homogeneous and steady,
i.e. uniform both in space and in time. Although the subdiffusive behavior in (1.4) or
(2.14) is probably the most remarkable feature of SFD, we emphasize the importance of
another feature, referred to as cooperativity, which is more fundamental to the constrained
dynamics in a narrow channel. It means that the particles in SFD are mutually caged and
forbidden to move independently, so that their motions are possible only in some collective
and cooperative manner. The subdiffusion in SFD is a consequence of the cooperativity in
this sense and, in our opinion, should be understood as such. In [39], we have reviewed several
approaches to SFD from this viewpoint, together with a historical example of experiments
on K+ transport across nerve cell membranes [30, 41], which impresses the importance of
collective dynamics in narrow channels on us. It was this cooperativity that lead Hodgkin
and Keynes [30] to the idea of a narrow channel for ions, forty years before crystallographic
determination of ion channel structure.

Taking it for granted that the subdiffusion results from the cooperativity in SFD, one may
develop different types of strategies. Some researchers prefer to eliminate the surrounding
particles and reduce the collective single-file dynamics to a one-body problem described by a

7
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generalized or fractional Langevin equation [35, 42–44]. In this description, the cooperativity
is kept in the background, in the form of the memory kernel and the spatiotemporally
correlated noise. Contrastively, here we present another type of strategy, targeting directly
on the cooperativity.

Our main interest is in description and quantification of the collective dynamics with
spatiotemporal correlations defined appropriately. Most basically, the collective dynamics
in SFD are characterized by the dynamical correlation length λ = λ(t), which describes
the spatial length scale of the collective motion in the time interval from 0 to t (since the
statistical steadiness is assumed, we can choose s = 0 without loss of generality, so that
t∆ = t). In the case of finite systems, such as the ion channel with finite length L, the
dynamical correlation length can span the entire system. In what follows, however, we will
always assume that the system size L is so large that λ never reaches L. In such standard
SFD with L→ ∞, the dynamical correlation length behaves asymptotically as

λ ∝
√
t (2.17)

for large t, as will be explained below.
To prove (2.17), we notice that correlated motions in SFD are most conveniently quan-

tified with the two-tag displacement correlation [32, 38]. On the assumption of time-
translational and space-translational invariances, the two-tag displacement correlation χij,
given in (1.5), is a function of the “label distance” ξij = j − i (the particles are numbered
consecutively) and the elapsed time t. This function χij = χ(ξij, t) can be calculated by
introducing a fluctuating field h = h(ξ, t) that describes the positional fluctuation of the
particles, with the “label variable” ξ being a continuum analogue of the particle numbering.
As the crudest approximation, one may suppose that h behaves like a roughening surface
subject to the Edwards–Wilkinson equation [45],

∂th(ξ, t) = D′∂2ξh(ξ, t) + fh(ξ, t), (2.18)

where fh is a thermal noise such that1

⟨fh(ξ, t)fh(ξ′, t′)⟩ = 2Dδ(ξ − ξ′)δ(t− t′).

By solving (2.18) in the Fourier representation, the two-tag displacement correlation is
readily obtained [32, 38]:

χij(t) ∝
√
t φ

(
ξij

2
√
D′t

)
, (2.19)

with
φ(θ)

def
= e−θ2 −

√
π |θ| erfc |θ| . (2.20)

From (2.19) we can read the (nondimensionalized) dynamical correlation length λ(t) =

2
√
D′t that grows diffusively in proportion to

√
t. The function φ( · ) is plotted in figure 1,

where it is also shown as a 1D vector field, which may help intuitive understanding of the
displacement correlation. Later, in section IV, we will refine the calculation of χij on the
basis of a nonlinear equation for density fluctuations, as opposed to the linear equation

1 The coefficient D′ in Eq. (2.18) may generally differ from D that determines the noise amplitude. See,

for example, Eq. (4) in [35], where κ/ξ and kBT/ξ corresponds to our D′ and D.
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(2.18). It will be shown that, in spite of the nonlinear effect, (2.19) remains valid for large
t, so that (2.17) is proven.

The subdiffusive behavior of ⟨R2⟩ in (1.4) or (2.14) is a consequence of the growing corre-
lation length. This is intuitively understood through Rallison’s phenomenological argument
[31], which could be reformulated in terms of the Einstein relation as follows: If n Brownian
particles are strongly interacting and moving together, their center of mass behaves as a
single Brownian particle with the mobility reduced by a factor of 1/n and therefore with the
diffusion coefficient D/n, in the sense that

d

dt

⟨
R2
⟩
=

2D

n
. (2.21)

To apply (2.21) to the collective dynamics in SFD, Rallison [31] proposed to replace n in the
denominator with N (λ) = 1 + ρ0λ, which is the number of particles within the dynamical
correlation length λ = λ(t), so that the MSD is given by

⟨
R2
⟩
=

∫
0

2D dt

N (λ)
, λ = λ1DRal(t) =

√
4πDt. (2.22)

Upon integration, (2.22) yields an expression that gives free diffusion for small t and repro-
duces (2.14) for large t. Thus the slowdown of diffusion is related to the growing number of
particles in cooperative motion.

It should be noted that the correlation length λ ∼
√
Dt differs significantly from the

mean displacement of the particle, ⟨|R|⟩ ∼
√
⟨R2⟩. While it is obvious that displacement of

a tagged particle requires cooperation of other particles at least within the covered distance
⟨|R|⟩ [46], it needs clarification why the actual number of cooperating particles, N (λ) ∝ t1/2,
is much greater than ρ0 ⟨|R|⟩ ∝ t1/4.

The mathematical origin of the diffusive t-dependence of λ can be traced back to the
Edwards–Wilkinson equation (2.18). To understand the relevance of the Edwards–Wilkinson
dynamics to SFD more physically, we suppose that the cooperative motion is mediated by
some diffusing entity, whose dynamics is represented by the field h in (2.18). In the case of
discrete SFD on a 1D lattice, the diffusing entity is identified as migrating vacancies [47].
The vacancy dynamics on the lattice have their counterpart in continuous SFD [38, 39, 48],
in which the diffusing entity is the “free volume”, i.e. fluctuation of the spatial interval
between the particles. Within the linear approximation, the vacancy field (also known
as the elongation field [49]) simply represents density fluctuations subject to a stochastic
diffusion equation akin to (2.18), as will be explained in the next subsection.

Thus the cooperativity in SFD is grounded on the diffusive dynamics of density fluctua-
tions. It is characterized by the dynamical correlation length λ ∼

√
Dt, and it results in the

subdiffusive behavior of ⟨R2⟩ ∝ t1/2, as the time-dependent diffusivity is reduced in inverse
proportion to λ.

Before proceeding to the discussion on density fluctuation, some remarks on two-tag
correlations in SFD may be in order here. The two-tag displacement correlation, χij =
χ(ξij, t), includes the MSD as its limiting case. Denoting the constant of proportionality in
(2.19) again with K, we have

χij = K
√
t φ(θ), θ =

ξij
λ(t)

, (2.23)
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which implies ⟨R2⟩ = K
√
t because φ(0) = 1. It is interesting to note that χij approaches

K
√
t even for i ̸= j, if t is large enough to satisfy |ξij| ≪ λ(t) so that the pair of tagged

particles behaves as if a single particle. This result was recently generalized to arbitrary
number of tags, by means of the vacancy dynamics on the lattice [50].

Besides the displacement correlation, some other forms of two-tag correlations are also
known to be calculable. For the SFD of point particles, the probability distribution func-
tion for a rather general form of two-tag correlation can be calculated exactly [51]. The
displacement correlation is obtained as one of its special cases, while another special case
corresponds to the correlation of the inter-particle distance [35, 52]. Calculation of these
correlations in SFD provides insight into their counterparts in higher dimensions, such as
the displacement correlation tensor [53, 54] and the bond breaking correlation [55–57].

C. Fluctuating density of interacting Brownian particles

The explanation for basic features of SFD in the previous subsection was mostly based
on the Edwards–Wilkinson equation (2.18). This is linked to the Langevin equation (1.2)
through density fluctuations.

