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1 Introduction

Processes involved in the short pulse laser–matter interac-
tion have many important technological applications from 
production of chips and solar cells to medicine. The predic-
tive calculation methods are strongly required to optimize 
those advanced technologies. Quantitative description of 
the corresponding processes is based on two-temperature 
(2T) hydrodynamic model (2T-HD) [1–5]. 2T-HD equa-
tions are

Here (1) is a mass conservation equation, x(x0, t) is a trajec-
tory of Lagrangian particle with the Lagrangian coordinate 
x0, x(x0, t = −∞) = x0, ρ0 is an initial density; Ti and 
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Abstract A short laser pulse converts metal into a two-
temperature state with the electron temperature higher than 
the ion temperature. To describe the electron contributions 
to the total internal energy and pressure arising as a result 
of electron heating, we develop the new analytic approxi-
mation formulae for two-temperature thermodynamics of 
metal. Those approximations are based on quantum cal-
culations performed with density functional theory (DFT) 
packages. DFT calculations provide the internal energies 
and pressures for densities of the order of solid-state den-
sity and for electron temperatures up to 55 kK. The new 
analytic approximations give a better accuracy in hydrody-
namic simulation of laser–matter interaction and should be 
used instead of the less accurate expressions based on the 
Fermi model of ideal electron gas, which is widely used for 
two-temperature states of metal.
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Te are ion and electron temperatures, respectively; (2) is a 
momentum equation, u(x0, t) is a velocity of the Lagrangian 
particle; (3) is a kinematic condition; (4) is an energy balance 
for electron subsystem [6, 7]; definitions of the electron–ion 
energy exchange power and the electron heat conduction 
flux are given in (5); (6) is an energy balance for the ion sub-
system [6, 7]; (7) is a laser power source per unit volume in 
a skin layer δ, and τL is the duration of a pulse. FWHM is 
2(log 2)τL. Integration starts at the time t = −5τL.

To solve those equations, the thermodynamic and kinetic 
parameters are required. The kinetic parameters are the 
electron heat conduction coefficient κ and the electron–ion 
energy exchange coefficient α. The thermodynamic param-
eters are the total p = pe + pi and partial pe, pi pressures 
for electrons and ions, as well as the partial internal ener-
gies Ee, Ei and the corresponding heat capacities at constant 
volume ce, ci.

The 2T model is valid if the absorbed fluence Fabs is 
larger than a threshold of few mJ/cm2. For fluences below 
this threshold, the electron distribution function cannot 
be approximated by the Fermi distribution because the 
electron–electron relaxation time tee is comparable with 
the electron–ion relaxation time teq, where teq is roughly 
few picoseconds. Applications of our interest require the 
absorbed fluences Fabs of the order of the melting threshold 
and higher. The melting threshold is of the order of 20 mJ/
cm2 for bulk metal targets. Therefore, the 2T model based 
on the Fermi distribution is applicable because the hot elec-
trons spread far enough above the Fermi level and the elec-
tron–electron relaxation is fast enough as tee ≪ teq.

Here our recent progress in description of thermody-
namics of the 2T states of metals calculated by a density 
functional theory (DFT) method is reported. We consider 
solely the thermodynamic properties of metals with elec-
tron subsystem highly excited by the laser irradiation, so 
the thermal contribution to the electron internal energy, 
electron pressure, and the electron Gruneisen parameter is 
in focus only. Our calculations of the kinetic coefficients 
of metals in two-temperature states, including the electron 
heat conductivity and electron–phonon coupling, as func-
tions not only of the electron temperature but the density as 
well, takes some time to be accomplished.

Section 2 shows the electron spectra and a dependence 
of the Fermi energy EF(ρ) from the crystal density ρ. The 
qualitative differences in thermodynamics between alu-
minum and gold are demonstrated. Aluminum behaves as 
a Fermi gas metal, while gold significantly differs from the 
Fermi model because the functions EF(ρ) differ, see Fig. 
3 below. The low-temperature approximations of internal 
energy and pressure are given in Sect. 3. It uses results of 
Sect. 2 concerning the dependence of the Fermi energy 
EF(ρ). In Sect. 4, the high-temperature approximation is 
presented. Transition from the low- to high-temperature 

approximations is associated with gradual decrease in the 
electron degeneracy. In Sect. 4, the final simple analytical 
approximation formulae for electron energy and pressure 
are given. They combine together the low- and high-tem-
perature approximations. The ion contribution taken from a 
wide-range equation of state (EoS) [8, 9] together with the 

