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ABSTRACT When a single-phase ground fault occurs in a distribution network, it is generally allowed to

operate with faults for one to two hours, which may lead to further development of the fault and even threaten

the safe operation of the power system. Therefore, when a small current system has a ground fault, it must be

quickly diagnosed to shorten the time of operation with fault. In this paper, an adaptive convolutional neural

network (ACNN)-based fault line selection method is proposed for a distribution network. This method

improves the feature extraction ability of the network by improving the pooling model. Compared with deep

belief network (DBN), it can improve the accuracy of fault classification by 7.86% and reduce the training

time by 42.7%. On this basis, the secondary fault location is identified using the principle of two-terminal

fault location. In this research, fault data obtained by Simulink simulation is used as training set, and ACNN

model is built based on TensorFlow framework. The analysis of results proves that the model has a high

fault recognition rate and fast convergence speed. It can be used as an auxiliary hand for fault diagnosis in

distribution networks.

INDEX TERMS Convolutional neural network, adaptive pooling model, two-terminal fault location,

distribution network, single-phase ground fault.

I. INTRODUCTION

Distribution networks in China are characterized by complex

structures, large scale, wide coverage, and frequent ground

faults, and more than 80% of these faults are single-phase

ground faults [1]. For a long time, most neutral points of the

distribution network have been grounded by arc suppression

coils or are ungrounded. When a single-phase ground fault

occurs, the system is allowed to continue its operation with

fault for two hours, which leads to a series of problems [2].

For instance, the non-grounded phase voltage will rise to
√
3

times the voltage during normal operation, the overvoltage

of the single-phase ground fault easily forms a phase-to-

phase short circuit, and the ground fault point may cause

personal injury or death. Therefore, the above procedure no

longer meets the requirement of safe and stable operation.

A fast and accurate fault diagnosis method for single-phase

ground fault should be proposed to shorten the time required

by maintenance personnel to search for the fault, to improve
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the reliability of the power supply and to reduce economic

losses [3].

Presently, the main methods used for identifying single-

phase ground fault location in distribution networks are the

impedance [4], [5], S-injection [6], [7], traveling wave [8] and

port fault diagnosis methods [9]. In addition, a fault location

method for distribution network based on advanced genetic

algorithm is proposed in [10]. This method has high fault

tolerance and can be used in complex situations of multiple

sources and multiple faults. However, this method cannot

utilize the feedback information of the network promptly, and

the search speed is slow. It requires more training time to

obtain the precise solution. Besides, it struggles to solve the

problem of large-scale computation. Reference [11] presents

a unified matrix algorithm for fault section judgment and

isolation of distribution automation system based on remote

terminal unit (RTU). This method requires significant com-

putation, and terminal fault judgment is limited to single

power supply systems. Reference [12] proposes a phasor

measurement unit (PMU)-based fault location method for

multi-terminal transmission lines. It needs to transform the
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FIGURE 1. Network structure of CNN.

multi-terminal lines into equivalent three-terminal lines and

further transform the fault location problem of three-terminal

lines into two-terminal fault location. This method is greatly

affected by the line structure, and there are large errors in the

process of line transformation

In order to reduce the computation time, improve the

search speed of fault location, reduce the influence of dis-

tribution network structure on the algorithm, and realize the

fault location of the whole line without blind area, the convo-

lutional neural network (CNN) is applied to the fault diagno-

sis of distribution network in this paper.With the development

of computer technology, CNN as an artificial intelligence

algorithm has been widely used in the research of power

industry. A method for power quality disturbance classifi-

cation is proposed by combining deep convolutional neural

network with wigner-ville distribution [13]. Research on the

application of deep learning in fault diagnosis of wind turbine

gearbox and condition monitoring of wind turbine gearbox

bearing highlight the excellent ability of deep learning in fault

classification [14], [15]. Fault locations were defined as clas-

sification labels, and different CNN’s were used to classify

the labels to achieve the fault localization results. Then, image

segmentation was performed to extract the features of fault

areas and simplify the data volumes [16].

In this study, the authors proposed a distribution network

fault location method combining ACNN with a two-terminal

fault location method. This paper is organized as fol-

lows: section II introduces the generation of fault data set,

the structure of ACNN, and the principle of adaptive pool-

ing model. Section III describes the fault dataset used in

the process of fault line selection and the principle of two-

terminal fault location by negative sequence current. Finally,

sections IV and V present the results and conclusions of the

experiment generated during this research.