Let us consider a system of interacting Brownian particles subject to (1.2) in the nd-
dimensional space (later we will set nd = 1). Density fluctuations in this system can be
described by a stochastic equation for the mesoscopic density field,

ρ = ρ(r, t) =
∑
j

ρj(r, t), (2.24)

where ρj(r, t) = δnd(r − rj(t)). Since we focus on timescales greater than τB, the nd-
dimensional delta function δnd( · ) in the above expression should be regarded as a blunted
one due to temporal coarse-graining.

The stochastic equation for ρ in this context is customarily referred to as the Dean–
Kawasaki equation [7, 58–61]. Since ρ is conserved, the Dean–Kawasaki equation is most
conveniently introduced as a set of two equations, consisting of the continuity equation

∂tρ+∇ ·Q = 0 (2.25)

and a stochastic equation for the flux,

Q = −D
(
∇ρ+ ρ

kBT
∇U

)
+
∑
j

ρj(r, t)fj(t), (2.26)

with the random forcing fj(t) subject to (1.3). The term including

U = U [ρ](r) =

∫
Veff(|r− r̃|)ρ(r̃)dnd r̃ (2.27)

describes the interaction of the particles, with Veff denoting the effective two-body potential,
resulting from coarse-graining [59, 62] and expressed in terms of direct correlation function
[59, 63, 64].

Elimination of Q from (2.25) and (2.26) yields a single equation which is “almost a closed
equation [58]” for ρ(r, t). Instead of requiring too detailed information about every particle

10
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in the random forcing term, −∇·
∑

j ρj(r, t)fj(t), one may introduce fρ(r, t) whose statistics
are prescribed as

⟨fρ(r, t)fρ(r′, t′)⟩ = 2D∇ · ∇′ρ(r, t)δ(r− r′)δ(t− t′), (2.28)

and replace the random forcing term with fρ(r, t). The equation for ρ(r, t) then reads

∂tρ(r, t) = D∇ ·
(
∇ρ+ ρ

kBT
∇U

)
+ fρ(r, t). (2.29)

Before discussing (2.29) as a nonlinear equation for ρ, let us review its linear approxima-
tion. Linearization of (2.29) around the mean density ρ0 = N/Lnd yields an equation for
δρ(r, t) = ρ(r, t)− ρ0, which includes a convolution of Veff and δρ, analogous to (5.2) in [65].
The linearized equation is readily solved in the Fourier representation,

ρ̂(k, t) =

∫
eik·rδρ(r, t)dndr =

∑
j

eik·rj(t) (k ̸= 0),

as it reads
∂tρ̂(k, t) = −Dk2 [1− ρ0ĉ(k)] ρ̂(k, t) + f̂ρ(k, t), (2.30)

where ĉ(k) is the Fourier transform of the direct correlation function c(r), used to represent
Veff(r) = −kBTc(r) and related to the static structure factor [66]

S(k)
def
=

1

N
⟨ρ̂(k, t)ρ̂(−k, t)⟩ = 1

1− ρ0ĉ(k)
.

With the correlation of the Fourier modes defined as

F (k, t, s)
def
=

1

N
⟨ρ̂(k, t)ρ̂(−k, s)⟩

=
1

N

∑
i,j

⟨
eik·[rj(t)−ri(s)]

⟩
(k ̸= 0), (2.31)

the linearized Dean–Kawasaki equation (2.30) yields

F (k, t, s) = S(k)e−Dck2(t−s), Dc = Dc(k) =
D

S(k)
,

with Dc(k) referred to as the (short-time) collective diffusion coefficient [66]. Note that, if
the factor 1− ρĉ(k) on the right side of (2.30) is approximated by a constant, this is simply
a randomly forced diffusion equation (sometimes referred to as the diffusion-noise equation
[42]), which has been proposed in many textbooks [67–69] independently of (2.29).

The Dean–Kawasaki equation (2.29) is often taken as a starting point for nonlinear theory
of glassy dynamics [5, 7, 70–72]. The standard approach consists in an attempt to derive
a nonlinear integrodifferential equation for F , referred to as MCT equation [6], using a
systematic (field-theoretical) approximation. This attempt is obstructed, however, by the
problem of inconsistency with the FDT. The difficulty occurs because nonlinearity arises not
only from the interaction term ρ∇U but also through fρ referred to as multiplicative noise
[5, 58, 70–72], which means that ρ is present on the right side of (2.28). As it is difficult
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to treat these two nonlinearities in a consistent manner, the standard expansion procedure
leads to spurious violation of FDT and therefore failure in systematic derivation of the MCT
equation from (2.29) [5].

Several ideas have been proposed to avoid this difficulty. While many researchers pro-
posed to change the dependent variables [70–72], here we review the idea of changing the
independent variable, which can be formulated in nd-dimensional systems [39] but seems to
work most naturally in the 1D case [38, 48].

In the 1D case, the Dean–Kawasaki equation (2.29) governs the density field ρ(x, t), with
its flux Q = Q(x, t) given by the 1D version of (2.26). The essential reason for adopting
(x, t) as the independent variables is to perform coarse-graining; in other words, once the
coarse-grained equation is obtained, there is no reason to stick to the variables (x, t). The
idea is to change the independent variables back to (ξ, t), where ξ is the continuum analogue
of the particle numbering, briefly mentioned in connection with (2.18) and referred to as the
label variable [38, 39, 48]. The mapping from (x, t) to (ξ, t) is specified by the relation

∂ξ

∂t
= −Q, ∂ξ

∂x
= ρ, (2.32)

which implies
(ρ∂t +Q∂x) ξ(x, t) = 0

so that ξ is convected with the velocity u = Q/ρ, and thereby allows us to introduce ξ without
numbering the particles explicitly. The inverse mapping from (ξ, t) to (x, t), plotted in the
(ξ, x)-plane, is intuitively conceived as a roughening surface. The positional fluctuation,
denoted by h = h(ξ, t) in (2.18), is related with x = x(ξ, t) as

h(ξ, t) = x(ξ, t)−
⟨
∂x

∂ξ

⟩
ξ, (2.33)

where ⟨∂x/∂ξ⟩ = ρ−1
0 is the mean slope of the “surface” x = x(ξ, t). By differentiating (2.33)

with regard to ξ and taking (2.32) into account, we find

∂h

∂ξ
=
∂x

∂ξ
−
⟨
∂x

∂ξ

⟩
=

1

ρ
− 1

ρ0
. (2.34)

Within linear approximation we have ∂ξh ≃ −ρ20δρ, which establishes correspondence be-
tween the Edwards–Wilkinson equation (2.18) and the linearized Dean–Kawasaki equation.
Besides, a systematic treatment of nonlinear effects is also possible [38], as we will see in the
latter half of this article. The difficulty of FDT violation [5], rooted in the noise correlation
(2.28) involving ρ and referred to as the multiplicative noise, is removed by the change of
variables from (x, t) to (ξ, t), which expels ρ from the noise correlation as will be shown later
in (3.23).

III. SETUP AND FORMULATION

A. Langevin equation for particles in a channel

Now let us specify the system studied here, though some important fragments are already
given in the previous sections. We study a 1D system of Brownian particles, governed by
the Langevin equation

µẊi = F int
i ({X}) + µfi(t), (3.1)
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which corresponds to the 1D version of (1.2) with m → 0. The interaction between the
particles is given by

F int
i ({X}) = − ∂

∂Xi

∑
j<k

V (|Xj −Xk|) , (3.2)

where V (r) is a hardcore potential with a finite diameter σ, slightly mollified2 for the con-
venience of numerical calculation. More specifically, we adopt

V (r) =

{
Vmax(1− |r| /σ)2 (|r| ≤ σ)

0 (|r| > σ)
(3.3)

with Vmax/kBT large enough to prevent overtaking. The random forcing is Gaussian with
zero mean and

⟨fi(t)fj(t′)⟩ = 2Dδijδ(t− t′), (3.4)

where D = kBT/µ.
The system consists of N particles, distributed homogeneously with the mean density

ρ0 = N/L, and the periodic boundary condition, Xi+N = Xi + L, is assumed. The system
size is regarded as infinitely large (L→ ∞, N → ∞). For later convenience, we define

ℓ0
def
=

L

N
=

1

ρ0
(3.5)

to denote the mean distance ⟨Xi+1 −Xi⟩ = ℓ0.
The initial condition is assumed to be homogeneous, i.e. statistically uniform in space.

