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Abstract

This paper is concerned with approximation of Wonham filters. A focal point is
that the underlying hidden Markov chain has a large state space. To overcome the
difficulties and to reduce the computational complexity, a two-time-scale approach is
developed. Under the time-scale separation, the state space of the underlying Markov
chain is divided into a number of groups so that the chain jumps rapidly within each
group and switches occasionally from one group to another. Such structure gives rise
to a limit filter for the Wonham filter. The limit filter preserves the main features of
the filtering process, but it has a much smaller dimension and therefore is easier to
compute. Using such a limit filter enables us to develop efficient approximations and
useful filters for hidden Markov chains.
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1 Introduction

There has been a growing interest in control and optimization using switching diffusion

systems. This arises in emerging applications such as wireless communication, signal pro-

cessing, and financial engineering. Unlike the pure diffusion models used in the traditional

setup, both continuous dynamics and discrete events coexist in the regime-switching models.

Such a hybrid formulation makes the models more versatile, but the analysis becomes more

challenging.

A class of promising models uses a continuous-time Markov chain to capture the discrete

event features resulting in a set of diffusions modulated by the Markov chain. Dealing with

such systems and carrying out control and optimization tasks under partial observations, it is

desirable to extract characteristics or features of the system based on the limited information

available, which brings us to the framework of hybrid filtering.

Optimal filtering of hybrid systems typically gives rise to infinite dimensional stochastic

differential equations. Various efforts have been made to find finite dimensional approxima-

tions. Some of these approximation schemes can be simplified if the conditional probability

of the Markov chain given observation overtime is available. In this paper, instead of deal-

ing with optimal or finite dimensional approximations, we consider the model in which a

function of the Markov chain plus a white noise is observable. We focus on the conditional

probability of the chain given the observation. In this case, the filter developed by Wonham

[19], is referred to as Wonham filter, which is given by the solution of a system of stochastic

differential equations.

1.1 Wonham Filter

Next we summarize the result about the Wonham filter. Let α(t) be a continuous-time

Markov chain having finite state space M = {1, . . . , m} and generator Q = (qij) ∈ Rm×m.

Consider a function of the Markov chain α(t) that is observable with additive Gaussian noise.

Let y(t) denote the observation measurement given by

dy(t) = f(α(t))dt + σdw(t), y(0) = 0, (1)

where σ is a positive constant and w(·) is a standard Brownian motion.
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Let pi(t) denote the conditional probability of {α(t) = i} given the observations up to

time t, i.e.,

pi(t) = P (α(t) = i|y(s) : s ≤ t),

for i = 1, . . . ,m. Let p(t) = (p1(t), . . . , pm(t)) ∈ R1×m. Then the Wonham filter is given by

dp(t) = p(t)Qdt− 1

σ2

(
m∑

i=1

f(i)pi(t)

)
p(t)A(t)dt +

1

σ2
p(t)A(t)dy(t),

p(0) = p0, being the initial probability,

(2)

where

A(t) = diag(f(1), . . . , f(m))−
m∑

i=1

f(i)pi(t)I.

In this paper, we use I as an identity matrix of appropriate dimension and use K as a generic

constant with the convention K + K = K and KK = K.

1.2 Brief Review of Literature

Owing to its importance, filtering problems have received much attention, and various efforts

have been made. For example, Caines and Chen [4] derived an optimal filter when it involves

a random variable but with no switching; see also Hijab [11]. Haussmann and Zhang [10] used

two statistical hypothesis tests: the quadratic variation test (QVT) and the likelihood ratio

test (LRT), to estimate the value of the random variable and to choose among competing

filters on successive time intervals. These results are generalized in Zhang [24] to incorporate

the case when the underlying Markov chain is not observable.

Concerning nonlinear filtering of a hybrid system in discrete time, Blom and Bar-Shalom

[3] proposed a numerical algorithm to compute the conditional expectation of the state given

observation up to time t. The algorithm seems to perform well numerically. However, there

is no theoretical justification for optimality (or near optimality) of these filters; see Li [15]

for further discussions.

For other related work on filtering, see Dey and Moore [6] and Moore and Baras [17] for

risk sensitive filtering; Wang et al. [18] and Yin and Dey [20] for the reduction of complexity

for filtering problem involving large-scale Markov chain; Zhang [26, 25] for the most probable

estimates in discrete-time and continuous-time models, respectively; and Liu and Zhang [16]
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for numerical experiments involving piecewise approximation of nonlinear systems; and Yin

et al. [23] for numerical methods for Wonham filters.

