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Two-Term Asymptotic
Approximation of a Cardiac
Restitution Curve∗

John W. Cain†

David G. Schaeffer‡

Abstract. If spatial extent is neglected, ionic models of cardiac cells consist of systems of ordinary
differential equations (ODEs) which have the property of excitability, i.e., a brief stim-
ulus produces a prolonged evolution (called an action potential in the cardiac context)
before the eventual return to equilibrium. Under repeated stimulation, or pacing, cardiac
tissue exhibits electrical restitution: the steady-state action potential duration (APD) at
a given pacing period B shortens as B is decreased. Independent of ionic models, resti-
tution is often modeled phenomenologically by a one-dimensional mapping of the form
APDnext = f(B − APDprevious). Under some circumstances, a restitution function f can
be derived as an asymptotic approximation to the behavior of an ionic model.

In this paper, extending previous work, we derive the next term in such an asymp-
totic approximation for a particular ionic model consisting of two ODEs. The two-term
approximation exhibits excellent quantitative agreement with the actual restitution curve,
whereas the leading-order approximation significantly underestimates actual APD values.
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1. Introduction. Cardiac tissue is an example of an excitable medium. Applying
a sufficiently strong stimulus to a cardiac cell leads to a prolonged elevation of trans-
membrane voltage v known as an action potential. When spatial extent is negligible,
the cardiac action potential can be modeled by systems of nonlinear ODEs [1, 19].
Such models are referred to as ionic models because they describe the transport of
various ions across the cell membrane.

Modeling the flow of transmembrane ionic currents represents one of the biggest
challenges in cardiac electrophysiology [16], and many authors have proposed ionic
models [1, 5, 8, 12, 18, 19, 20, 21, 23, 25]. An excellent database of the most well known
models appears at http://www.cellml.org/examples/repository/index.html, and a list-
ing of selected ionic models appears in Table 1. We remark that ionic models come
in a variety of flavors—some are specific to certain types of cardiac cells, some are
specific to certain animals, and some are especially concerned with accurate handling
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Table 1 Selected ionic models of the cardiac action potential.

Model Year Tissue type Remarks
Noble 1962 Purkinje fiber one of the first adaptations of the

Hodgkin–Huxley model to cardiac
tissue

Beeler–Reuter 1977 mammalian, ventricular uses four ionic currents; among the
first models of the ventricular ac-
tion potential

Luo–Rudy 1994 guinea pig, ventricular a pioneering study for the handling
of calcium dynamics

Jafri–Rice–Winslow 1998 ventricular incorporates more sophisticated
calcium handling

Courtemanche et al. 1998 human, atrial uses human experimental data to
formulate the various ionic cur-
rents
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Fig. 1 Schematic action potentials.

of particular ions. For example, the Luo–Rudy dynamic model [19], developed in part
from guinea pig ventricular data, was among the first models to treat calcium cycling
between the intracellular space and the sarcoplasmic reticulum. Although ionic mod-
els have been developed for many types of cells, most models are similar in spirit to
the well-known Hodgkin–Huxley model [10] of the nerve action potential.

Not surprisingly, ionic models that are “more physiological” tend to be more
complex mathematically. Among the simplest ionic models is the Fenton–Karma
model [8], which expresses the total transmembrane current as the sum of three
ionic currents. The Fenton–Karma model mimics the dynamics of the Beeler–Reuter
model [1], which uses four ionic currents and a total of eight state variables. The
Luo–Rudy dynamic model [19] incorporates a total of fourteen ionic currents and
pumps.

Because cardiac arrhythmias are often characterized by temporal phenomena
(i.e., timing of excitation and recovery), one frequently considers the duration of action
potentials, not the complete voltage trace. To establish notation, refer to Figure 1,
which shows a voltage trace of several consecutive action potentials in a repeatedly
stimulated, or paced, cardiac cell. By specifying a threshold voltage vthr, one may
define the action potential duration (APD) as the amount of time in which v > vthr
during an excitation. The subsequent recovery time during which v < vthr is called
the diastolic interval (DI). We will denote the APD following the nth stimulus by An
and the subsequent DI by Dn (see Figure 1).
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Based on their experimental work, Nolasco and Dahlen [22] proposed a phe-
nomenological mapping model to describe the dynamics of a paced cell, i.e.,

(1) An+1 = f(Dn) = f(B −An),

where B denotes the pacing period. The graph of f , known as the restitution curve
(RC), is qualitatively similar to the graph of

(2) f(DI) = APDmax − Ce−DI/τ , APDmax, C, τ > 0.