Theoretically, it is specified through the static structure factor for the initial configura-
tion, denoted with Sinit. In numerical calculations, we focus on the case of the equidistant
configuration,

Xi|t=0 = iℓ0 (i = 0, 1, . . . , N − 1), (3.6)

for which Sinit(k) = 0 all over the first Brillouin zone (0 < |k| < π/ℓ0).

B. Definition of statistical quantities

On the basis of the Langevin equation (3.1), here we define some statistical quantities
involving two tagged particles. The average, denoted with ⟨ ⟩, is taken over the random
forcing in the Langevin equation and the initial condition, unless specified otherwise.

Note that the present system, governed by (3.1) without a driving force and started
from a spatially uniform state, remains uniform in space and is invariant under the spatial
reflection. This implies (d/dt) ⟨Xi(t)⟩ = 0; there is no drift on the average.

The most important role in the present work is played by the two-tag displacement
correlation χij. Although we have already given a rough definition in (1.5), here we restate

2 This softening of V should not confused with the effective potential Veff that appears in the Dean–Kawasaki

equation through U in Eq. (2.27). A concrete form of Veff , corresponding to V (r) with Vmax/kBT → +∞,

will be given later in Eq. (3.21).
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it somewhat more precisely. Denoting the displacement of the i-th particle for the time
interval from s to t with Ri(t, s) = Xi(t)−Xi(s), we define

χij = χij(t, s)
def
= ⟨Ri(t, s)Rj(t, s)⟩ (3.7)

for a pair of particles labeled with i and j. The time order is assumed as 0 ≤ s < t and the
particle numbering is consecutive. Although we could write χi,j instead of χij, we make it a
rule to omit a comma when possible.

To introduce a two-tag response function, which should appear in place of the mobility
when the diffusivity in the Einstein relation is replaced by ∂tχij, we add a small probe force
(superscripted with p) to the particles governed by (3.1), so that the solution is changed
from {X} to {X+}:

µẊ+
i = F int

i ({X+}) + µfi(t) + µfp
i (t). (3.8)

By expressing the change due to the probe force as

X+
i (t) = Xi(t) +

∫ t

du
∑
j

gij(t, u)f
p
j (u), (3.9)

we define the (impulse) response function gij, with the lower limit of the integral understood
in the same way as in (2.7). On averaging (3.9), denoting the lower limit with o and taking
⟨Xi(t)⟩ = ⟨Xi(o)⟩ =

⟨
X+

i (o)
⟩
into account, we find

⟨
X+

i (t)−X+
i (o)

⟩
=

∫ t

o

du
∑
j

⟨gij(t, u)⟩ fp
j (u). (3.10)

For the sake of simplicity, sometimes we omit ⟨ ⟩ in expressions involving gij so that, for
example, gij(t, s) may actually mean ⟨gij(t, s)⟩. Note that, in the absence of the interaction
through F int

i , the response function gij would be reduced to the normalized hydrodynamic
mobility matrix, which equals δij in the present case.

In addition to gij, we introduce the step response by considering the probe force in the
following form of a step function, applied to a specific particle, say the j-th one:

µfp
i (t) = F p(t)δij =

{
F p
∞ (t > s and i = j)

0 (otherwise).
(3.11)

With ⟨R+(j)
i (t, s)⟩ denoting the average displacement of the i-th particle caused by this step

probe force, from (3.10) we find⟨
R

+(j)
i (t, s)

⟩
=
F p
∞
µ

∫ t

s

gij(t, u) du. (3.12)

It is then convenient to introduce the unit step response function,

χ+
ij(t, s)

def
=
⟨
R

+(j)
i (t, s)

⟩
/F p

∞, (3.13)

which is related to the response function gij as

χ+
ij(t, s) = µ−1

∫ t

s

gij(t, u) du (3.14)
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and therefore also termed as the integrated response function.
With χij = ⟨RiRj⟩ and χ+

ij = ⟨R+(j)
i ⟩ /F p

∞ thus defined, we raise two questions about
relationship between them. As was reviewed in the previous section, the time-dependent
Einstein relation (2.13) holds between ⟨R+⟩ and ⟨R2⟩ concerning a single tagged particle in
SFD. This relation can be rewritten as

2kBTχ
+
0,0(t, s) = χ0,0(t, s), (3.15)

where we have chosen (i, j) = (0, 0) to express the one-tag statistical quantities. The first
question is whether (3.15) can be generalized to the cases of i ̸= j in SFD at equilibrium.
The answer is affirmative, as will be shown in section IV on the basis of the Dean–Kawasaki
equation. The second question concerns the effect of ageing on FRR, which will be discussed
in section V.

Note that the space-translation invariance implies

χij = χi+m,j+m = χ0,j−i (3.16)

with m denoting here an arbitrary integer (not the mass). Analogous relations hold also for
gij and χ

+
ij.

C. Label-based Fourier representation

In preparation for theoretical calculation of χij, gij and χ
+
ij based on the Dean–Kawasaki

equation (2.26), here we define the vacancy field ψ = ψ(ξ, t) and introduce its Fourier modes,
along with several statistical quantities related to them. Since overtaking is completely
forbidden in the present case, with Vmax/kBT → +∞ in Eq. (3.3), the label variable ξ
can be regarded simply as the continuous interpolation of the particle numbering. (Note,
however, that the relation between ξ and the particle numbering can be somewhat more
complicated in general [52].)

We define the vacancy field ψ = ψ(ξ, t) as

ψ
def
=
ρ0
ρ

− 1, (3.17)

and regard it as continuum representation of

ψi+1/2(t) =
Xi+1(t)−Xi(t)− ℓ0

ℓ0
. (3.18)

Note that ψ equals ∂ξh in (2.34) up to a constant factor. With u(ξ, t) denoting the velocity
field, the vacancy field ψ is conserved in the sense that

ℓ0∂tψ(ξ, t) = ∂ξu(ξ, t), (3.19)

which is a continuum representation of the time-derivative of (3.18):

∂tψi+1/2 =
Ẋi+1 − Ẋi

ℓ0
. (3.20)
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With ψ thus introduced, we transform the Dean–Kawasaki equation into an equation for
ψ = ψ(ξ, t) [38, 48]. The procedure is outlined as follows: We substitute u = Q/ρ into
(3.19), with Q given by 1D version of (2.26), and adopt the effective potential

Veff(r) ≃ kBT

[
1− exp

(
−V (r)

kBT

)]
=

{
kBT (|r| < σ)

0 (|r| > σ)
(3.21)

corresponding to the hardcore potential V (r). Thereby we obtain [38, 48]

ℓ0∂tψ = −D∂ξ
[
∂ξ + 2 sinh

(
ρ0σ

1 + ψ
∂ξ

)]
ρ0

1 + ψ
+ fL; (3.22)

the thermal forcing term fL is characterized by

⟨fL(ξ, t)fL(ξ′, t′)⟩ = 2D∂ξ∂ξ′ϖ(ξ)δ(ξ − ξ′)δ(t− t′), (3.23)

where ϖ(ξ) =
∑

i δ (ξ − i) ≃ 1 (with the delta function blunted). Note an important
difference between (2.28) and (3.23): while the noise correlation in the former depends on
the unknown field ρ, this kind of dependence is expelled from (3.23), which implies that the
difficulty due to the multiplicative noise [5] is basically removed here.

