
Journal of Information Processing Systems, Vol.4, No.1, March 2008 9

Two-Tier Storage DBMS

for High-Performance Query Processing

Sang-Hun Eo*, Yan Li*, Ho-Seok Kim**, and Hae-Young Bae*

Abstract: This paper describes the design and implementation of a two-tier DBMS for handling

massive data and providing faster response time. In the present day, the main requirements of DBMS

are figured out using two aspects. The first is handling large amounts of data. And the second is

providing fast response time. But in fact, Traditional DBMS cannot fulfill both the requirements. The

disk-oriented DBMS can handle massive data but the response time is relatively slower than the

memory-resident DBMS. On the other hand, the memory-resident DBMS can provide fast response

time but they have original restrictions of database size. In this paper, to meet the requirements of

handling large volumes of data and providing fast response time, a two-tier DBMS is proposed. The

cold-data which does not require fast response times are managed by disk storage manager, and the

hot-data which require fast response time among the large volumes of data are handled by memory

storage manager as snapshots. As a result, the proposed system performs significantly better than disk-

oriented DBMS with an added advantage to manage massive data at the same time.

Keywords: DBMS, Storage Management, Query Processing

1. Introduction

In order to provide fast response service in DBMS, many

researchers have studied various techniques such as indexing

techniques[1,2,3], buffer management techniques[4,5,6],

materialized view techniques[7,8], etc. But these disk-

oriented techniques couldn’t support fast response time

successfully. So those techniques are on the verge of being

obsolete in today’s hi-tech society. The arguments by some

researchers stated that the whole database will soon fit in

memory for certain applications because of the declining

price of memory for their higher capacity counter-parts[9,15].

So there are various memory-oriented database techniques

have been studied such as memory-oriented record format,

page structures, indexing techniques and various memory-

resident DBMSs have been developed[10,11,12,13]. They

perform significantly better than disk-oriented DBMSs even

when the disk-oriented DBMSs have all data in memory,

because they have data structures and algorithms which are

fitted only into the memory. However, memory-resident

DBMSs have original restrictions of memory size. Such as

video, image, and voice data, the amount of data, needed to

be stored in databases, has grown at an even faster rate than

memory size increment. Thus for the foreseeable future it is

unlikely that the whole database will ever fit in memory, at

least for large applications. In the present day, therefore, the

main requirements of DBMS can be figured out using two

aspects. The first is handling large amounts of data. And the

second is providing fast response time. Both the disk-

oriented DBMS and the memory-resident DBMS cannot

fulfill these requirements. The disk-oriented DBMS can

manage massive data but the response time is relatively

slower than the memory-resident DBMS. On the other hand,

the memory-resident DBMS can provide fast response time

but it has original restrictions of database size.

These problems can be solved using a multi-level

storage system[13,14]. This system stores data in several

deferent levels. For fast response time, some parts of the

data are stored in high-speed storage device like main

memory, and for massive data secondary devices such as

disk storage, tape storage, and etc can be used. And if it’s

necessary, network devices can also be put in the stack.

There are no reasons that the entire data have to store in

memory for fast response time. Because the data which

require fast response time are only certain parts of the

database, not the whole of database itself. Therefore, to

provide fast response time to certain applications, which

require fast response time for some parts of the database,

moving the whole database from disk-oriented DBMS to

memory-resident DBMS is not efficient. If the DBMS can

stores the parts in high-speed storage devices, then the

overall performance of the DBMS will improve. In this

DOI : 10.3745/JIPS.2008.4.1.009

Manuscript received January 2, 2008; revised February 18, 2008; accepted

March 11, 2008.

Corresponding Author: Sang-Hun Eo

This research was supported by a grant(07KLSGC05) from Cutting-edge

Urban Development - Korean Land Spatialization Research Project funded

by Ministry of Construction & Transportation of Korean government.

 * Dept. of Information Engineering, Inha University, Incheon, Korea

(eosanghun@dblab.inha.ac.kr,leeyeon@dblab.inha.ac.kr,

hybae@inha.ac.kr)

** LG Mobile Handset R&D Center of Mobile Communications Company,

LG Electronics Inc, Seoul, Korea. (hskim94@lge.com)

Copyright ⓒ 2008 KIPS (ISSN 1976-913X)

10 Two-Tier Storage DBMS for High-Performance Query Processing

paper, a two-tier DBMS is proposed. In the proposed

system the hot-data which require fast response time are

stored in memory storage as snapshots, and the cold-data

which does not require fast response time or large volume

of data are stored in disk storage.