Although the approximation (1) is unrealistically simple,1 it nonetheless adequately
models some important phenomena. In particular, (i) for slow pacing rates (large B),
the cell exhibits a phase-locked 1:1 response in which every stimulus yields an identical
action potential, that is, the mapping (1) has a unique, stable fixed point [26]; and
(ii) as shown by Guevara et al. [9], alternans, an abnormal beat-to-beat alternation of
APD values, can result from a period-doubling bifurcation of (1) as the parameter B is
gradually decreased. The fact that alternans has been linked to the onset of ventricular
fibrillation and sudden cardiac death [15, 24, 27] alludes to the potential clinical use
of RCs. Namely, it is believed that slopes of RCs can be used to predict the transition
from normal 1:1 rhythms to alternans [9, 13].

In this paper, rather than introducing an ad hoc RC based on fitting experimental
data, we derive an approximation of an RC as the asymptotic limit of a particular
idealized ionic model. The first term of this asymptotic expansion, which was derived
in [20], can significantly underestimate the actual APD values from the ionic model.
Here, we derive the second term of the expansion, and this approximation exhibits
excellent quantitative agreement with the actual RC.

Independent of the cardiac application, the derivation has pedagogical interest
because it involves a common phenomenon in asymptotics, i.e., “falling off a null-
cline” that turns back on itself. Other examples of this phenomenon arise in the
context of the van der Pol relaxation oscillator [3, 17] and the singular Fitzhugh–
Nagumo equation [6]. In a different context, a similar phenomenon is analyzed in [2].
This situation leads to a singular expansion with fractional powers and logarithms of
the small parameter [17]. We believe that our straightforward exposition enhances
the pedagogical potential of this problem.

1.1. A Two-Current Ionic Model. We recall the two-current model [14, 20] con-
sisting of two ODEs. The notation is summarized in Table 2.

The voltage equation has the form

(3)
dv

dt
= Jin(v, h) + Jout(v) + Jstim(t),

where Jin, Jout, and Jstim denote inward, outward, and stimulus currents, respectively.
The stimulus current is discussed below. The inward and outward currents are given
by

Jin(v, h) =
h

τin
v2(1− v),(4)

Jout(v) = −
v

τout
,(5)

1For example, the model (1) does not exhibit any rate dependence or memory [4, 13]. See [25]
for a two-dimensional mapping model with memory that may be derived as the asymptotic limit of
an idealized ionic model.
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Table 2 Summary of notation associated with the two-current model.

Symbol Meaning Units Typical value(s)
v scaled voltage dimensionless [0,1]
h gate variable dimensionless [0,1]
τin time constant milliseconds 0.1
τout time constant milliseconds 2.4
τopen time constant milliseconds 130
τclose time constant milliseconds 150
vcrit critical voltage dimensionless 0.13
hmin 4τin/τout dimensionless 0.17

where τin and τout are time constants. The gate variable h, which ranges from 0
to 1, represents a nondimensionalized conductance and regulates the flow of inward
current. We assume that h obeys the gate equation

(6)
dh

dt
=




1−h
τopen

, v ≤ vcrit,

−h
τclose

, v > vcrit,

where τopen and τclose are time constants and vcrit represents a critical voltage. For
voltages v < vcrit, the gate “opens,” allowing the flow of inward current. For voltages
v > vcrit, the gate “closes” and shuts off the flow of inward current. For convenience,
we set vthr = vcrit so that the APD is the amount of time in which v > vcrit during
an action potential. We shall not specify a functional form for the stimulus current
Jstim, requiring only that it satisfy two conditions:

• Jstim(t) is periodic with period B, and
• each stimulus consists of a brief (duration� τin) pulse of current of sufficient
strength to elicit an action potential.

We shall assume that the time constants satisfy

(7) τin � τout � τopen, τclose.

Thus, in the absence of a stimulus current, the voltage changes more rapidly than
the gate variable unless (v, h) is close to a nullcline of (3). Note that (3) has two
nullclines: the trivial nullcline v = 0 and the nullcline given by

(8) h =
τin

τoutv(1− v)
(0 < v < 1).

Equivalently, we may solve (8) for v:

(9) v = v±(h) =
1
2
± 1
2

√
1− hmin

h
,

where

(10) hmin =
4τin
τout

denotes the minimum value of h on the nullcline. We refer to v+(h) as the excited
branch of the nullcline.
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Fig. 2 (a) Comparison of f0(DI) with actual RCs for several choices of ε. (b) Comparison of the
leading-order and two-term approximations with the actual RC for a particular value of ε. In
both panels, the uppermost curve (ε = 0.016) was generated by numerical simulation of (3)
and (6) using the parameter values in Table 2.