0 4 8 12

Energy E  (eV)

0

1

2

3

4

D
en

si
ty

 o
f e

le
ct

ro
n 

st
at

es
 g

(E
)  

(N
o/

eV
/a

to
m

)

Gold  5d10 6s1
V/Vo = 1
EF = 9.35 eV

Es

EF

E1 E2

Fig. 1  Conduction band structure of cold gold 5d106s1 at Ti = 0, 
Te = 0 and normal density V/Vo = 1. Calculations of spectra and 
thermodynamics of gold were performed with VASP package, see 
details in “Appendix 1. ” The energy range labeled EF contains 11 
electrons. The Fermi energy EF is reckoned from the bottom point 
Es of s-band. E1 and E2 indicate the left and right edge of d-band, 
respectively
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Fig. 2  Expansion of electron spectra with compression ratio V/Vo; 
markers 1 and 2 show the Fermi energies EF(V/Vo) for the two dif-
ferent specific volumes
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calculated electron contribution to thermodynamics pro-
vides a final 2T EoS. The procedure of summation of the 
electron and ion parts is described in [10, 11]. The derived 
analytical expressions are compared with results of DFT 
calculations in Sects. 5 and 6.

2  Electron band structure

Electron spectrum obtained with the VASP package is 
shown in Fig. 1. The calculated spectrum corresponds to 
fcc lattice of uncompressed gold at the compression ratio 
V/Vo = ρo/rho = 1, where ρo is a density at the normal 
conditions. Other details of the VASP calculation are given 
in “Appendix 1. ” The spectrum of gold shown in Fig. 1 
agrees with the works [12, 13].

To model the rarefaction and compression waves 
induced by a fast laser heating during the 2T stage with 
the usage 2T-HD code (1–7), the effect of mass density 
variation on hot electron additions to the thermodynamics 
should be taken into account. Compression/rarefaction is 
an important factor changing the electron spectra as it can 
be seen in Figs. 2 and 3. The compression enlarges a band 
width and decreases the effective electron masses in gold 
(the mass change with compression is not shown on the 
Figures). By contrast, our DFT calculations show that the 
effective mass does not change with compression/rarefac-
tion in the considered range of densities in aluminum.

For aluminum, the Fermi gas model is applicable. The 
value of chemical potential µ(Te, n) in the cold metal with 
Te = 0 and an ion concentration n is the Fermi energy EF :

In the Fermi gas model, the Fermi energy scales with den-
sity as [14]

where ne is an electron concentration. In Fig. 3, the dependen-
cies of EF(n) for Au and Al are shown. There is a qualitative 
difference between these two metals. In aluminum the energy 
EF scales as ≈ n2/3 (8), while in gold the scaling is ≈ nβ , 
where β ≈ 1. This means that Al can be described well by the 
Fermi gas model, while for gold, this model is not applicable.

3  Low‑temperature thermodynamics

Let us consider the significantly degenerate case of 
kBTe ≪ EF. For the Fermi gas the thermal addition per 
atom Elow to the electron energy is given by

Equation (9) derived in “Appendix 2 ” is written for a sin-
gle-band metal with a fixed number of electrons z in the 
band.

For gold the energy EF scales as EF ∝ n ∝ (n/no) = x, 
where no is a concentration at the normal conditions, see 
Fig. 3. Therefore we can approximate the (n, Te) depend-
ence of thermal electron energy in the low-temperature 
range as

In such approximation (10), we neglect the weak depend-
ence of number z on a relative concentration of atoms 
x = n/no. The Fermi energy at the normal concentration 
n = no

is taken from DFT data. The e4 is an adjustable dimensionless 
coefficient. Below we combine the low- and high-tempera-
ture approximations and define the coefficients minimizing 
the integral of mean-square deviations of our approximation 
from the (n, Te)-grid points calculated by the DFT code.