II. ACNN MODEL BASED ON FAULT RECORDING DATA

As a typical deep learning model, CNN improves the tradi-

tional machine learning system by relying on the three impor-

tant ideas, namely sparse interaction, parameter sharing, and

isotropic representation. It can realize feature extraction, clas-

sificationmodel construction, and other functions through the

training of input samples. It has made important progress in

fault diagnosis [17]–[20]. In this study, the adaptive weight

factor is added to the traditional CNN structure to improve

the convergence rate of the network and reduce the training

time.

A. THE STRUCTURE AND PRINCIPLE OF CNN

Typical structures of CNN are mainly composed of the

input layer, convolutional layer (C-layer), pooling layer (or

sampling layer, S-layer), full connection layer, and output

layer [21], as shown in Figure 1. Each sample is input in the

form of a two-dimensional matrix, which is mapped to the

hidden layer by the convolution kernel. The hidden layer is

composed of a convolutional layer and a pooling layer. The

C-layer and S-layer are set alternately to construct the sparse

interaction between layers. CNN reduces the number of train-

ing parameters in this way. Additionally, through weight

sharing, the S-layer fully preserves the local characteristics

of data and reduces the dimension of data while preventing

overfitting. By expanding all the outputs of the previous layer

into a one-dimensional array, the affine layer connects all

its neurons to integrate the local information with category

differentiation in the C-layer or the S-layer. Finally, the output

value of the affine layer is passed to the output layer.

Because of its unique network structure, CNN has a good

ability to process data with network structure characteristics.

Therefore, it can effectively solve the problem of difficult

data processing caused by the complex structure, large scale,

nonlinear, and other factors of a distribution network. It is

suitable to process voltage and current data of single-phase

ground faults in a distribution network and extract fault char-

acteristics.

B. CONSTRUCTION OF INPUT FEATURE MAP

In this paper, the sampling data of a three-phase current at

both ends of the line with two cycle before and two cycles

after the fault is selected as the input. As shown in Figure 1,

each phase current recorded data is taken as a column of the

input feature map, and the size of the feature map is 4NT ×6,

where NT is the number of sampling points in each cycle.

The system parameters, fault location, system voltage, fault

type, transition resistance, and other parameters are traversed

in the form of permutation and combination. In this manner,

the input feature map is formed, and the training sample set

is constructed.

In addition, owing to the complex components of the fault

transient [22], the collected fault recording data contains
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high-frequency components and some random interference.

Therefore, the input data needs to be smoothed properly to

highlight the main part.

C. CONVOLUTION MODEL

The convolution process of the C-layer is shown in Figure 2.

Its function is to extract local features of input neuron data.

The size of the input feature map is n×n and is denoted by X.

The size of the matrix with convolution kernel is k × k and

that of the matrix with output denoted by Y is m × m. The

dimensional relation of the three is as follows [23].

m = n− k + 1 (1)

FIGURE 2. Principle diagram of convolution process.

The specific formula used for calculation is as follows:

Yij = fs(

k∑

i=1

k∑

j=1

(XijC) + a) (2)

where Xij and Yij are the elements corresponding to the con-

volution kernel of the input layer and output layer, a is the

offset, and fs is the sigmoid function.

The convolution process is used to extract the local char-

acteristics of the current recording data at both ends of the

fault line, which can be used to reduce the training parameters

while representing the fault data.

D. ADAPTIVE POOLING MODEL

The pooling layer is a sub-sampling of the convolutional

layer, whose purpose is to reduce the data dimension and

prevent overfitting by scaling the output feature map of the

previous layer. The pooling process is shown in Figure 3.

FIGURE 3. Principle diagram of pooling process.

The average and maximum pooling models, as the two

most common pooling models, are widely used in the con-

struction of neural networks. Their algorithm expressions are

shown as follows [23].

Sij =
1

c2
(

c∑

i=1

c∑

j=1

Fij) + b (3)

Sij =
c

max
i=1,j=1

(Fij) + b (4)

Here, F is the input feature map, b is the bias, S is the

sub-sampling characteristic matrix, and c is the size of the

pooling matrix.