The rest of the paper is organized as follows. Section 2 is

related work. Section 3 presents the two-tier DBMS.

Section 4 present preliminary experiment results. Section 5

concludes the paper and discusses future work.

2. Related Work

In this section, the reasons why memory-resident DBMS

can provide more fast response time than disk-oriented

DBMS even when the disk-oriented DBMS have all data

cached in memory are described. In addition, the concept

of a multi-level storage system is introduced.

2.1 Memory-resident DBMS vs. Disk-oriented DBMS

There are several reasons why memory-resident DBMS

can provide more fast response time than disk-oriented

DBMS even when the disk-oriented DBMS have all data

cached in memory. Basically, in traditional disk-oriented

DBMS, the whole database existed in disk. When the user

requests happen, DBMS copy the request data into memory

buffer first and then answers users after data manipulation.

On the other hand, a memory-resident DBMS manages the

whole database in memory. So, the data, which are needed

for manipulating, are simply referenced by memory pointers.

Another reason is database indexing technique. Generally,

traditional disk-oriented DBMS uses B-tree index, which

focuses on the disk access efficiency. This technique is used

for reducing disk I/O cost. While using B-tree index, the tree

balance operation consumption which happened between

each nodes should be considered. However, usually memory-

resident DBMS uses T-tree index technique[13,15,16]. The

purpose of the T-tree index is to reduce the calculation time

and minimize the amount of memory usage. This technique is

optimized for reducing the cost of rotation which is happened

to balance the index tree. Thus, data search and structure

modification operation is optimized in memory-resident

DBMS. In addition, the cost of accessing data is relatively

cheap because all data are resident in memory. This is

because the cost of changing RID (Record ID) to memory

pointer isn’t necessary any more.

As mentioned above, the difference between data

handling mechanism and memory oriented indexing

technique shows that memory-resident DBMS can provide

fast response time to users obviously even when the disk-

oriented DBMS have all data cached in memory. But if the

amount of database is extremely huge, it’s not an

advantage any more because the DBMS cannot load the

whole database at all.

2.2 A Multi-Level Storage System

A multi-level storage system was designed for managing

very large object. This kind of system reside time critical

objects in main memory, other objects are stored disk

resident, and the remainder managed in occupy tertiary

memory[14].

Fig. 1. Logical model of a three level store

It is possible that the system has more than three levels,

and some of these levels can be on remote hardware. The

system can be divided by a collection of L logical devices

that form a rooted tree. Hence there is a unique root, called

main memory, with zero or more direct descendant devices,

each of which can have zero or more descendants.

Moreover, these L devices can be on various computer

systems in a network. The system must be able to address

the needs of the following tow kinds of applications. The

first kind is real time application. These applications are

needed sub-millisecond response times for requests to a

main memory database along with conventional response

times to disk based data. The second kind applications are

need to manage massive databases, which are needed

conventional response times to disk based data and

reasonable response times to archival data.

3. Two-Tier Storage DBMS

In this section, we describe architectural design issues

and propose the two-tier DBMS. In addition, how to

interoperate the memory storage manager and disk storage

manager using snapshots is introduced.

3.1 Architectural Design Issues

Until now, almost enterprises already constructed

business database are complex and the amount is huge. In

this situation, re-constructing the whole database to get the

more fast response time is not efficient because it requires

so much time and efforts. In fact, not the whole database is

required for fast response time. That means there only

some parts of database is needed fast response time.

While using traditional disk-resident DBMS, in order to

get fast response time, the system automatically cache

special data in buffer cache using LRU buffer change

Sang-Hun Eo, Yan Li, Ho-Seok Kim, and Hae-Young Bae 11

strategy. This kind of methods can reduce the disk access

time efficiently, but the cached by system’s own strategy

may not be the just required data for DBA and DB user.

The DBA can not decide which kind of data should be

cached in memory, although DBA has the information of

hot accessed data.

On the other kinds of approach, as the current research,

using two kinds of DBMS is the normal way to handle the

whole massive database and to get the fast response time for

certain data. One kind is a disk-oriented DBMS and the

other is a memory-resident DBMS. In this environment, a

disk-oriented DBMS manages the whole massive database

and a memory-resident DBMS handles only some part of

database, which is needed fast response time and duplicated

from disk-oriented DBMS.