In a single-band Fermi gas with an effective electron 
mass insensitive to the density variations, the electron ther-
mal addition to the pressure is

EF(n) ≡ µ(Te = 0, n).
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Fig. 3  Expansion of electron spectra with increase of density ratio 
ρ/ρo. Composite results obtained from many spectra as those shown 
in Fig. 2. Here EF ≡ µ(Te = 0, ρ) is the Fermi energy, µ(Te, ρ) is 
a chemical potential. For Al the packages VASP and Elk both were 
used, see “Appendix 1 ” for calculation details. Since the results for 
Al obtained by both packages are close to each other, the Elk data are 
shown only. As was said, the package VASP was employed for gold
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see “Appendix 2 ” where this expression is derived. There-
fore, we will search for a low-temperature pressure approx-
imation in a form

In Eq. (12), the pressure po is po = no Eo
F = 88.75 GPa, 

Eo
F = 9.4 eV, and p2, p4 are dimensionless coefficients 

witch do not depend on either n or Te.

4  High‑temperature thermodynamics and combined 
approximations

Degeneracy of electrons gradually decreases as the tem-
perature Te increases. In such condition, the thermal elec-
tron energy per atom and thermal electron pressure tend to 
expressions for the ideal non-degenerate gas E ∼ zTe and 
p ∼ znTe, respectively. We assume that for the energy per 
atom the high-temperature transition to the non-degenerate 
case is expressed by

where the energy is measured in eV/atom. We assume 
also that the high-temperature transition for pressure is 
expressed by

where the pressure is measured in GPa.
Approximation formulae combining the low- (10, 12) 

and high- (13, 14) temperature expressions are

We have found the fitting coefficients providing the mini-
mal deviation of the DFT data for Ee and pe from the 
expressions (15) and (16). For energy, those coefficients are

The coefficient e2 was calculated from the experimental 
coefficient γ = 67.6 J / K2/ m3, see below.

For electron pressure, the fitting coefficients are

(12)plow(x, Te) = po

(

p2t2 + p4
t4

x2

)

.

(13)
Ehigh(x, Te)

Eo
F e1 t1+δe

= z0 +
1 − z0 − z2

xm1
+

z2

xm2
,

(14)
phigh(x, Te)

po p1 x t1+δp
= y0 + (1 − y0 − y2)x

k1 + y2xk2 ,

(15)Ee(x, Te) = (E−1
low + E−1

high)
−1,

(16)pe(x, Te) = (p−1
low + p−1

high)
−1.

e2 = 1.13095, e4 = 86.7435, e1 = 2.33349,

z0 = 0.880896, z2 = −0.0364397,

m1 = 4.6121, m2 = 9.75613, δe = 0.730093,

Eo
F = 9.4(eV), t = 2kB Te/Eo

F.

The (ρ, Te) grid contains 16 × 16 = 256 points, where Ee 
and pe were calculated with DFT.

p2 = 1.3279, p4 = 51.3404, p1 = 1.4515,

y0 = −0.76568, y2 = −0.0274214,

k1 = 0.311491, k2 = 5.1086, δp = 0.400865,

p0 = 88.7466 (GPa), Eo
F = 9.4(eV), t = 2kB Te/Eo

F.
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Fig. 4  The red curves 1 and 1’ are given by the Fermi gas expres-
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black curves 2 and 2’ are approximations (15) for Te = 10 kK and 
Te = 20 kK; the filled circles 3 and the filled squares 3’ are DFT 
results for Te = 10 kK and Te = 20 kK. The calculated electronic 
thermal energy of gold strongly deviates from energy derived from 
the Fermi gas model, even slopes of black and red curves have oppo-
site signs
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5  Comparison with DFT data for energy

DFT calculations were performed for the cold fcc crystal 
lattice of gold with temperature Ti = 0. Density of gold 
was varied by adjusting the lattice constant [10, 11, 15, 16]. 
The electron thermal contributions to the energy Ee and 
pressure pe were obtained by extracting the cold energy 
E(ρ, Te = 0) and pressure p(ρ, Te = 0) from the total 
energy E(ρ, Te) and pressure p(ρ, Te) of crystal. Values of 
E(ρ, Te) and p(ρ, Te) for the (ρ, Te)-grid were calculated 
using the DFT packages, see “Appendix 1 ”.

Figure 4 shows the DFT calculations, their approxima-
tion, and the Fermi gas theory results. The Fermi theory 
data Ee = γ T2

e /2 are given by the curves 1 and 1’, where 
the coefficient γ is given by

For z = 1 and the electron mass me equal to the vacuum 
value, we have γ = 63 J/K2/m3, where the electron con-
centration is ne = zn. Value γ = 63 J/ K2/ m3 used in Figs. 
4 and 5 is close to the experimental low-temperature value 
γ = 67.6 J/K2/m3 [17, 18].