Because these two classical poolingmodels are insufficient

for feature extraction of pooling domain [24], appropriate

improvements should be made based on the classical pooling

model to optimize the feature extraction process of the tradi-

tional CNN model. In this paper, adaptive weights are added

on the basis of the maximum pooling model to optimize

pooling results. The calculation is as follows [25]:

Sij = λ
c

max
i=1,j=1

(Fij) + b (5)

where λ is the adaptiveweight factor, whose value is related to

the number of network training layers and the element value

in the pool domain. The formula for calculation is as follows:

λ = α
x̄(xmax − x̄)

x2max

+ β (6)

where x̄ is the average value of elements other than the

maximum value xmax in the pool domain, β is the compensa-

tion term, whose value range is (0, 1), α is the characteristic

coefficient, calculated as follows:

α =
c

1 + (niter − 1)cn
2
iter+1

(7)

where c is the size of the pool domain, niter is the num-

ber of CNN training, and iter is the number of times the

training set is trained in the network. Therefore, the value

of adaptive weight factor is not only related to the elements

in the pool domain and its size, but also to the number of

network training. In the test phase, when niter is set to 1,

the pooling effect can be optimized by adjusting the edge

length of the pooling domain. When the size of the pool

domain is determined, the adaptive weight factor will be

dynamically adjusted by increasing in the number of training

times of the sample data set. Because of the adaptive pooling

factor λ ∈ (0, 1), the dynamic pooling model accounts for the

two classical pooling models mentioned above. It not only

retains the accuracy of the maximum pooling model when

there is an obvious maximum eigenvalue in the pool domain,

but also avoids the weakening of the maximum element.

III. THE PRINCIPLE OF FAULT LINE SELECTION AND

LOCATION OF SINGLE-PHASE GROUND FAULT

BASED ON ACNN

A. SINGLE-PHASE GROUND DIAGNOSIS

MODEL BASED ON ACNN

In this paper, a fault line selection and location method based

on ACNN is proposed for single-phase ground fault detection
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FIGURE 4. Principle Diagram of Fault Location Based on ACNN.

of distribution networks. The established model is shown

in Figure 4. Themodel is divided into three parts: fault feature

extraction, fault line selection, and fault location.

In the first part, PMU is used to obtain the current fault

recording data of each node of the transmission line, and the

synchronization time mark is added. After the smoothening

process, it is input into the designed ACNN model for train-

ing. Then, the fault characteristics are extracted. Compared to

the fault diagnosis method based on relative wavelet energy,

the ACNN model proposed herein does not require complex

operations such as wavelet decomposition of the original fault

recorded data and calculation of relative wavelet energy to

extract data features. During the training of the network,

the model can automatically extract the features of the input

data through the C-layer and the adaptive S-layer.

The number of hidden layers of ACNN is set according

to the actual needs, through the analysis of the above input

matrix dimensions and considering the dimensionality reduc-

tion effect of convolution and pooling processes. Therefore,

in the process of model design, the number of hidden layer

network layers is four, comprising two C-layers and two

S-layers.

In the second part, the current phasor sampling data of each

node of the line after feature extraction is divided into the

training sample set and the test set. The training set is used to

train the Softmax classifier. The test set is used to calculate

the accuracy of ACNN network classification of the fault line

after training. Through the calculation of loss function, when

the error rate of test results is reduced to the allowable range,

ACNN network parameters with high accuracy after training

are saved.

The function of Softmax is

P(i) =
exp(θTi x)∑K
k=1 exp(θ

T
k x)

(8)

where x is the three-phase current characteristic data

expanded after feature extraction of S2 layer,K is the classifi-

cation number, and P(i) is the probability belonging to class I.

Two SoftMax classifiers are set up in this study. They

are respectively used for fault selection and fault judgment.

This realizes the weight sharing of two different classification

problems by the same network. Its classification labels are

shown in Figure 5.

FIGURE 5. Fault classification index chart.

Set the number of output ports to 11. Labels 1 to 3 represent

single-phase ground fault, labels 4 to 6 represent two-phase

ground fault, and labels 7 to 8 represent phase to phase short

circuit. For labels 10 to 11, set 1 for larger output and 0

for smaller output, respectively representing the internal and

external fault of the line.

In the third part, when a single-phase ground fault occurs

in the distribution network, fault current data of each node

uploaded by PMU in real time are input into the trained

ACNN model for fault line selection. When the fault line is

determined, the fault record data of both ends of the fault line

with the synchronization mark is called from the background,

and the fault location algorithm is applied to locate the fault

accurately.

B. TWO-TERMINAL FAULT LOCATION MODEL

OF DISTRIBUTION NETWORK

To further determine the location of the fault, the two-terminal

location principle is introduced. The schematic diagram is

shown in Figure 6.

When a single-phase ground fault occurs in a distribution

network, the fault power network can be divided into the

positive sequence network, negative sequence network, and

zero sequence network, according to the symmetrical compo-

nent method and linear superposition principle. In this paper,

the negative sequence voltage and current components at both

ends of the fault line are used for fault location.
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FIGURE 6. Equivalentnetworkdiagram of single-ended powersupply
system.