To make (3.22) more manageable, we switch to the Fourier representation (conjugate to
ξ and marked with a haček), by defining

ψ̌(k, t) =
1

N

∫
dξ eikξψ(ξ, t), (3.24a)

ψ(ξ, t) =
∑
k

ψ̌(k, t)e−ikξ, (3.24b)

where k is an integer multiple of 2π/N . In this Fourier representation, (3.22) is rewritten
as [38, 48]

∂tψ̌(k, t) = −Dc
∗k

2ψ̌(k, t) +
∑

p+q+k=0

Vpq
k ψ̌(−p, t)ψ̌(−q, t) +O(ψ̌3) + ρ0f̌L(k, t), (3.25)

where

Dc
∗ =

D∗

S
= D∗

(
1 +

2 sin ρ0σk

k

)
, D∗ = ρ20D

and

Vpq
k = D∗k

2Wkpq = D∗k
2

(
1 +

k

pq
sin ρ0σk +

p

kq
sin ρ0σp+

q

kp
sin ρ0σq

)
. (3.26)

Correlations of ψ in the Fourier representation are now introduced. Assuming 0 ≤ s < t,
we define

C(k, t, s)
def
=

N

L2

⟨
ψ̌(k, t)ψ̌(−k, s)

⟩
, (3.27)

and we denote its single-time limit with

C0(k, s)
def
=

N

L2

⟨
ψ̌(k, s)ψ̌(−k, s)

⟩
= lim

t→s
C(k, t, s). (3.28)

16

Page 16 of 35AUTHOR SUBMITTED MANUSCRIPT - JPCM-111669.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Note that the s-dependence of C0 = C0(k, s) represents the ageing of the system in the
present case.

The response function G, corresponding to C, is defined by adding a probe force term
Π̌(k, t) to (3.25) and expressing the change due to the probe force as

ψ̌+(k, t) = ψ̌(k, t) +

∫ t

du
∑
k′

G(k, t; k′, u)Π̌(k′, u), (3.29)

with the notation in the pattern of (3.9) for X+
i and gij. To find correspondence between G

and gij, we look for a link between Π̌ and fp
i . This is found in (3.18) that connects ψ with

Xi, implying a connection between (3.9) and (3.29) analogous to (3.20). By relating ψi+1/2

to ψ̌(k, t) via the discrete Fourier transform

ψ̌(k, t) =
1

N

∑
j

eik(j+1/2)ψj+1/2(t) (3.30)

consistent with (3.24a), we find that Π̌ is given by the discrete Fourier transform of

Πi+1/2
def
=
fp
i+1 − fp

i

ℓ0
, (3.31)

interpretable as a “tidal” probe force, i.e. a (discrete) gradient of the probe force field. The
same discrete gradient of (3.9) in regard to i yields

ψ+
i+1/2(t) = ψi+1/2(t) +

∫ t

du
∑
j

[gi+1,j(t, u)− gi,j(t, u)]
fp
j (u)

ℓ0

= ψi+1/2(t) +

∫ t

du
∑
j

gij(t, u)Πj+1/2(u), (3.32)

where we have utilized the space-translation invariance of gij in the form of (3.16). By
comparing the discrete Fourier transform of (3.32) with the definition of G in (3.29), we find

G(k, t; k′, s) =
1

N

∑
j

∑
m

gjm(t, s)e
ik(j+1/2)−ik′(m+1/2)

= δk,k′
∑
n

g0,n(t, s)e
−ikn. (3.33)

Thus the diagonal components of G(k, t; k′, s), with k = k′, is linked to gij = g0,j−i by means
of the discrete Fourier transform, and its off-diagonal components vanish. The inverse
transform yields

g0,n(t, s) =
1

N

∑
k

eiknG(k, t, s), (3.34)

where G(k, t, s) = G(k, t; k, s) is a shorthand for the diagonal components.
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D. Alexander–Pincus formula for displacement correlation

Now we complete this preparatory section with a formula to calculate the displacement
correlation χij.

It has been known for a long time [26] that the MSD in SFD can be expressed in terms
of the correlation of density fluctuations, F (k, t) ∝ ⟨ρ̂(k, t)ρ̂(−k, 0)⟩, as

⟨
R2
⟩
∝
∫ +∞

−∞

F (k, 0)− F (k, t)

k2
dk. (3.35)

Upon substitution of F (k, t) ≃ S(k)e−Dck2t, (3.35) readily yields ⟨R2⟩ ∝
√
t. While (3.35)

is valid only approximately, it is possible to improve on it by replacing F (k, t) with the
correlation of vacancy fluctuations, namely C(k, t, s) in (3.27) [39]. We refer to (3.35),
together with its improved versions, as the Alexander–Pincus formula.

Let us derive a variant of the Alexander–Pincus formula that allows calculation of χij

from C. By substituting (3.18) into (3.30), we find

ψ̌(k, t) =
1

N

∑
j

eik(j+1/2)Xj+1(t)−Xj(t)− ℓ0
ℓ0

=
e−ik/2 − eik/2

N

∑
j

eikj
Xj(t)− jℓ0

ℓ0
, (3.36)

giving a linear relation between {ψ̌} and {X}. This relation is readily inverted:

Xj(t) = XG(t) + jℓ0 + ℓ0
∑
k ̸=0

e−ikj

e−ik/2 − eik/2
ψ̌(k, t), (3.37)

where XG represents the center-of-mass motion. Since the system is assumed to be infinitely
large, Xj(t) in (3.37) is dominated by the long-wave modes, for which the denominator can
be approximated with −ik. The displacement is therefore

Rj(t, s) ≃ ℓ0
∑
k ̸=0

e−ikj

−ik

[
ψ̌(k, t)− ψ̌(k, s)

]
. (3.38)

Multiplying (3.38) by its duplicate, with (j, k) replaced by (i,−k), taking the average and
changing summation into integral, we arrive at the formula:

χij(t, s) =
L4

πN2

∫ +∞

−∞

[
C0(k, t) + C0(k, s)

2
− C(k, t, s)

]
e−ikξij

k2
dk, (3.39)

where ξij = j − i.

IV. SFD AT THERMAL EQUILIBRIUM

We are now ready to address the issue of two-tag FRR in SFD at thermal equilibrium.
The question is whether the time-dependent Einstein relation between ⟨R+⟩ and ⟨R2⟩, in
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the form of (2.13) or (3.15), can be generalized to a relation between the step response χ+
ij

and the displacement correlation χij with i ̸= j. Equivalently, we may discuss whether the
impulse response gij is proportional to ∂tχij.

We approach this problem by calculating C and G from the transformed Dean–Kawasaki
equation (3.25) in the label-based Fourier representation. Since G is linked to gij by (3.34),
and C to χij by the Alexander–Pincus formula (3.39), we can thus discuss the relationship
between gij and χij.

A. Linear analysis of vacancy fluctuations

Let us begin with linear approximation to (3.25). The linearized equation reads

(∂t +Dc
∗k

2)ψ̌(k, t) = ρ0f̌L(k, t), (4.1)

with the random force statistics given by the Fourier transform of (3.23),

ρ20
⟨
f̌L(k, t)f̌L(−k′, t′)

⟩
=

2D∗

N
k2δkk′δ(t− t′). (4.2)

An equation for C(k, t, s) is obtained by multiplying (4.1) by ψ̌(−k, s) and taking the
average. Since

⟨
f̌L(k, t)ψ̌(−k, s)

⟩
vanishes due to the time order (s < t), we have

(∂t +Dc
∗k

2)C(k, t, s) = 0. (4.3)

Similarly, for C0(k, s) we have

(∂s + 2Dc
∗k

2)C0(k, s) =
2D∗k

2

L2
, (4.4)

where the expression on the right side originates from ρ0
⟨
f̌L(k, s)ψ̌(−k, s)

⟩
= D∗k

2/N .
Since we assume now that the system is in a steady state at thermal equilibrium, C0(k, s)

should be independent of s. As the steady solution to (4.4), we have

C0 =
S

L2
(in the steady state), (4.5)

with the relation Dc
∗ = D∗/S taken into account. With (4.5) posed as the initial condition

for C at t = s, the solution to (4.3) is

C(k, t, s) =
S

L2
e−Dc

∗k
2(t−s). (4.6)

The two-tag displacement correlation χij is calculated by substituting (4.6) into the
Alexander–Pincus formula (3.39). Since the contribution from small k dominates, S and
Dc

∗ can be safely replaced with their long-wave limiting values. For later convenience, we
introduce

IEW(ξ, t′)
def
=

1

π

∫ +∞

−∞

1− e−Dc
∗k

2t′

k2
e−ikξdk

= 2

√
Dc

∗t
′

π
φ

(
ξ

2
√
Dc

∗t
′

)
, (4.7)
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with the function φ( · ) defined in (2.20). Thereby χij = χij(t, s) is obtained from (4.6) as

χij = Sℓ20IEW(ξij, t∆) =
2S

ρ0

√
Dct∆
π

φ

(
ξij

2
√
Dc

∗t∆

)
, (4.8)

where ξij = j − i and t∆ = t− s. Thus (2.19) is re-derived, with the coefficient reproducing
quantitatively the MSD obtained by Kollmann [27].