DFT calculation results for the constant temperatures 
Te = 10 kK and Te = 20 kK are given by the curves 3 and 
3’, while the Fermi gas dependencies are shown by the 
curves 1 and 1’ in Fig. 4. The approximation (15) of the DFT 
results for those temperatures is presented by the curves 2 
and 2’. One can see that for the temperatures Te higher than 
10 kK the Fermi gas approach Ee = γ T2

e /2 significantly 
underestimates the electron thermal energy in the shown 
range of crystal densities. This conclusion for normal density 
gold has been made first in [17]. It is obvious that the accu-
rate approximations required for 2T hydrodynamic modeling 
should include density dependence because the significant 
rarefaction and compression take place during 2T stage pro-
duced by the short laser pulse heating [19, 20], especially in 
gold having slow electron–ion temperature relaxation.

It is remarkable that for the temperatures Te lower than 
20 kK the volume density of electron thermal energy 
Ee slightly decreases as a density ratio n/no increases 
at the fixed Te. While it should increase according to 
the Fermi gas model (see curves 1 and 1’ in Fig. 4) as 
Ee = γ T2

e /2 ∝ mez1/3n1/3 ∝ n1/3 at a constant elec-
tron effective mass me and a charge z, and at the fixed 
temperature Te. Of course, this follows the same line as 
behavior of the Fermi energy EF(n) from density shown 
in Fig. 3. At higher temperatures Te the Fermi gas energy 
Ee(n, Te) = γ T2

e /2 is also significantly below the DFT data 
and cannot be used for accurate hydrodynamic modeling of 
the laser–matter interaction, see Fig. 5. At this temperature, 
the DFT slope becomes positive—the energy per unit vol-
ume increases with density because the electron subsystem 
gradually loses its degeneracy.

(17)γ = (π/3)2/3k2
B/�

2 me n1/3
e .

Figures 6 and 7 present comparisons of our DFT data for 
aluminum obtained by the Elk package with the Fermi gas 
model and the combined approximation. The low-tempera-
ture dependencies of electron thermal energy are described 
well by the Fermi gas model. This conclusion is opposite to 
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the conclusion obtained in the case of gold. The combined 
approximation shown in Fig. 7 describes energy very well 
in the wide ranges of temperatures and densities, while 
the Fermi model loses its validity at elevated temperatures 
Te : compare curves 1’ and 2’ in Fig. 7. Our approximation 
shown as curves 2 and 2’ in Fig. 7 combines the low- and 
high-temperature dependencies. It has a form

where Ccl = (3/2) z kB no x, x = n/no, γ is given by Eq. 
(17). To plot the curves 2 and 2’ in Fig. 7, we have used the 
values z = 3 and me equal to the vacuum value. The elec-
tron heat capacity

at a constant volume is given by the derivative of expres-
sion (18). Those expressions have been used in our previ-
ous 2T hydrodynamic simulations [4, 21–24] of laser–mat-
ter interaction in the case of aluminum.

In Figs. 8 and 9, the temperature dependencies of elec-
tron thermal energy per unit of mass are shown. They cor-
respond to the densities near the edges of our range of com-
pression/rarefaction ratios.

6  Comparison with DFT data for pressure 
and Gruneisen parameter

Figures 10 and 11 presents results of DFT calculations 
marked by 3 and 3’, the approximation curves 2 and 2’ (16), 
and the single-band Fermi gas function pe = (1/3)γ T2

e  

(18)Ee(n, Te) =
Ccl

γ

(

√

C2
cl + γ 2T2

e − Ccl

)

,

c = 1/

√

C−2
cl + C−2

deg, Cdeg = γ Te,

marked by 1 and 1’ Results cover a range of temperatures 
from rather small Te = 10 and 20 kK to the high tempera-
ture Te = 55 kK.