1.2. Leading-Order and Two-Term Approximations of the RC. Mitchell and
Schaeffer [20], assuming that the time constants satisfy (7) above, derive the leading-
order approximation for the RC associated with the two-current model. Letting f(DI)
denote the actual RC obtained numerically from the ODEs (3) and (6), they demon-
strate that

(11) f(DI) ∼ f0(DI) = τclose ln

[
1− (1− hmin)e

− DI
τopen

hmin

]

as the parameter

(12) ε =
τout

τclose

tends to 0. Figure 2(a) shows a comparison of f0(DI) with actual RCs (obtained
numerically) for several choices of ε. In each case, hmin = 1/6, τopen = 130 ms, and
τclose = 150 ms. Note that f0 underestimates the true APD values, although the error
does tend to 0 as ε↘ 0.

In the next section, we compute the next-order correction to f0. As we shall see,

(13) f(DI) ∼ f0(DI) + ε
2
3 f1(DI) (ε↘ 0),

where

(14) f1(DI) = 2.33811 τclose

(
1− e−

DI
τopen

1− (1− hmin) e
− DI
τopen

)
.

We remark that the DI dependence in (14) is quite weak. Indeed, if hmin ≈ 0, then
the correction term in (13) is approximately equal to the constant 2.33811 τclose ε

2/3.
Figure 2(b) shows a plot of the leading-order approximation (11), the two-term ap-
proximation (13), and the actual RC (obtained numerically) using the parameters
in Table 2. Observe that the leading-order approximation considerably underesti-
mates the true APD values, whereas the two-term approximation exhibits excellent
quantitative agreement with the actual RC.
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Fig. 3 Solid curve: the voltage nullcline. Dashed curve: limiting behavior (ε↘ 0) of trajectories in
the phase plane for a particular pacing period. The four phases of the action potential are
labeled with roman numerals.

2. Derivation of the Two-Term Asymptotic Approximation. The computa-
tions used to derive the two-term asymptotic approximation of f(DI) are similar to
those originally performed by Dorodnicyn [7] to estimate the period of the van der Pol
oscillator. In preparation for our derivation of (14), we recall the derivation of (11);
for details, see Mitchell and Schaeffer [20].

2.1. The Leading-Order Asymptotic Approximation. To leading order, the
response of (3), (6) during one pacing period may conveniently be divided into four
phases, as labeled in Figure 3:

• Phase I, or upstroke, immediately following a successful stimulus. In a time
on the order of τin, v rises to approximately 1 and h hardly changes.
• Phase II, or plateau. In a time on the order of τclose, h decays from its initial
value to hmin given by (10), while v follows passively to the value 1/2. This
phase ends when the trajectory “falls off” the nullcline (8).
• Phase III, or repolarization. In a time on the order of τout, v decays toward
0 while h changes only slightly.
• Phase IV, or DI. For the time remaining until the next stimulus, the gate
recovers toward the open state h = 1 with a time constant τopen, while v
remains close to 0.

The APD consists of all of Phase II and parts of Phases I and III. However,
because of (7), to leading order only Phase II contributes to APD. To estimate An+1,
we first examine the recovery of h during the preceding DI. If t = 0 corresponds to
the beginning of the nth DI, h satisfies the following initial value problem until the
(n+ 1)th stimulus is applied:

dh

dt
=
1− h
τopen

,(15)

h(0) = hmin.(16)

The value of h at the end of the nth DI is

(17) h(Dn) = 1− (1− hmin)e−Dn/τopen .



TWO-TERM ASYMPTOTIC APPROXIMATION OF A CARDIAC RC 543

To leading order, h does not change during stimulation or Phase I of the (n + 1)th
action potential. Thus An+1 is estimated by the time required for h to decay from
h(Dn) to hmin. This yields the approximation

(18) An+1 = τclose ln
[
h(Dn)
hmin

]
,

from which (11) follows.

2.2. The Next-Order Correction. The primary source of error in the leading-
order approximation arises from the transition between Phase II and Phase III, which
we have called “falling off the nullcline.” Following Mitchell and Schaeffer [20], let us
demonstrate that this transition contributes an O(ε2/3) correction. Let t∗ denote the
time in an action potential at which h has decayed to hmin. Then, according to (6),

(19) h(t) = hmine
− t−t∗
τclose

in a neighborhood of t = t∗. Inserting (19) into (3), we obtain the nonautonomous
equation

(20)
dv

dt
=

v

τout

(
τout

τin
hmin e

− t−t∗
τclose v(1− v)− 1

)
,

which is valid for t in a neighborhood of t∗. Because h(t∗) = hmin, we expect that
v(t∗) ≈ 1

2 provided that ε is small. Motivated by this observation, we scale time and
voltage by introducing “inner” variables

(21) t̃ =
t− t∗
εqτclose

, ṽ =
v − 1

2

εp
.