However, this kind of approach has some problems. First,

it needs to prepare another DBMS (a disk-oriented DBMS

or a memory-resident DBMS) to handle large volume data

from disk-oriented DBMS and manage hot data from

memory-resident DBMS to get the fast response time.

Second, application programmers have to recognize where

the disk-oriented DBMS and the memory-resident DBMS

located. Third, application programmers have to keep

replicate table on those two kinds of DBMSs. Fourth, they

have to make synchronization module to preserve

consistency between the disk table which is located in disk-

oriented DBMS and memory table which is located in

memory-resident DBMS. Last, Application programs,

which are already made, have to be changed.

So in this paper, two-tier storage DBMS system is

proposed which disk-oriented DBMS and memory-oriented

DBMS are tightly combined. In this system, system

manager can decide and design the importance of the data,

and then decide the data archived style which includes disk

table style based on disk-oriented DBMS and memory

table style based on memory-oriented DBMS.

Fig. 2. The normal way to manage massive data with

fast response time

3.2 The Proposed System Architecture

The proposed tow-tier DBMS consists of three major

components. They are Disk Storage Manager, Memory

Storage Manager, and United Query Processor. Basically,

the whole database exists in disk storage. And some parts

of the database, which is required to have fast response

time, are duplicated in memory storage as snapshots for

handling the data using memory-oriented techniques. A

united query processor has been implemented by extending

an existing query processor to control disk data as well as

memory snapshots.

The united query processor takes user queries and analyzes

the queries to decide whether the data is existed in

snapshots, which are related to the queries, or whether the

snapshots have all required records or not for answering the

queries. If the required data exist in snapshots, which are

related to the user queries, and the snapshots have full set of

records, which are needed for answering the queries, then

the united query processor gathers the required records

with snapshots in memory, using memory-oriented

techniques. But if there are no snapshots in memory related

to the user queries or snapshots don’t have full sets of

records, which are needed for executing the queries, then

the united query processor gathers records as snapshots

using disk storage manager and memory storage manager.

Fig. 3. The concept of a two-tier storage DBMS

3.3 Snapshots

The two-tier DBMS prepares data, which requires fast

response time, from disk storage using access patterns,

access frequency, a number of tables, period, etc and

makes snapshots in memory storage by duplicating some

parts of the disk data. When DBA find that a certain data

table in disk-oriented DBMS is queried frequently, then

DBA can cache the data table in memory as a snapshot in

12 Two-Tier Storage DBMS for High-Performance Query Processing

order to provide quick answer in the future. User

information table could be the example that should be

cached on memory as a snapshot to make the user’s login

as fast as possible. On the other hand, when DBA find

certain kind of data which have fixed access pattern, then

DBA can decide to make snapshot for this kind of data

periodically. For example, in the bank user account

information system for bank web site, users usually want to

get the information about he or she’s recent transactions for

one week, month or etc. In this case the bank DBMS DBA

could make snapshot for the recent transaction information

in memory-oriented DBMS.

Our prototype system stores historical query lists using

background process. And it is periodically analyzed the

query list to decide whether snapshots are needed.

Snapshots can be made using projection, selection, and join

conditions from disk tables.

For instance, in the web site users are required to login

to access the web site, and there must be the table which

includes login information such as user id and password.

To decide whether the user has a right account to access

the site, the web programmer uses SQL such as ‘select id,

password from users_table’. Considering that this kind of

query is invoked frequently, the two-tier DBMS system

creates snapshot with the related records dinamicly. After

creating the snapshot, the two-tier DBMS system answers

the query using snapshot with memory-oriented techniques.

In this case, the snapshot is created by the projection of the

disk table. In addition, snapshots can be made by selection

of the disk table. If the query is ‘select * from users_table

where address = ‘seoul’’ then snapshot is created by

selection of the users_table in disk storage. To avoid

changing the exist application programs proposed system

supports the creation of snapshots from views. Therefore,

applications using the views don’t need to be changed for

using proposed system. Our prototype system already

supports hybrid-queries (i.e. some of the required records

exist in snapshot and rest of them are in disk storage). The

united query processor classifies user queries into three

types (i.e. memory-query, disk-query and hybrid query)

and optimizes theses queries considering query types and

the query classification overhead (i.e. actually, there is

small overhead in united query processor but it can be

ignored).