The response function G satisfies essentially the same equation as C prescribing an ex-
ponential decay:

(∂t +Dc
∗k

2)G(k, t, s) = 0. (4.9)

Solving (4.9) under the initial condition

G(k, t, s)|t=s = 1, (4.10)

we obtain
G(k, t, s) = e−Dc

∗k
2(t−s). (4.11)

This is then substituted into (3.34) and the sum is evaluated as an integral, which yields

gij(t, s) =
1√

4πDc
∗t∆

exp

(
−

ξ2ij
4Dc

∗t∆

)
. (4.12)

With gij and χij thus obtained, it is easy to confirm

2Dgij(t, s) = ∂tχij(t, s). (4.13)

Since gij is linked to χ+
ij by (3.14), the Einstein relation in (4.13) can be also written as

2kBTχ
+
ij(t, s) = χij(t, s). (4.14)

As a numerical test of these theoretical predictions, we calculated χij(t, s) and χ+
ij(t, s)

for (s, t) = (200, 300)σ2/D, from numerical solutions of (3.1) and (3.8). Since (4.8) and
(4.14) predict

2kBTχ
+
ij

K
√
t∆

=
χij

K
√
t∆

= φ(θ), (4.15)

with

K =
2S

ρ0

√
Dc

π
, θ =

ξij

2
√
Dc

∗t∆
,

these equations can be tested by rescaling the numerical values of χ+
ij(t, s) and χij(t, s) in

accordance with (4.15) and plotting them against θ. The plot is shown in figure 2, where
the theoretical curve for φ(θ) is also included. The numerical data are consistent with (4.15)
and thus support the Einstein relation between the two-tag quantities χij and χ

+
ij.
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FIG. 2 Numerical verification of (4.15), based on the values of χij and χ+
ij calculated at (s, t) =

(200, 300)σ2/D from numerical solutions of (3.1) and (3.8), with ρ0 = N/L = 0.5σ−1. The symbols

□ and • represent χij and χ+
ij , respectively, rescaled according to (4.15) and plotted against θ. The

theoretical curve, φ(θ), is plotted with a solid line. Numerical parameters that should be infinite or

infinitesimal are chosen as follows: N = 1000, Vmax = 50 kBT , and F p
∞ = 0.1 kBT/σ. The average

was taken over 54400 runs in calculating χ+
ij , while 1200 runs were sufficient in the case of χij in

which spatial averaging is also available. The static structure factor, needed for the rescaling, was

evaluated numerically from equilibrium snapshots; the longwave limiting value was found to be

S ≈ 0.31 in the present case.

B. Nonlinear fluctuations and FDT

While some of the results in the previous subsection depend on the linear approximation,
the Einstein relation in (4.13) or (4.14) must remain valid even if the nonlinear terms in
(3.25) are taken into account. The FDT in systems at equilibrium is well established, and
in the case of (3.25) it takes the form

D∗k
2

L2
G(k, t, s) = −∂tC(k, t, s), (4.16)

as is seen heuristically by transforming (4.13) back into the relation between G and C. The
concrete forms of G and C are modified by inclusion of the nonlinear terms, of course; in
the next subsection, we will see how χij is modified accordingly [38, 39].

The FDT in (4.16) can be derived from (3.25) by following an established procedure using
the distribution function [2, 73]. To outline the derivation, we change the notation for a
while to write (3.25) in the following form (sometimes called “model B” [74, 75]):

∂tΨk(t) = −D∗k
2∂H({Ψ})

∂Ψk

+ fk(t) (4.17)

with the variance of the thermal noise fk(t) being proportional to 2D∗k
2. The thermody-

namic potential H({Ψ}) has a minimum at {0}, toward which the system tends to relax.
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The symmetry of Wkpq in (3.26) assures that (3.25) can be cast into the form of (4.17);
we note that the original Dean–Kawasaki equation (2.29) is also expressible in terms of a
free-energy functional of the density, but the relation between ∂tρ(r, t) and the free-energy
functional is not so simple as (4.17) [58, 59].

The Langevin dynamics subject to (4.17) can be described by the Fokker–Planck equation
(of Smolukowski type) [69, 76] that governs the distribution function, which we denote with
P = P ({Ψ}, t). In the steady state at thermal equilibrium, P is time-independent and
equals

P eq({Ψ}) ∝ e−H({Ψ}). (4.18)

Following Falcioni et al. [73], we consider a change in the distribution function due to an
impulsive probe force Πk = ϵ δ(t− s), applied to a specific mode k at the time s:

P+({Ψ}, t)
∣∣
t=s+0

= P eq(. . . ,Ψk − ϵ, . . .)

=

(
1 + ϵ

∂H
∂Ψk

)
P eq +O(ϵ2),

which implies ⟨
Ψ+

k (t)−Ψk(t)
⟩

ϵ
=

⟨
Ψ(t)

(
∂H
∂Ψk

∣∣∣∣
Ψ(s)

)⟩

=

⟨
Ψ(s)

(
∂H
∂Ψk

∣∣∣∣
Ψ(t)

)⟩
(4.19)

with the time-reversal symmetry taken into account. The left side of (4.19) means G, while
the expression on the left side turns out to be −∂tC multiplied with a constant, with the
aid of (4.17). Thus the FDT in (4.16) is derived from (4.17) at equilibrium, which was to
be demonstrated.

C. Nonlinear theory: Lagrangian MCT

Keeping the FDT (4.16) in mind, let us present nonlinear calculation of C and χij [38].
In this calculation we employ a closure approximation for C and G, known by the name of
MCT or DIA. In contrast to derivation of MCT from the Dean–Kawasaki equation (2.29)
for ρ(r, t) which suffers from FDT violation, the present derivation based on (3.25) is free
from such a difficulty. We refer to the MCT for ψ(ξ, t) as the Lagrangian MCT [38], using
the terminology of fluid mechanics [9, 48, 77].

Let us start with writing an equation for ∂tC as a straightforward extension of (4.3).
Instead of (4.1), we multiply (3.25) by ψ̌(−k, s) and take the average, which yields an
equation containing triple correlations:(

∂t +Dc
∗k

2
)
C(k, t, s) =

N

L2

∑
p+q+k=0

Vpq
k

⟨
ψ̌(−p, t)ψ̌(−q, t)ψ̌(−k, s)

⟩
, (4.20)

with the O(ψ̌3) term in (3.25) discarded. With the aim of finding a closed set of equations
that allows determination of C, the triple correlation on the right side is then expressed in
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terms of memory integrals by prescription of DIA, which is based on the “sparseness” of V
in Kraichnan’s sense [8], as is briefly explained in Appendix B of [38]. This leads to a closed
set of equations for C, C0 and G:(
∂t +Dc

∗k
2
)
C(k, t, s) =

∫ t

o

du M̃G(k, t, u)C(k, s, u) +

∫ s

o

duMC(k, t, u)G(k, s, u) (4.21)

(
∂s + 2Dc

∗k
2
)
C0(k, s) = 2

∫ s

o

du
[
M̃G(k, s, u)C(k, s, u) +MC(k, s, u)G(k, s, u)

]
+

2D∗k
2

L2

(4.22)(
∂t +Dc

∗k
2
)
G(k, t, s) =

∫ t

s

du M̃G(k, t, u)G(k, u, s) (4.23)

where

M̃G(k, t, u) =MG(k, t, u)− Σ (k, t)δ+(t− u) (4.24)

MG(k, t, u) =
4L2

N
D2

∗k
2
∑

W 2
kpqC(p, t, u)q

2G(q, t, u) (4.25)

MC(k, t, u) =
2L2

N
D2

∗k
4
∑

W 2
kpqC(p, t, u)C(q, t, u). (4.26)

We choose the initial time o to be either o = 0 or o → −∞; the latter is more convenient
in the equilibrium case. For the most part we have followed the standard procedure of DIA
[9, 38, 78, 79] (essentially equivalent to what is called the field-theoretical MCT), except for
inclusion of

Σ (k, t) =
L2

D∗k2
MC(k, t, t) (4.27)

in (4.24), which mimics the effect of the higher-order correlation terms expected to cancel
the singular short-time behavior of MG; the symbol δ+ represents a slightly shifted delta
function such that ∫ ∞

0

f(t)δ+(t)dt = f(+0).