For survey of results on filtering, we refer to the books by Anderson and Moore [1] on

classical linear filtering. For hidden Markov models and related filtering problems see Elliott

et al. [7]. For general nonlinear filtering, see Kallianpur [13] and Liptser and Shiryayev [12].

For recent developments and review of the literature on partially observed systems, we refer

the reader to the books by Bensoussan [2], Kushner [14], and references therein.

1.3 Contributions of This Paper

The primary concern of this paper is on constructing Wonham filters for Markov chains with

large state space. When the state space of the Markov chain is large, the number of the filter

equations will be large as well, resulting in the need of solving a large number of diffusion

equations. We focus on developing good approximation of the Wonham filters. The main

idea is to use time-scale separation and the hierarchy of the Markov chain to reduce the

computation complexity. In many applications, the state space of the Markov chain can be

partitioned to a number of groups so that the Markov chain jumps rapidly among a group of

states and less frequently (or occasionally) among different groups. In this case, it is difficult

to pinpoint the exact location of the chain and any estimation errors can lead to misleading

results. Nevertheless, it is much easier to identify if the chain belongs to certain groups. This

leads to a two-time-scale formulation involving states having weak and strong interactions.

Our contributions in this paper includes:

1. Present a two-time-scale formulation;

2. construct a limit filter;

3. prove its convergence to the desired Wonham filter in the limit as the rate of fluctuations

of the Markov chain goes to infinity in each group of irreducible states;

4. construct an approximation scheme based on the limit filter which is easier to compute;

5. prove that the original filter can be approximated in a two stage procedure under

different topologies. Hence establish the asymptotic optimality of the approximate
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filter.

To proceed, there are a couple of points that we wish to point out. First, the time-scale

separation in this formulated by use of a small parameter ε > 0. The asymptotic results

require the small parameter go to 0. In applications, it is simply a fixed constant, however.

For example, it may be ε = 0.01 or ε = 0.1. The main point this small parameter brings

out the different scale of the jump rates in different states of the Markov chain. Second,

in the formulation, the Markov chain is of a particular structure. Since any finite state

Markov chain has at least one recurrent states, reduction to such a “canonical form” is

always possible; see for example, [21, Chapter 3.6] and the references therein. One of the

main observations is that in a large-scale system, not all states change at the same rate. As

a result, the two-time scale is natural and ubiquitous.

1.4 Outline

The rest of the paper is organized as follows. In the next section, we give notation needed

for two-time-scale Markov chains and summarize relevant results to be used in this work.

In Section 3, we consider limit filters and two-time-scale approximations and verification of

these results. In Section 4, we provide a numerical example illustrating the main results

of this paper. In Section 5, extension of results to Markov chains with transient states are

considered. The paper is concluded with a few remarks followed by a short appendix.

2 Singularly Perturbed Markov Chains

2.1 Time-Scale Separation in Markov Chains

In this work, we focus on Markov chains that have large state spaces with complex structures.

We consider the case that the states of the underlying Markov chain are divisible to a number

of weakly irreducible classes such that it fluctuates rapidly among different states within

a weakly irreducible class, but jumps less frequently from one weakly irreducible class to

another. We introduce a small parameter ε > 0 into the problem and assume the generator

of the Markov chain to be of the form:

Qε =
1

ε
Q̃ + Q̂. (3)
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Throughout the paper, we assume both Q̃ and Q̂ to be generators. As a result, the Markov

chain becomes αε(·), an ε-dependent singularly perturbed Markov chain. An averaging

approach requires aggregating the states in each weakly irreducible class into a single state,

and replacing the original complex system by its limit, an average with respect to the quasi-

stationary distributions. In this and the following three sections, we concentrate on the case

that the underlying Markov chain has only weakly irreducible classes, which specifies the

form of Q̃ as

Q̃ = diag
(
Q̃1, . . . , Q̃l

)
. (4)

Here, for each k = 1, . . . , l, Q̃k is the weakly irreducible generator corresponding to the states

in Mk = {sk1, . . . , skmk
}, for k = 1, . . . , l. The state space is decomposable as

M = M1 ∪ · · · ∪Ml

= {s11, . . . , s1m1} ∪ · · · ∪ {sl1, . . . , slml
}.