In the proposed system, the snapshot is made by DBA

who can decide which kinds of data are accessed

frequently should be cached as snapshot. So after the

creation of the snapshot it will not be deleted very soon

considering usability of the snapshot. But if the memory

table is full, then the system uses LRU strategy to delete

long run snapshot because of the limitation of memory

space.

Fig. 4. Answering queries using memory snapshot. Existing

application programs don’t need to be changed for

using the two-tier DBMS.

Through the previous performance test, we could figure

out that if less than 10% of required record is in snapshot,

then the proposed method could not perform well compare

with disk only used DBMS. So search operation is faster

while only using disk storage manager than using both

memory storage manager and disk storage manager in this

case. There are several ways to make snapshots in

proposed system. For example, many kinds of snapshots

can be made based on one single table, or one snapshot

made by the two or more tables join process. While one

table has 10 fields and 100 tuples, the snapshot may be

made by only 5 fields or made by the user required 20

tuples. After the system got the user queries by using the

proposed system, firstly the system analyzes queries and

check the snapshots include the required data based on the

table information, fields and tuples information. This is the

addition cost of this proposed system. On the other hand,

while using the disk-oriented DBMS to process the user

queries, the system have to read the disk data into memory

first. In this case, because of the system’s loading strategy,

the whole data could be loaded into memory while only

90% of the data is required. As a result, while using only

10% of the records cached in memory the query response

time is little faster than the case while only using disk-

oriented system. The experiment is showed in section 4.

4. Preliminary Experiment Results

To measure the performance benefits of the two-tier

DBMS, a series of experiments are run using Wisconsin

Benchmark database[17] and generated data sets. The

experiments were performed on Solaris equipped with 8

CPUs of 1.2GHz and main memory of 4G bytes. The

proposed system was implemented in C++ language. The

Geomania Millenium Server1[18] was extended as the two-

tier DBMS.

1 http://www.geomania.com

Sang-Hun Eo, Yan Li, Ho-Seok Kim, and Hae-Young Bae 13

4.1 The Test Database and Query Set

As prescribed in the Wisconsin Benchmark Database,

the test relation contains sixteen attributes – thirteen 4-byte

integer attributes and three 52-byte string attributes. The

relation has two candidate keys, unique1 and unique2,

whose values range from 0 to 10,000.

Table 1. The Benchmark Queries

Query 1: select * from tenktup1

where unique2D >= 8383

and unique2D <= 8482;

Query 2: select * from tenktup1

where unique1D >= 8510

and unique1D <= 8609;

The two queries are chosen for obtaining results. Query

1 return 1% records of relation tenkup1 without using

index. Query 2 selects 1% records of relation tenkup1

using non-clustered index.

And the generated data set contains sixteen attributes

also – thirteen 4-byte integers attribute and three 52-byte

strings attributes. The relation has one primary key, id

whose values range from 0 to 1,000,000.

Table 2. The Test Queries

View 1: create view view1pro as

select * from large table

where id >= 0 and id < 10,000;

Query 3: select * from view1pro;

Query 4: select * from view1pro

where id = 5000;

View 1 was created as above definition. The view

contains 10,000 records. For Query 3 and Query 4,

performance evaluation has been conducted to compare the

response time before creating the snapshot and after

creating the snapshot.

4.2 Experiment Results

In the all experiment tests, the system extracts records

using the disk storage manager first. Snapshots are created

after the number of execution time is over than 300. After

creation of snapshots, the system begins extracting records

using the memory storage manager. The response times

from the disk storage manager are almost identical with

disk-oriented DBMS.

Fig. 5. Benefits of snapshots

Figure 5 depicts the benefits of snapshots when execute

the Benchmark Queries. For each case of 1% of selection

queries are executed without using index (i.e. Query 1) and

1% of selection queries are executed using index (i.e.

Query 2). It can be studied that the second case’s

performance was significantly increased. The reason is that

before creation of snapshots, the system must scan full

record sets with disk-oriented techniques but after creation

of snapshots, the system just needs to scan required records

from the memory snapshots with memory-oriented

techniques. As a result the queries execute time is reduced.