Now let us consider the equilibrium case, choosing o → −∞ and assuming time-
translation invariance that allows us to write, for example, C(k, t, s) = C(k, t∆). In this
case, it is demonstrated that (4.21), (4.22) and (4.23) are consistent with the FDT (4.16).
By comparing the demonstration procedure in [38] with the corresponding attempt in the
case of the original Dean–Kawasaki equation (2.29) [79], we find it essential that the coeffi-
cient of the nonlinear term has a symmetry as is seen in (3.26). The consistency with the
FDT is recovered by the change of variable from ρ(x, t) to ψ(ξ, t), which has transformed
the Dean–Kawasaki equation (2.29) and the multiplicative noise statistics (2.28) into the
“model B” equation (3.25) with Vpq

k in (3.26) and the additive noise f̌L.
Once the consistency with the FDT is established, we can use (4.16) to eliminate G from

(4.21), so that a closed equation for C is obtained:(
∂t +Dc

∗k
2
)
C(k, t− s) = −

∫ t

s

M(k, t− u)∂uC(k, u− s)du (4.28)

where

M(k, u′) =
2L4

N
D∗k

2
∑

p+q+k=0

W 2
pqkC(p, u

′)C(q, u′). (4.29)

23

Page 23 of 35 AUTHOR SUBMITTED MANUSCRIPT - JPCM-111669.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



✵

✵✿✺

✶

✶✵�✸ ✶✵�✷ ✶✵�✁ ✶✵✂ ✶✵✁ ✶✵✷ ✶✵✸

▼
❙
❉
❂
✭❑

♣
t ✄
✮

☎✆✝s

FIG. 3 Numerical values of the MSD in ageing SFD, plotted according to the scaling in (5.2).

Given the equidistant initial condition (3.6), cases with five different values of waiting time are

compared: s = 1 (■), 10, 102, 103 and 104 (⋄) from bottom to top. The values of ρ0 = N/L

and Vmax are the same as in figure 2. The average was taken over 724 runs. The solid line shows

A(t∆/s) predicted by the linear theory [39, 80], a special case of (5.7) with ξij = 0 and Sinit = 0.

By solving (4.28) under the initial condition (4.5), we can obtain C and thereby calculate χij

via the Alexander–Pincus formula (3.39). An approximate solution for large t and vanishing
σ is given in [38], from which χij is calculated as

χij = 2ℓ0

√
Dt∆
π

φ(θ)−
√
2

3π
ℓ20
(
1− 2θ2

)
e−θ2 , (4.30)

where θ = ξij/(2
√
Dt∆ ). The first term on the right side of (4.30) simply reproduces (4.8)

with S = 1 (as ρ0σ is assumed to be vanishingly small), while the second term is a correction
to it due to the entropic nonlinearity. A numerical test of (4.30) for i = j is given in [39].

V. AGEING SFD

Now we are prepared to discuss the main issue of the present work: How are the two-tag
FRRs in the previous section changed by ageing? Does the non-equilibrium initial condition
with Sinit = 0, whose effect on the MSD lasts forever according to Leibovich and Barkai
[22], also affect the two-tag displacement correlation χij in a similar way? The answer is
affirmative, as is concretized in (5.7), which is the first main result of the present work.

We will start the discussion with comparing numerical plots of χij(t, s) and χ+
ij(t, s) in

ageing SFD. Subsequently, the effect of ageing on these quantities will be clarified on the
basis of the theoretical framework developed in the previous sections.

A. Numerical observations about effects of the waiting time

Leibovich and Barkai [22] reported an “everlasting effect of initial conditions” on SFD,
comparing two extreme cases: SFD started from equidistant lattice configuration and SFD
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FIG. 4 The values of ⟨R+⟩ = ⟨R+(s+ t∆, s)⟩ plotted against t∆, with the space and time nondi-

mensionalized by σ and σ2/D. Two cases are shown: s = 0 (□) and s = 200 (◦). The average was

taken over 25600 runs.

at equilibrium. These two cases can be treated in a unified manner by considering⟨
R2
⟩
=
⟨
[R(t, s)]2

⟩
=
⟨
[R(s+ t∆, s)]

2
⟩

(5.1)

for different values of the “waiting time” s, under the equidistant initial condition (3.6). The
two extreme cases correspond to s = 0 (equidistant lattice) and s→ +∞ (equilibrated).

The MSD is calculated in this way from numerical solutions of (3.1) and shown in figure 3,
where ⟨R2⟩ /(K

√
t∆) is plotted against t∆/s. As is predicted by the linear theory [39, 80],

expected to be valid for Dt∆ ≫ ℓ20, the MSD for different values of s is scaled in the form

⟨[R(s+ t∆, s)]
2⟩

K
√
t∆

= A
(
t∆
s

)
=

{
1 (t∆ ≪ s)
1√
2

(t∆ ≫ s).
(5.2)

The ratio of the values for the two extreme cases is consistent with the results by Leibovich
and Barkai [22]. It is expressed in (5.2) that, however long the waiting time s may be, the
effect of the non-equilibrium initial condition (3.6) reappears when t∆ exceeds s; as a result,
the MSD decreases by a factor of 1/

√
2 ≈ 0.71.

Since the MSD thus depends on s, the Einstein relation (2.13) must be violated unless
⟨R+⟩ has the same s-dependence. Leibovich and Barkai [22] demonstrated, indeed, that
⟨R+⟩ is insensitive to s. This insensitivity is confirmed in figure 4: no significant difference
is found between the numerical values of ⟨R+⟩ for s = 0 and that for s = 200. The Einstein
relation (2.13) is therefore violated for t∆ ≫ s.

To see how this violation of the Einstein relation is generalized to the two-tag case,
in figure 5 we have plotted numerical values of χij(s + t∆, s) and 2χ+

ij(s + t∆, s) against
t∆, with nondimensionalization such that kBT , D and σ become unity. For t∆ ≪ s, the
plot in figure 5(a) obeys the two-tag Einstein relation (4.14), as the (nondimensionalized)
values of χij and 2χ+

ij coincide within the error bounds for all the three values of j − i in
the figure. As t∆ increases toward the right end of figure 5(a), there seems to be a slight
deviation. In the case of s = 0 shown in figure 5(b), the two-tag Einstein relation (4.14) is

25

Page 25 of 35 AUTHOR SUBMITTED MANUSCRIPT - JPCM-111669.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(a)

✵

✶✵

✷✵

✵ ✶✵✵ ✷✵✵

t✁

(b)

✵

✶✵

✷✵

✵ ✶✵✵ ✷✵✵

t✁

FIG. 5 Numerical tests of the two-tag Einstein relation between χij and χ+
ij and its violation. The

open symbols □, ◦ and △ represent χij(s + t∆, s) with j − i = 0, 3 and 20, respectively; the filled

symbols (■, • and ▲) are used for the corresponding value of 2χ+
ij(s+ t∆, s). All the variables are

nondimensionalized in units of kBT , D and σ. (a) The case of s = 200, i.e. a waiting time longer

than t∆. The theoretical curve for χij in the equilibrium case, (4.8), is also shown. The average

was taken over 400 runs for χij and 76000 runs for χ+
ij . (b) The case of s = 0. The broken and

solid lines represent the predictions of (4.8) and (5.7), respectively. The average for χ+
ij was taken

over 228000 runs.

evidently violated. Except for the short-time behavior in which χij and 2χ+
ij are difficult to

distinguish, the values of the displacement correlation χij for j = i and j− i = 3 are smaller
than the corresponding values of 2χ+

ij. It is then interesting to note that, for j − i = 20, the

displacement correlation χij is greater than 2χ+
ij, implying that the ratio of χij to χ

+
ij cannot

be a function of (s, t) alone. This will be clarified as a part of analytical calculations in the
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next subsection.