When a single-phase ground fault occurs at point F of the

line, the negative sequence voltage expression of the send

terminal (S- terminal) and the receiver terminal (R- terminal)

can be derived from reference [26] as follows:

US2 = IS2Z2x + IF2Rf + UF2 (9)

UR2 = IR2Z2 (L − x) + IF2Rf + UF2 (10)

where IS2, IR2,US2 andUR2 are the negative sequence current

phasor and voltage phasor of S and R terminals in case

of single-phase ground fault, Z2 is the negative sequence

impedance of the line with unit length, x is the distance from

the fault point F to the measuring point S, and L is the total

length of the line.

By combining the two terms to the right of (8) and (9), they

are further reduced to

US2 = IS2Z2x + UFS2 (11)

UR2 = IR2Z2 (L − x) + UFR2 (12)

where UFS2 and UFR2 are the negative sequence voltage

phasor of the fault point calculated at the S-terminal and the

R-terminal respectively.

When the data collected at both ends of the line are fully

synchronized, the following equation can be obtained.

UFS2 = UFR2 (13)

With the development of GPS technology, the accuracy

of the synchronous clock provided by GPS is within 1 µs.

In other words, the phase angle measurement error in the

power system can be less than 1◦ [27]. Therefore, it can be

considered as synchronous sampling to collect voltage and

current phasors at both ends of fault line with PMU.

Furthermore, the fault distance x under synchronous sam-

pling data can be calculated from (10), (11), and (12).

x =
|US2 − UR2| + IR2Z2L

Z2 (IS2 + IR2)
(14)

IV. SIMULATION AND EXPERIMENT

In this study, the IEEE 33 node power distribution system is

built in Simulink byMATLAB, and its systemwiring diagram

is shown in Figure 7. In the experiment, four lines L1 to L4 are

selected to set different ground faults for the fault branch. The

fault type is set by adjusting the fault module parameters.

FIGURE 7. The electrical topology of the 33-node distribution network.

TABLE 1. Parameters of faulty lines.

TABLE 2. Traversal of fault data set parameters.

LJ-120 overhead line parameter, i.e. 0.335 + j0.27 �,

is selected for the unit impedance of the line. The specific

parameter settings are shown in Table 1.

In this paper, the sampling rate of the model is set to

1200 Hz; that is, the number of sampling points per cycle

is 24. The PMU device is set at nodes Q1 to Q5. The fault

points are set at different distances from line L1 to line L4,

and the specific parameter settings are listed in Table 2.

Through parameter traversal, there are a total of 6000 sam-

ple data, which are input into the fault sample set. They are

divided into the training and test sets via stratified sampling,

with sizes of 1800 and 4200, respectively.

A. FAULT LINE SELECTION WITH ACNN

In this study, by setting different ACNN model structures,

the accuracy of fault line selection and training time under
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TABLE 3. Training results of single phase to ground fault line selection in distribution network based on ACNN.

different network structures are obtained. The results of neu-

ral network training are listed in Table 3.

Table 3 is explained as follows. Take No. 1 as an exam-

ple. The network structure parameter is set to 1C-1S-1C-

1S, where C represents the convolution layer, S represents

the pooling layer, and 1 represents the number of neurons in

each layer. The two numbers in the convolution kernel are the

convolution kernel sizes of the first convolution layer and the

second convolution layer. 200 samples are entered into each

batch during training. The accuracy of classifier 1 is the ratio

of the successful fault phase selection samples to the total test

samples. The accuracy of classifier 2 is the ratio of successful

samples of fault judgment in and out of the area to the total

number of test samples. Training time is the time required to

complete the specified number of training times.

It can be seen from Table 3 that under the same data set, the

structure of the network, the size of the convolution kernel,

the amount of data processed in each training and the number

of training will affect the accuracy of fault line selection.

From the comparison of serial numbers 7, 8 and 9, it can

be seen that under the same network structure, the more data

each training process, the higher the accuracy. The compar-

ison of 5, 6 and 7 shows that in the same network structure,

the accuracy increases with the increase of training times, but

when the training times reach a certain value, the accuracy

keeps fluctuating near a certain value.

The experimental results show that the ACNN model per-

forms best when the convolution kernel is 5×5 and structure

is 32c-1s-64c-1s. The accuracy of fault line selection can

reach 98.50%, and the accuracy of fault judgment in and out

of the area can reach 99%. In addition, it can be seen from the

experiment that ACNN can still accurately select the fault line

when the system frequency, fault location, system impedance,

transition resistance and other factors are different. This is

because the training sample data traverses the system parame-

ters, and ACNN has strong generalization ability and learning

ability. Through the learning of the training sample data, it is

not affected by system parameters, fault location and other

factors. Therefore, the more the number of samples, the more

accurate the ACNN network for fault classification.