(5)

Note that Q̃ governs the rapidly changing part and Q̂ describes the slowly varying com-

ponents. The slow and fast components are coupled through weak and strong interactions

in the sense that the underlying Markov chain fluctuates rapidly within a single group Mk

and jumps less frequently among groups Mk and Mj for k 6= j. Lumping the states in

Mk into a single “state” (aggregating the states skj in Mk as one state k), an aggregated

process, containing l states, can be obtained, in which these l states interact through the

matrix Q̂ resulting in transitions from Mk to Mj. By lumping all the states in each weakly

irreducible class into one state results in a process with considerably smaller state space. To

be more specific, the aggregated process {αε(·)} is defined by

αε(t) = k when αε(t) ∈Mk. (6)

The process αε(·) is not necessarily Markovian. However, using certain probabilistic

arguments, in [21, Section 7.5], assuming Q̃k to be weakly irreducible, we have shown:

(a) αε(·) converges weakly to α(·), which is a continuous-time Markov chain generated by

Q = νQ̂1̃1,

ν = diag(ν1, . . . , ν l), 1̃1 = diag(11m1 , . . . , 11ml
),

(7)
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where νk is the quasi-stationary distribution of Q̃k, k = 1, . . . , l, 11` = (1, . . . , 1)′ ∈ R` is

an `-dimensional column vector with all components being equal to 1, diag(D1, . . . , Dr)

is a block-diagonal matrix with appropriate dimensions.

(b) For any bounded deterministic β(·),

E

(∫ T

0

(
I{αε(t)=skj} − νk

j I{αε(t)=k}
)
β(t)dt

)2

= O(ε), (8)

where IA is the indicator function of a set A.

(c) Let P (t) = 1̃1(exp Qt)ν ∈ Rm×m. Then

| exp(Qεt)− P (t)| = O(ε + e−
κt
ε ),

for some κ > 0.

Note that for the process α(·), the state space is given by M = {1, . . . , l}. For complete

treatment of two-time-scale Markov chains in continuous time, see the book by Yin and

Zhang [21].

2.2 Two-Time-Scale Wonham Filters

Using the above notation, let yε(t) denote the observation measurement given by

dyε(t) = f(αε(t))dt + σdw(t), yε(0) = 0, (9)

where σ is a positive constant and w(·) is a standard Brownian motion. We assume that

αε(·) and w(·) are independent.

Let pε
ij(t) denote the conditional probability of {αε(t) = sij} given the observation up to

time t, i.e.,

pε
ij(t) = P (αε(t) = sij|yε(s) : s ≤ t),

for i = 1, . . . , l and j = 1, . . . , mi. Let

pε(t) = (pε
11, . . . , p

ε
1m1

, . . . , pε
l1, . . . , p

ε
lml

) ∈ R1×m.

Let

α̂ε(t) =
l∑

i=1

mi∑
j=1

f(sij)p
ε
ij(t),
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and

Aε(t) = diag(f(s11), . . . , f(s1m1), . . . , f(sl1), . . . , f(slml
))− α̂ε(t)I. (10)

Then the corresponding Wonham filter can be rewritten as

dpε(t) = pε(t)Qεdt− 1

σ2
α̂ε(t)pε(t)Aε(t)dt +

1

σ2
pε(t)Aε(t)dyε(t), (11)

with given initial condition

pε(0) = p0 = (p0,11, . . . , p0,1m1 , . . . , p0,l1, . . . , p0,lml
).

3 Limit Filter and Two-Time-Scale Approximation

3.1 Limit Filter

Suggested by applications of two-time-scale Markov chains in manufacturing and elsewhere,

the conditional probability should converge to a limit filter. In this section, we first derive

formally the limit filter and then provide a verification theorem that shows that the limit

filter is indeed the limit of the original filter as ε → 0 in some sense.

Note that pε
ij(t) are conditional probability measures. Therefore, they are uniformly

bounded between 0 and 1. It follows from (11) that

E

∣∣∣∣
∫ t

0

pε(u)Qεdu

∣∣∣∣
2

is bounded for all ε > 0. So if pε(t) → p0(t) as ε → 0 for some p0(t) and t > 0, then

necessarily

E

∣∣∣∣
∫ t

0

p0(u)Q̃du

∣∣∣∣
2

= 0, for t > 0.