B. Linear analysis of ageing SFD

The s-dependence of χij can be calculated analytically by applying the framework pre-
sented in section IV to the ageing case. Here we focus on linear analysis, with which concrete
expressions for χij(t, s) and gij(t, s) are obtained.

Suppose that the system is initially in a state characterized by the static structure factor
Sinit(k). In particular, the equidistant configuration (3.6) corresponds to Sinit = 0. Sub-
sequently, the system evolves according to (4.1) and relaxes toward the equilibrium, with
C0(k, s) tending to its equilibrium value in (4.5). This is shown by solving (4.4) under the
initial condition C0(k, 0) = Sinit/L

2, which yields

C0(k, s) =
S

L2
+
Sinit − S

L2
e−2Dc

∗k
2s. (5.3)

Using (5.3) as the initial condition for C in (4.3) at t = s, we obtain

C(k, t, s) =
S

L2
e−Dc

∗k
2(t−s) +

Sinit − S

L2
e−Dc

∗k
2(t+s). (5.4)

Note that (5.4) can be obtained also by solving (4.1) directly and using the noise amplitude
in (4.2).

The response function G is found to be insensitive to ageing, within linear approximation,
because (4.9) is independent of C and the initial condition for G, in (4.10), is also unchanged.
This means that the solution in (4.11) remains valid.

Thus Sinit has an effect on C0 and C but not on G. Since G is linked to g by (3.34),
we find that gij(s + t∆, s) is independent of s, being consistent with the observations of
Leibovich and Barkai [22].

To calculate χij(t, s), we substitute (5.4) into the Alexander–Pincus formula (3.39), which
yields

χij = Sℓ20I1(ξij, t, s) + (Sinit − S)ℓ20I2(ξij, t, s) (5.5)

where

I1(ξij, t, s) = IEW(ξij, t− s) (5.6a)

I2(ξij, t, s) = IEW(ξij, t+ s)− 1

2
[IEW(ξij, 2t) + IEW(ξij, 2s)] (5.6b)

with IEW denoting the Edwards–Wilkinson integral (4.7). Therefore, using the function
φ( · ) defined in (2.20), we obtain

χij(t, s) =
2S

ρ0

√
Dc(t− s)

π
φ

(
ξij

2
√
Dc

∗(t− s)

)

+
Sinit − S

ρ0

[
2

√
Dc(t+ s)

π
φ

(
ξij

2
√
Dc

∗(t+ s)

)

−
√

2Dct

π
φ

(
ξij

2
√

2Dc
∗t

)
−
√

2Dcs

π
φ

(
ξij

2
√

2Dc
∗s

)]
. (5.7)
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The first term on the right side of (5.7) is a function of t∆ reproducing the equilibrium result
in (4.8), while the other term, proportional to S − Sinit and irreducible to a function of t∆
alone, expresses the ageing effect. The Einstein relation (4.13) is violated because there is
no change in gij corresponding to the ageing term in (5.7)

For MSD (ξij = 0), (5.7) can be reexpressed in the scaling form of (5.2) [80],

⟨[R(s+ t∆, s)]
2⟩

K
√
t∆

= 1 +
Sinit − S

S

(√
1 +

2s

t∆
−
√

1 + s/t∆
2

−
√

s

2t∆

)
. (5.8)

It is easy to check consistency with Leibovich and Barkai [22] by calculating the two limiting
values for s ≪ t∆ and s ≫ t∆. The former limit (s ≪ t∆) is readily obtained by setting
s = 0 in (5.8), which yields, after some rearrangements,

⟨[R(t∆, 0)]2⟩
K
√
t∆

=
S + (

√
2− 1)Sinit√
2S

. (5.9)

This interpolates the case of the equidistant initial condition (Sinit = 0) and the equilibrium
case (Sinit = S), reproducing the factor of 1/

√
2. Our result in (5.9) is also consistent with

(13) in [36], if Tchain/T is interpreted as Sinit/S. Note, however, that the chain temperature
Tchain cannot be used to characterize distribution of hardcore particles, for which Sinit seems
to be more appropriate. In the opposite limit of s≫ t∆, the expression on right side of (5.8)
tends to unity (i.e. the same value as in the equilibrium case), as it ought to be.

Although (5.7) for ξij ̸= 0 seems rather complicated, a considerable simplification is
possible in the limit of s→ 0. We have

χij(t, 0) =
S

ρ0

√
2Dct

π
φ

(
ξij

2
√

2Dc
∗t

)
(5.10)

in this limit (we have set Sinit = 0 for further simplification). Comparing (5.10) with the
equilibrium result in (4.8), we find two differences: the amplitude is smaller by a factor
of 1/

√
2, while the correlation length is longer. It means that χij(t∆, 0) for large ξij can

be greater in comparison to the corresponding equilibrium value, lims→+∞ χij(s+ t∆, s), in
contrast to the behavior near ξij = 0. This is consistent with the numerical result for s = 0
shown in figure 5, with the insensitivity of χ+

ij(s + t∆, s) to s taken into account. Thus the

ratio of χij to χ+
ij, which would equal 2kBT in equilibrium, is found to depend not only on

(t, s) but also on j − i in the present case of ageing SFD.

C. Non-equilibrium FRR

To close the discussion, let us derive a non-equilibrium FRR between G and C. Since
(4.13) is violated, (4.14) also ceases to hold, and it seems difficult to find a simple relation
between χij(t, s) and χ

+
ij(t, s) in the non-equilibrium case. However, in regard to G and C

in (4.11) and (5.4), there is a simple relation:

G(k, t, s) =
L2

2D∗k2
(∂s − ∂t)C(k, t, s). (5.11)
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This is a linearized form of the non-equilibrium FRR between G and C explained below.
The nonequilibrium FRR, including nonlinear fluctuations, is shown to be tractable with
DIA; this methodological insight is our second main result.

Derivation of the nonlinear FRR for (3.25) may be discussed as an instance of generic
methods for FRR in ageing systems governed by a nonlinear equation of Langevin type
[11, 40]. The existence of a steady distribution function, which played a pivotal role in the
derivation of the equilibrium FDT (4.16) in section IV, cannot be assumed in such systems.
Instead, we can rely on another assumption that the “water” is always at equilibrium so
that the fluctuating force is Gaussian.

To outline the idea for non-equilibrium FRR in such systems [40], here we write (3.25)
or (4.17) even more schematically as

∂tψt = F(ψt) + ft, ⟨ftft′⟩ = 2T δ(t− t′), (5.12)

where the k-dependence is omitted and the time arguments of ψ and f are subscripted.
Defining C(t, s) = ⟨ψtψs⟩ with the time order s < t, we have

∂tC(t, s) = ⟨F(ψt)ψs⟩+ 0 (5.13)

∂sC(t, s) = ⟨ψtF(ψs)⟩+ ⟨ψtfs⟩ . (5.14)

Due to the Gaussian property of f , the last term in (5.14) is known to give the response
function G(t, s) [2, 81]:

⟨ψtfs⟩ = 2T G(t, s), (5.15)

which implies [40]

2T G(t, s) = ∂sC(t, s)− ⟨ψtF(ψs)⟩ (5.16a)

= (∂s − ∂t)C(t, s) + ⟨F(ψt)ψs − ψtF(ψs)⟩ . (5.16b)

In some cases (5.16b) can be simplified: for example, if the system is at equilibrium, the
last term in (5.16b) vanishes due to the time-reversal symmetry. The other term is also
simplified due to the time-translation invariance, so that the equilibrium FDT is obtained.
Another simplifying case occurs when F(ψ) is linear in ψ; the last term vanishes in this case
as well, even if the system is out of equilibrium. The linear FRR (5.11) corresponds to this
case.