The results using generated large volume data sets are

almost same (i.e. Query 3). Scanning 1,000,000 records

spent so much time but after creation of snapshots the

system only scanned 10,000 records from the snapshots. So

the response time was extremely decreased. Query 4

selects one tuple. Before creation of snapshots, the system

must scan full sets of 1,000,000 records but after creation

of snapshots, the system just scanned one required record

from the snapshots. So, the performance was increased

remarkably. Another important experimental result is that

constructing index on 1,000,000 records for query 4 spent

about 2 minutes, but the spent time of creating snapshot for

query 4 was just several seconds. That means proposed

14 Two-Tier Storage DBMS for High-Performance Query Processing

system performs better than disk-oriented DBMS even

when the disk oriented DBMS uses index.

Figure 7 shows the benefits of using caching methods. In

this experiment, the number of whole records is increased

from 10,000 to 100,000 while the records caching rates are

Fig. 6. Result of using generated large volume data sets

Fig. 7. Search operation with different caching rate

changed from 0% to 90%. So the line TQ_HB(10%) means

the 10% of the records that required by one application is

cached in memory table. The first point of every test case

shows the search time while 1,000 of 10,000 records are

cached in memory table. While the caching rates are rose,

the response time became short. But while the caching

rates is 10% the search queries performance shows lower

than the queries performance while only using disk

table(TQ_DK). This is because the proposed method also

needs cost to scheduling the queries, and the cost is more

than the benefit of caching 10% records in memory table.

Figure 8 shows the benefit of using snapshot methods

compare with using index methods in disk. In this

experiment, the search queries are executed by using index

methods and snapshot methods.
The number of records is increased from 10,000 to

100,000 during the whole experiment. And the search

execution time is checked every 5000 records increased

comparing the proposed system with the methods using B-

tree index, etc. The searched record is 10% of the whole

records stored in the system. From figure 8, it can be find

that B-tree index method is performs well than searching

only from disk without any index. But it is slower than the

case while using the proposed system which caching data

in memory and searching data from the snapshot. And

while using T-tree index on the memory data, the search

queries processing time is much decreased than the other

methods, so the performance increased more.

10% Selection (Aspatial Data)

0

200

400

600

800

1000

1200

1400

1600

1800

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Records (Thousand)

P
r
o

c
e
ss

in
g

 T
im

e
 (

m
s)

B-Tree

Caching

Caching T-Tree

Origin

Fig. 8. Search operation using index and cache

5. Conclusion

In this paper, the design and implementation of a two-

tier DBMS were described and its preliminary performance

evaluation has been conducted. The results of the

Caching Performance

0

50

100

150

200

250

300

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Number of Records (Thousand)

S
ea

rc
h

 T
im

e
(m

s)

TQ_HB(10%) TQ_HB(20%) TQ_HB(30%)

TQ_HB(40%) TQ_HB(50%) TQ_HB(60%)

TQ_HB(70%) TQ_HB(80%) TQ_HB(90%)

TQ_HB(100%) TQ_M M TQ_DK

Sang-Hun Eo, Yan Li, Ho-Seok Kim, and Hae-Young Bae 15

performance test show that proposed system performs

significantly better than disk-oriented DBMS with an

added advantage to manage massive data at the same time.

The proposed system can manage massive data and also

can provide fast response time for certain parts of the data

using snapshots. We are currently investigating query

optimization and optimal synchronization technique

between disk data and the memory snapshot data. For the

synchronization, current prototype system uses lazy update

method with assuming safe operation of the system (i.e.

never die system). Therefore, efficient synchronization

technique, intelligent snapshot making technique and

recovery technique will be important challenges.

Reference

 [1] Bijit Hore, Hakan Hacigumus, Bala Iyer, Sharad

Mehrotrasss, “Indexing text data under space

constraints,” Proceedings of the thirteenth ACM

international conference on Information and

knowledge management CIKM '04, November 2004.

 [2] Goetz Graefe, Michael Zwilling, “Transaction

support for indexed summary views,” Proceedings of

the 2004 ACM SIGMOD international conference on

Management of data, June 2004.

 [3] Sven Helmer, Guido Moerkotte, “A performance

study of four index structures for set-valued attributes

of low cardinality,” The International Journal on Very

Large Data Bases, Volume 12, Issue 3, October 2003.

 [4] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi

Scott, Berni Schiefer, “Empirical evaluation of multi-

level buffer cache collaboration for storage systems,”

Proceedings of the 2005 ACM SIGMETRICS

international conference on Measurement and

modeling of computer systems SIGMETRICS '05,

Volume 33 Issue 1, June 2005.