It is clear from Figs. 10 and 11 that the Fermi gas 
theory is valid up to temperatures ≈ 10 kK. But even at 
Te = 10 kK the positive slope of the Fermi density (which 
is a power function with exponent 1/3) does not correspond 
to the DFT results; the function pe(n, Te = 10 (kK)) from 
our DFT calculations practically does not depend on den-
sity in the range of densities shown in Fig. 10. The Fermi 
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theory significantly underestimates the electron pressure 
at the temperature Te = 20 kK. The power law monotonic 
growth of the Fermi gas pressure pe = (1/3)γ T2

e ∝ n1/3 at 
the constant temperature Te = 20 kK, charge z, and mass 
me disagrees with the DFT behavior of pressure, see Fig. 
10. At the high temperature Te = 55 kK the pressure pe in 
Fig. 11 increases with compression ratio much steeper than 
for the ideal Fermi gas.

In the Fermi gas model, the electron Gruneisen param-
eter Γ  equals to 2/3 in the whole range of temperatures Te 
from the degenerate gas to the classical gas. Temperature 
behavior of the parameter Γ  for gold is shown in Fig. 12. 
DFT results for aluminum are shown in Figs. 13, 14, and 
15. In the case of aluminum the values of the Gruneisen 
parameter are much more “stable” in comparison with 
gold, compare Figs. 12, and 15. At the fixed density, the 
temperature variation range of the parameter Γ  is 2–3 times 
more narrow in the case of Al. Values of Γ  for Al are more 
close to the Fermi gas value equal to 2/3.

We see that the approximations for energy (15) and pres-
sure (16) of highly excited gold have accuracy high enough 
in the range of densities and temperatures Te realized in the 
short pulse laser applications. In aluminum, the combina-
tion from the Fermi gas model and classical gas limit (18) 
is also accurate enough.

7  Two‑temperature equation of state for metals

We separate the thermal electron contribution, associated 
with electron excitations, from the energy and pressure in a 
cold solid, as it is done in the Mie-Gruneisen approximation 
of EoS [8, 10, 28, 29]. Energy and pressure of the 2T EoS 

are presented as the sums of the cold energy and pressure, ion 
and electron thermal contributions to the energy and pressure 
as in [8, 10, 28, 29], but here with the separated ion and elec-
tron temperatures [10], also see related references in [30],

(19)

F(V , Ti, Te) = Fo(V , 0, 0) + Fi(V , Ti, Te) + Fe(V , Ti, Te),
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mation (16). Low-temperature DFT data for the parameter Γ  are 
higher than the Fermi gas value 2/3
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e , γ = 90.5 J/K2/m3. The green curve 2’ 
corresponds to the Eq. (18) taken with the Gruneisen parameter of 2/3
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The ion part Fo + Fi is taken from the wide-range EoS 
[8–10]. At the 2T state the electron free energy Fe (19, 20) 
gives a main contribution to the thermal and momentum 
balances in a surface layer of irradiated target.

Our approach [10, 30, 31] is based on the two following 
assumptions (1) and (2).

(1.) Changes in electron free energy Fe with Ti in the range 
of temperatures Ti up to few kK are small in compari-

(20)F(V , Ti, Te) = Fo(V) + Fi(V , Ti, Ti) + Fe(V , Te).

son with changes of Fe caused by variation of electron 
temperatures in the range up to few eV (if mass density 
is fixed). This means that we neglect the variations of 
spectral features of an electron band structure caused by 
changes in the ion ordering if the density remains fixed. 
Figure 16 confirms that electron spectra are weakly sen-
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Fig. 14  Density dependence of electron pressure pe(n, Te) for alu-
minum at the temperature Te = 55 kK. The red curve 1 presents 
expression pe = (1/3)γ T2

e , the green curve 2 presents Eq. (18) taken 
with coefficient 2/3, and the filled circles 3 are DFT data
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Fig. 16  DoS of Cu in liquid and solid state. The black line corre-
sponds to VASP DFT calculation performed for cold solid Cu. The 
blue line and red line are taken from [32] for solid and liquid states, 
respectively
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Fig. 17  The melting temperatures of seven metals obtained from the 
Lindemann criterion. The phonon spectra calculations are based on 
evaluations of elastic modules, used in the Lindemann criterion, simi-
lar to that done in [12]. The crosses are taken from [12]
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sitive to an ion ordering. The correctness of assumption 
(1) is justified by the DFT calculations [32] of DoS for 
many different metals in solid and liquid states.