This implies p0(t)Q̃ = 0. In view of the block-diagonal structure of Q̃, the vector p0(t) must

have the following form

p0(t) = (ν1p1(t), . . . , ν
lpl(t)) = p(t)ν,

where p(t) = (p1(t), . . . , pl(t)) ∈ R1×l is to be determined later. Recall the definition of 1̃1 in

in (7). It follows that

pε(t)1̃1 → p0(t)1̃1 = p(t)(ν1̃1) = p(t).
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We next derive the equation for p(t). As in Wang et al. [18], we can show that the weak

limit of yε(·) is given by

dy(t) = f(α(t))dt + σdw(t), y(0) = 0,

where

f(i) =

mi∑
j=1

f(sij)ν
i
j.

Recall that Q̃1̃1 = 0. In (11), multiplying from the right by 1̃1 and sending ε → 0, we

obtain

p(t) = p(0) +

∫ t

0

p(u)Qdu− 1

σ2

∫ t

0

α̃(u)p(u)A(u)du +
1

σ2

∫ t

0

p(u)A(u)dy(u), (12)

with initial condition

p(0) = p01̃1 = (p0,11 + · · ·+ p0,1m1 , . . . , p0,l1 + · · ·+ p0,lml
) ∈ R1×l,

where

α̃(t) =
l∑

i=1

f(i)pi(t),

and

A(t) = diag(f(1), . . . , f(l))− α̃(t)I. (13)

We will show in what follows that, for each t > 0, pε(t) converges to p0(t) = p(t)ν in a two

stage procedure as ε → 0.

3.2 Two-Time-Scale Approximation

Note that the noise driving the limit filter is the weak limit of yε(·). In order to use the filter

in real time applications, one needs to feed the filter by the actual observation yε(·) in (12).

Let p̃ε(t) = pε(t)ν denote such a filter with pε(t) given by

pε(t) = pε(0) +

∫ t

0

pε(u)Qdu− 1

σ2

∫ t

0

α̃ε(u)pε(u)A
ε
(u)du +

1

σ2

∫ t

0

pε(u)A
ε
(u)dyε(u), (14)

with initial pε(0) = p01̃1, where

α̃ε(t) =
l∑

i=1

f(i)pε
i (t),

9



and

A
ε
(t) = diag(f(1), . . . , f(l))− α̃ε(t)I.

Then we have the following theorem.

Theorem 3.1. The following assertions hold.

(a) p̃ε(·) is an approximation to pε(·) for small ε. More precisely,

E|pε(t)− p̃ε(t)|2 = O
(
ε + e−

κt
ε

)
,

for some constant κ > 0.

(b) pε(·) converges weakly to p(·) in C([0, T ];Rm), where C([0, T ];Rm) denotes the space

of Rm-valued continuous functions defined on [0, T ].

Remark 3.2. This theorem shows the two stage approximation of pε(t) ∈ Rm by the limit

p0(t) = p(t)ν with p(t) ∈ Rl. The Stage 1 approximation provides a practical way for

computing pε(t) using pε(t)ν which is governed by a system of SDEs of much smaller dimen-

sion. The Stage 2 approximation leads to a theoretical weak limit for completeness of the

two-time-scale analysis.

Proof of Part (a). Let

φε(t) = pε(t)− p̃ε(t) = (φε
11(t), . . . , φ

ε
1m1

(t), . . . , φε
l1(t), . . . , φ

ε
lml

(t)).

Recall that p̃ε(t) = pε(t)ν. It follows that p̃ε(t)Qε = p̃ε(t)Q̂. Let φ̂ε(t) =
∑l

i=1

∑mi

j=1 f(sij)φ
ε
ij(t)

and

Âε(t) = diag(f(s11), . . . , f(s1m1), . . . , f(sl1), . . . , f(slml
))− α̃ε(t)I. (15)

Note that

α̂ε(t) =
l∑

i=1

mi∑
j=1

f(sij)p
ε
ij(t)

=
l∑

i=1

mi∑
j=1

f(sij)(p
ε
ij(t)− νi

jp
ε
i (t)) +

l∑
i=1

mi∑
j=1

f(sij)ν
i
jp

ε
i (t)

= φ̂ε(t) + α̃ε(t).
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In view of this relation, (10) and (15) yields that

Aε(t) = Âε(t)− φ̂ε(t)I.