 [5] Wenhu Tian, Pat Martin, Wendy Powley,

“Techniques for automatically sizing multiple buffer

pools in DB2,” Proceedings of the 2003 conference

of the Centre for Advanced Studies on Collaborative

research, October 2003.

 [6] Stephane Bressan, Chong Leng Goh, Beng Chin Ooi,

Kian-Lee Tan, “A framework for modeling buffer

replacement strategies,” Proceedings of the ninth

international conference on Information and

knowledge management, November 2000.

 [7] Jonathan Goldstein, Per-Ake Larson, “Optimizing

queries using materialized views: a practical, scalable

solution,” Proceedings of the 2001 ACM SIGMOD

international conference on Management of data,

2001.

 [8] James J. Lu, Guido Moerkotte, Joachim Schue, V. S.

Subrahmanian, “Efficient maintenance of

materialized mediated views,” Proceedings of the

1995 ACM SIGMOD international conference on

Management of data, 1995.

 [9] Minwen Ji, “Affinity-based management of main

memory database clusters,” ACM Transactions on

Internet Technology (TOIT), Volume 2 Issue 4,

November 2002.

[10] Philip Bohannon, Peter Mcllroy, Rajeev Rastogi,

“Main-memory index structures with fixed-size

partial keys,” Proceedings of the 2001 ACM

SIGMOD International conference on Management

of data SIGMOD '01, Volume 30 Issue 2, May

2001.

[11] Tobin J. Lehman and Michael J. Carey, “A Study of

Index Structures for Main Memory Database

Management Systems,” Proceedings of the Twelfth

International Conference on Very Large Data Bases,

1986.

[12] Ying Xia, Sung-Hee Kim, Sook-Kyoung Cho, Kee-

Wook Rim, Hae-Young Bae, “Dynamic versioning

concurrency control for index-based data access in

main memory database systems,” Proceedings of the

tenth international conference on Information and

knowledge management, October 2001.

[13] Tobin J.Lehman, J. Shekita and Luis-Felipe Cabrera,

“An Evaluation of Starburst's Memory Resident

Storage Component,” IEEE Transactions on

knowledge and data Engineering, Vol. 4, NO. 6,

DECEMBER, 1992.

[14] Michael Stonebraker, “Managing Persistent Objects

in a Multi-Level Store,” SIGMOD Conference, pp2-

11, 1991.

[15] Kong-Rim Choi, Kyung-Chang Kim, “T*-tree: a

main memory database index structure for real time

applications,” Proceedings of the Third International

Workshop on Real-Time Computing Systems

Application (RTCSA '96), October 1996.

[16] Tobin Jon Lehman, “Design and performance

evaluation of a main memory relational database

system (t tree),” Doctoral Thesis, January 1986.

[17] D. Bitton, D. DeWitt, and C. Turbyfill,

“Benchmarking simple database operations,” in Proc.

9th Int. Conf. on Very Large Databases, Nov. 1983.

[18] S. Park, W. chung, and M. Kim GMS, “Spatial

database management system,” Proc. of the KISS

Spring Conf, April, 2003.

16 Two-Tier Storage DBMS for High-Performance Query Processing

Sang-Hun Eo

He received the BS in Computer Science &

Engineering from Inha Univ. in 2003. And

now he is undertaking a doctorate course as

a member of the database lab at Inha Univ.

His research interests include Spatial

Database, Ubiquitous and Pervasive

Computing, RFID middle ware, Context-

Awareness System, Grid Database.

Yan Li

She received the MS in Computer Science

& Engineering from Inha Univ. in 2008.

And now she is undertaking a doctorate

course as a member of the database lab at

Inha Univ. Her research interests include

Spatial Database, Spatial Data warehouse,

Ubiquitous Computing, Grid Database.

Ho-Seok Kim

He received the Ph.D in Computer Science

& Engineering from Inha Univ. in 2007.

Now he works for LG Mobile Handset

R&D Center of Mobile Communications

Company, LG Electronics Inc as Senior

Research Engineer. His research interests

include Embedded Software System,

Database, Ubiquitous and Pervasive Computing, Context-

Awareness System.

Hae-Young Bae

He received a Ph.D. degree in Computer

Science & Engineering from Soongsil Univ.

in 1990. He has been a professor at Inha

Univ. since 1982. His research interests are

in the area of Data Management, RFID

Systems, USN, Grid System. They include

topics such as Spatial Database

Management System, Spatial Database Cluster System, Grid

Database Management System.