Rewriting (20) in terms of the scaled variables, we have

(22) ε1+p−q dṽ

dt̃
= −1

2
εq t̃− 2ε2pṽ2,

where we have retained only the lowest-order terms. Applying the principle of dom-
inant balance, we require that 1 + p − q = q = 2p and hence p = 1

3 and q =
2
3 .

Equation (22) becomes a Riccati equation:

(23)
dṽ

dt̃
+ 2ṽ2 +

1
2
t̃ = 0.

Observe that solutions of (23) blow up in finite time for t̃ > 0. We use a common
trick [11] to convert (23) into a linear equation. Substituting

(24) ṽ =
1
2
W ′

W

into (23), we find that

(25)
1
2

(
W ′′W − (W ′)2

W 2

)
+
1
2
(W ′)2

W 2 +
1
2
t̃ = 0.

Simplification reveals that W satisfies the Airy equation

(26) W ′′ + t̃W = 0.
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The general solution of (26) has the form

(27) W (t̃) = a0Ai(−t̃) + a1Bi(−t̃),

where a0 and a1 are arbitrary constants2 and Ai and Bi are the standard Airy func-
tions. We shall not need their power series representations, which may be found
in [11].

From (24) and (27) we find that

(28) ṽ(t̃) = −1
2
· a0Ai

′(−t̃) + a1Bi
′(−t̃)

a0Ai(−t̃) + a1Bi(−t̃)
.

To determine the constants a0 and a1, we match to the Phase II outer solution, i.e.,
let t̃→ −∞. The asymptotic behavior of the Airy functions and their derivatives as
the argument x→ +∞ is described by the formulas [11]

(29) Ai(x) ∼ 1
2
√
πx

1
4
e−ζ , Ai′(x) ∼ −1

2
√
π
x

1
4 e−ζ ,

(30) Bi(x) ∼ 1
√
πx

1
4
eζ , Bi′(x) ∼ 1√

π
x

1
4 eζ ,

where

(31) ζ =
2
3
x

3
2 .

Therefore, from (28), (29), and (30) we have

(32) ṽ ∼




1
2

√
−t̃ if a1 = 0,

− 1
2

√
−t̃ if a1 = 0,

as t̃→ −∞. In our case, the voltage should increase as t̃→ −∞, so we choose a1 = 0.
By combining (21) and (28) we obtain the following representation for v(t) with t
close to t∗:

(33) v(t∗ + ε
2
3 τcloset̃) ∼

1
2
− ε

1
3

2
Ai′(−t̃)
Ai(−t̃)

.

The approximation (33) is valid as t̃ increases until t̃ reaches the first zero of the Airy
function Ai(−t̃), which occurs at

(34) t̃0 = 2.33811 . . . ,

or, in terms of the original time scale, at

(35) t = t∗ + t̃0τcloseε
2
3 .

At this time the inner solution (33) blows up, indicating the transition to Phase III,
which evolves on a faster time scale. Hence, the time spent falling off the slow manifold
lengthens each APD by approximately

(36) textra ≈ t̃0τcloseε
2
3 .

2Observe that (23) is first order whereas (26) is second order. Upon substituting (27) into (24),
we can divide both the numerator and the denominator by a0, leaving only one arbitrary constant,
a1/a0.
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We remark that textra can be significant relative to the APD values generated by the
leading-order estimate of (11). For example, using the parameters in Table 2, we have
ε = 0.016 and textra > 22 ms.

This extra time changes An+1 in two ways: directly by adding textra to (18) and
indirectly by modifying the recovery of h during the preceding DI. Specifically, during
the extra time added to An, h decays3 from hmin to exp(−t̃0ε2/3)hmin. Therefore, we
must replace the initial condition (16) by

(37) h(0) = e−t̃0ε
2
3 hmin.

This leads to an improved approximation of h(Dn):

(38) h(Dn) = 1−
[
1− e−t̃0ε

2
3 hmin

]
e
− Dn
τopen .

Making these two adjustments to (18) and expanding in powers of ε2/3, we find that
f(DI) ∼ f0(DI) + ε

2
3 f1(DI), where f0(DI) is given by (11) and

(39) f1(DI) = t̃0 τclose

(
1− e−

DI
τopen

1− (1− hmin) e
− DI
τopen

)
.

In conclusion, we note that the O(ε2/3)-corrections derived above dominate cor-
rections coming from time spent in Phase I or III, since these are O(ε).
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