Here we focus on the case of a non-equilibrium system with nonlinear F(ψ), governed
by (3.25) with the initial condition Sinit = 0. Consideration of higher-order correlations is
required in such a case; in order to obtain a useful relation, we need to express the second
term on the right side of (5.16a) somehow with C and G.

With (5.13) regarded as a schematic representation of (4.20) in section IV, we recall that
the triple correlation can be expressed with memory integrals in (4.21) by the approximation
procedure of DIA and MCT. Using this closure scheme, we evaluate the triple correlation
corresponding to ⟨ψtF(ψs)⟩ in (5.14) or (5.16a), and thereby define

H(k, t, s)
def
= (∂s+D

c
∗k

2)C(k, t, s)−
∫ s

0

du M̃G(k, s, u)C(k, t, u)−
∫ t

0

duMC(k, s, u)G(k, t, u).

(5.17)
ThisH corresponds to the right side of (5.16a) and should be a constant multiple of G, unless
inconsistency is introduced by the closure scheme. Only after checking this consistency, we
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can accept the nonequilibrium FRR based on (5.17) as a potentially useful modification to
the equilibrium FDT in (4.16).

In the present case, the closure scheme is found to be consistent in the sense that H,
defined in (5.17), satisfies the same equation as G, namely (4.23). To demonstrate it, we
operate H with ∂t+D

c
∗k

2. In an abbreviated notation, in which the k-dependence is omitted
and ν is used as a shorthand for Dc

∗k
2, we have

(∂t + ν)H(t, s) = (∂t + ν)(∂s + ν)C(t, s)−
∫ s

0

du M̃G(s, u)(∂t + ν)C(t, u)

−
∫ t

0

duMC(s, u)(∂t + ν)G(t, u)−MC(t, s). (5.18)

The first term on the right side can be evaluated by operating (4.21) with ∂s + ν. The
second and third terms are treated with a technique involving interchange of the order of
integration and renaming of the variables, as is exemplified below in the case of the third
term: ∫ t

0

duMC(s, u)(∂t + ν)G(t, u) =

∫ t

0

duMC(s, u)

∫ t

u

dv M̃G(t, v)G(v, u)

=

∫ t

0

dv

∫ v

0

du M̃G(t, v)MC(s, u)G(v, u)

=

∫ t

0

du M̃G(t, u)

∫ u

0

dvMC(s, v)G(u, v). (5.19)

Evaluating all the terms on the right side of (5.18) in this way, we find that many terms
cancel each other, leaving a rather simple expression:

[right side of (5.18)] =

∫ t

s

du M̃G(t, u)H(u, s).

Thus H satisfies, in the full notation,

(∂t +Dc
∗k

2)H(k, t, s) =

∫ t

s

du M̃G(k, t, u)H(k, u, s), (5.20)

which duplicates (4.23) with G replaced by H. This means that H is a constant multiple
of G. The constant of proportionality, corresponding to 2T in (5.16a), is given by the last
term on the right side of (4.22), so that we have

2D∗k
2

L2
G(k, t, s) = H(k, t, s) (5.21)

with H defined by (5.17). Although this relation is very complicated, it certainly allows
determination of G when C is given, at least in principle.

Finally, considering a linear combination of (4.21) and (5.17) corresponding to the tran-

30

Page 30 of 35AUTHOR SUBMITTED MANUSCRIPT - JPCM-111669.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



sition from (5.16a) to (5.16b), we obtain

2D∗k
2

L2
G(k, t, s) = H(k, t, s)

= (∂s − ∂t)C(k, t, s)

+

∫ t

0

du
[
M̃G(k, t, u)C(k, u, s)−MC(k, s, u)G(k, t, u)

]
+

∫ s

0

du
[
MC(k, t, u)G(k, s, u)− M̃G(k, s, u)C(k, t, u)

]
. (5.22)

In this non-equilibrium FRR, the memory integrals represent triple correlations due to the
nonlinear term in (3.25). If this nonlinear effect is negligible, (5.22) is reduced to (5.11). In
other words, (5.22) could be used to establish the validity range of (5.11) by checking on
what conditions the integral terms are negligibly small. In particular, in the limit of large
s, the memory integral terms in (5.22) cancel each other, so that the equilibrium FDT is
recovered.

VI. CONCLUDING REMARKS

We have presented a theoretical framework for calculation of two-tag correlations in
SFD, grounded on the label variable representation of density fluctuations, i.e. (3.22) that
governs the fluctuating vacancy field ψ(ξ, t). This framework allows us to calculate the two-
tag displacement correlation χij(t, s) and the corresponding response function, gij(t, s) =
∂tχ

+
ij(t, s). In the equilibrium case, the Einstein relation between χij and χ+

ij has been
demonstrated, not only through concrete calculations but also through a link to the “model
B” equation (4.17) for which the FDT between C and G is generically known to hold at
equilibrium. By applying the above-mentioned framework to the ageing SFD studied by
Leibovich and Barkai [22], we have extended their observations on violation of the Einstein
relation to the two-tag quantities: the Einstein relation between χij and χ+

ij is violated

because χij is sensitive to the initial condition while χ+
ij is not (within linear approximation).

By switching to C and G, we have seen a relatively simple non-equilibrium FRR in (5.11)
which is valid in the linear case. Nonlinear analysis by means of the Lagrangian MCT is
also discussed.

The everlasting effect of the initial condition on SFD [22] is understood by considering
that χij given by the Alexander–Pincus formula (3.39) is dominated by the long-wave modes.
Since C0(k, s) has the relaxation time (Dc

∗k
2)−1 that diverges for k → +0, it takes infinitely

long time to equilibrate the single-file system through the time evolution. This observation
contains a practically important matter that requires attention when one performs numerical
simulations of SFD: If simulation of a system at equilibrium is intended, and if the system is
prepared by an equilibration run with a certain finite length of waiting time s, the temporal
span of the collected data, max t∆, should never exceed s [38]. A result for a longer span
will expose insufficiency of equilibration.

Several possible future directions may be mentioned. One may improve the linear analysis
on the ageing SFD in subsection V.B by evaluating the memory integrals in the Lagrangian
MCT. The nonlinear FRR in subsection V.C will prove useful as a part of such calculations.
In particular, it would be interesting to clarify whether G is completely independent of the
ageing effect, with the memory integrals in (5.22) taken into account. Even approximate
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evaluation of the integral terms will allow us to establish the validity range of the linearized
nonequilibrium FRR (5.11); this kind of nonlinear analysis may be also applicable to other
forms of correlations, such as (111) in [36] which reads (∂s − ∂t) ⟨Ri(t, 0)Ri(s, 0)⟩ in our
notation. Such calculations will provide methodological insight into the Lagrangian MCT
in higher dimensions [54].

As another interesting direction, one may consider SFD-like dynamics with overtaking,
which has been studied both in continuous spaces [82–85] and on lattice geometries [86, 87].
In the case of (non-ideal) SFD in the 1D continuous space, finite Vmax allows overtaking;
the group of the present authors studied the effect of overtaking on the displacement cor-
relation in a previous work [88], and recently the present authors studied the effect on the
two-tag elongation correlation [52]. It appears quite promising to study response functions
corresponding to these correlations. Finally, it will be interesting to test the validity of the
Dean-Kawasaki description of SFD armed with the Lagrangian MCT, which seems approx-
imate but more powerful than the Edwards–Wilkinson theory, by applying it to a number
of interesting problems that have studied with other approaches, such as the probability
distribution of two-tag displacements [51] and multi-tag correlations [50].
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