A fault locationmethod based on the similarity and polarity

of transient current between upstream and downstream is

proposed [28]. Compared with this method, the ACNNmodel

proposed in this paper can realize the fault line selection

without blind area through multiple training. Figure 8 shows

the zero-sequence current measured from node Q1 to Q4,

when the fault point is near the outgoing line boundary

point Q1. It can be seen from the above figure that the polarity

of transient current in upstream and downstream of fault

recording data is the same at some points. According to the

method described in [28], line L1 will be misjudged as nor-

mal. By setting the fault location several times, the accuracy

of fault line selection of this method and the ACNN model in

the whole line is shown in Figure 9. It can be seen that the

ACNN model proposed in this paper has a high fault identi-

fication ability for the whole section of the line. In addition,

the recognition accuracy can be improved through secondary

learning.
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FIGURE 8. Graph of the relation between the number of weight
adjustments and mean square variance.

FIGURE 9. Comparison of fault line selection accuracy of different
methods in different position faults.

B. ACNN VS CNN AND DEEP BELIEF NETWORK

In this section, ACNN is compared with traditional CNN and

DBN in fault line selection. Figure 10 shows the relationship

between the number of adjustment times of network structure

parameters and the mean standard deviation of convolutional

neural networks with different pooling models in the training

process. It can be seen that the decreasing trend of the error

value with the increase of the number of iterations is basically

the same, but the convergence rate is different. The adaptive

pooling model proposed in this paper has faster convergence

speed. Because compared with the maximum pooling model

and the average pooling model, the ACNN can achieve the

optimal weight faster when adjusting the network parameters.

FIGURE 10. Graph of therelation between the number ofweight
adjustments andmean square variance.

FIGURE 11. Graph of therelation between the number ofweight
adjustments andmean square variance.

TABLE 4. Accuracy rate and training time of each model with different
iteration times.

The Figure 11 and Table 4 show that the ACNNmodel pro-

posed in this paper has both the feature recognition accuracy

of the maximum pooling model and the convergence speed

of the average pooling model. Compared with the traditional

DBNmodel, the proposed method reduces the time by 42.7%

when the accuracy is increased by 7.86%.

C. FAULT LOCATION

After the fault line is determined, the fault point can be

located by using (14). Through setting different types of

faults at different positions of L1, the percentage of position-

ing error in the total line length was calculated, as shown

in Table 5. The simulation results show that the proposed

algorithm can eliminate the influence of load current, fault

point transition resistance and system parameters. On the

premise that the fault line and fault type are determined, the

algorithm can locate the fault point accurately.

By setting metallic single-phase ground fault at different

positions of line L1 to L4, the relationship between error

and position can be calculated by applying the principle of

two-terminal fault location, as shown in Figure 12. When the

distribution network is powered by a single power supply,

the positioning error increases as the distance of the fault

location from the power supply. Through the analysis, it can

be concluded that the error of fault location is within 7.6 m.

When the photovoltaic power supply is assembled on

node 17, the relation between error and position is shown in

Figure 12. By changing the connection node of photovoltaic

equipment, it can be found that when there is photovoltaic
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TABLE 5. Location results under different fault locations and transition
resistances.

FIGURE 12. Fault location and location error diagram.

power in the distribution network, the changing trend of

this curve is related to the connection node of photovoltaic

equipment and the generation capacity. The overall error can

be kept within 0.2% of the line length.

V. CONCLUSION

In this paper, a fault line selection method based on ACNN

is proposed to solve the problem of fault detection during

the operation of distribution system. The influence of dif-

ferent network structure parameters on the model line selec-

tion structure is analyzed. On this basis, combined with the

principle of two-terminal fault location, the location error

of different fault points is analyzed, and the relationship

between fault location error and different fault location is

obtained. The simulation results show that the method has

high accuracy of fault line selection and is less affected by

system frequency, fault location, transition resistance, and

other factors, and the experimental results are in agreement.

In short distance transmission fault detection, the location

error can be controlled within 7.6 m.

With the rapid development of computer software and

hardware technology, ACNN will take less time to obtain

samples, train weights and bias. The current data of each node

with different fault types under different system parameters

are obtained by simulation. Taking this as a sample, relying

on ACNN’s strong learning and generalization ability, it is

expected to achieve accurate fault line selection for different

power grids by using the same weight bias parameter. Finally,

the fault is located by the principle of two-terminal fault

location. The fault location method based on deep learning

proposed in this paper has broad application prospects in the

future development of smart grid.
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