(2.) Variation of the electron temperature Te affects rather 
weakly the ion free energy Fo + Fi (19,20). Thus, the 
elastic modules of metal with hot electrons weakly 
depend on the electron temperature. Figure 17 demon-
strates that the assumption (2.) is approximately valid 
only up to Te = 2 eV with positive or negative changes 
of the melting temperatures with electron temperature. 
Those deviations depend on particular metal and are 
less than 15 % for Te < 2 eV.

8  Conclusion

Series of DFT calculations of 2T gold and aluminum has 
been performed. DFT results cover a range of densities and 
electron temperatures, which are typical for the short pulse 
laser applications. For the first time, those DFT data are 
used to fit the several coefficients in the compact analyti-
cal approximations of 2T thermodynamics of metals, which 
were developed for using in 2T hydrodynamical codes. It is 
shown that the approximations of thermal energy and pres-
sure describe well thermodynamics of gold in the 2T states, 
while the Fermi gas model is accurate for aluminum but it 
is not applicable for gold.

Acknowledgments The research was performed under finan-
cial support from Russian Science Foundation (RSCF) (Project No. 
14-19-01599).

Appendix 1

In the case of Au, the Vienna ab-initio simulation package 
(VASP) [25, 26] was used in total energy and electron DoS 
calculations combined with the projected augmented wave 
(PAW) potential, the Perdew–Burke–Ernzerhof (PBE) 
exchange-correlation functional, and a kinetic energy cut-
off of 500 eV. A 21 × 21 × 21 Monkhorst-Pack k-point 
grid was used and electron occupation was treated with a 
Fermi–Dirac smearing method. The lattice constant for Au 
in equilibrium was found equal to 4.15 A. The number of 
empty states was set equal to 30. It is found that this value 
is enough for total energy calculations at high electron 
temperatures. Here we used the GGA-PBE approximation 
because it is more accurate for DoS calculation than LDA, 
but it gives the less accurate equilibrium lattice parameter 
(which was not aimed for improving in the present study).

For the Al total energy calculations, we use the FP-LAPW 
method implemented in the Elk code [27] and the PBE 
exchange-correlation functional. The muffin-tin radius of 

aluminum atoms of 2.20 a.u. is kept constant for all calcula-
tions; the number of k points is equal to 20 × 20 × 20; and 
the product of the muffin-tin radius and the maximum recip-
rocal space vector is equal to 10. The maximum value for the 
waves inside the atomic spheres and the largest reciprocal 
vector in the charge Fourier expansion, Gmax, are set to 10 
and 14, respectively. The self-consistent calculation is termi-
nated when the total energy change is less than 10−6 eV in the 
case of VASP calculations for Au and less than 10−6 Ha in the 
case of Elk calculations for Al. In the latter case the tolerance 
for total potential change was limited by the value 10−6 Ha.

Appendix 2

Let us denote as µ(Te) the electron chemical potential at 
the temperature Te. Then the electron concentration is

(z is the number of electrons per atom, and n is the concen-
tration of atoms). Correspondingly internal energy per unit 
volume, measured from the band bottom, is

Values zn and E both are Fermi integrals

with functions F(ε) correspondingly equal to F(ε) = ε1/2 
and F(ε) = ε3/2. These integrals in the low-temperature 
limit in the fourth order in Te are [14]

To derive expressions (9) and (11), first we will find the 
expression for the chemical potential. Let us introduce the 
notation

Then for the electron concentration we have

zn =
√

2

π2

(√
ms

�

)3 ∫

ε1/2 d ε

exp[(ε − µ)/(kBTe)] + 1
.
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From the other side at Te = 0 the same electron concentra-
tion can be written as

Hence we get

or

When introducing the denotion kBTe/EF = τ, we need to 
find coefficients c in the expression

It is obvious that the coefficients of odd degrees of τ are 
equal to zero, therefore

With the accuracy including the term τ 4 we have

or

Hence we find

Now the asymptotic representation of the internal energy can 
be obtained. For the internal energy per atom E we have

zn = A
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E
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Dividing this expression by the value 2E
5/2
F /5 we obtain

Substituting to this expression the expansion 
µ/EF = 1 + c2τ

2 + c4τ
4 and taking into account that

is the internal energy per atom at Te = 0, we have with the 
accuracy up to terms τ 4

Substituting here the above found coefficients c2 and c4, we 
obtain

Then for thermal energy per atom we obtain

Now the entropy can be found:

The adiabatic condition s = const therefore means 
τ = const, and the thermal pressure can be written as

En
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