Moreover, owing to (11) and (14), φε(t) satisfies the following equation

φε(t) = φε(0) +

∫ t

0

φε(u)Qεdu− 1

σ2

∫ t

0

α̂ε(u)φε(u)Aε(u)du +
1

σ2

∫ t

0

φε(u)Aε(u)dyε(u)

−p̃ε(t) + p̃ε(0) +

∫ t

0

p̃ε(u)Q̂du− 1

σ2

∫ t

0

α̃ε(u)p̃ε(u)Âε(u)du

+
1

σ2

∫ t

0

p̃ε(u)Âε(u)dyε(u)

− 1

σ2

∫ t

0

[φ̂ε(u)p̃ε(u)Âε(u)− (φ̂ε(u))2p̃ε(u)− α̃ε(u)p̃ε(u)φ̂ε(u)]du

− 1

σ2

∫ t

0

p̃ε(u)φ̂ε(u)dyε(u).

Write

φε(t) = φε(0) +

∫ t

0

φε(u)Qεdu +

∫ t

0

F1(u)du +

∫ t

0

F2(u)dw(u) + B(t),

where

B(t) = −p̃ε(t) + p̃ε(0) +

∫ t

0

p̃ε(u)Q̂du− 1

σ2

∫ t

0

α̃ε(u)p̃ε(u)Âε(u)du

+
1

σ2

∫ t

0

p̃ε(u)Âε(u)dyε(u),

F1(t) =
1

σ2

[
− α̂ε(t)φε(t)Aε(t) + φε(t)Aε(t)αε(t)

−φ̂ε(t)p̃ε(t)Âε(t) + (φ̂ε(t))2p̃ε(t) + α̃ε(t)p̃ε(t)φ̂ε(t)− p̃ε(t)φ̂ε(t)αε(t)
]
,

F2(t) =
1

σ

[
φε(t)Aε(t)− p̃ε(t)φ̂ε(t)

]
,

(16)

or in differential form

dφε(t) = φε(t)Qεdt + F1(t)dt + F2(t)dw(t) + dB(t).

Right multiply both sides by the matrix exp(−Qεt) to yield

d[φε(t) exp(−Qεt)] = [F1(t)dt + F2(t)dw(t) + dB(t)] exp(−Qεt).

Integrating both sides from 0 to t leads to

φε(t) = φε(0) exp(Qεt) +

∫ t

0

[F1(u)du + F2(u)dw(u) + dB(u)] exp(Qε(t− u)).
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Recall that P (t) = 1̃1(exp Qt)ν. It is easy to check that

φε(0)P (t) = 0 and νÂε(t)1̃1 = A
ε
(t),

with A
ε
(t) defined in (13). Recall uniform boundedness of pε(t) and pε(t). We can show

|F1(t)| ≤ K|φε(t)|,

|F2(t)| ≤ K|φε(t)|.

Moreover, in view of (14) and (16), we have

B(t)1̃1 = 0.

Using these and | exp(Qεt)− P (t)| = O(ε + e−
κt
ε ), we have

E|φε(t)|2 ≤ E|φε(0)(exp(Qεt)− P (t))|2 + K

∫ t

0

E|φε(u)|2du + KE

∣∣∣∣
∫ t

0

φε(u)du

∣∣∣∣
2

+KE

∣∣∣∣
∫ t

0

(dB(u)) exp(Qε(t− u))

∣∣∣∣
2

,

(17)

for some constant K. Using Cauchy-Schwarz inequality and because of T < ∞, we have

E

∣∣∣∣
∫ t

0

φε(u)du

∣∣∣∣
2

≤ T

∫ t

0

E|φε(u)|2du. (18)

Moreover,

E

(∫ t

0

(dB(u)) exp(Qεt)

)2

= E

(∫ t

0

(dB(u))(exp(Qε(t− u))− P (t− u))

)2

≤ KE

(∫ t

0

(ε + e−
κ(t−u)

ε )dB(u)

)2

= K

(∫ t

0

(ε + e−
κ(t−u)

ε )du

)2

+K

∫ t

0

(ε + e−
κ(t−u)

ε )2du = O(ε).

(19)

Let h(t) = E|φε(t)|2. It follows from (17)-(19) that

h(t) ≤ K(ε + e−
κt
ε ) + K

∫ t

0

h(u)du,

for some positive constants κ and K. Finally, Gronwall’s inequality implies that

h(t) ≤ K(ε + e−
κt
ε ),
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i.e.,

E|pε(t)− p̃ε(t)|2 = E|pε(t)− pε(t)ν|2 = O(ε + e−
κt
ε ).

This proves Part (a).

Proof of Part (b). The proof for Part (b) is divided into two steps. First, we introduce

an intermediate process p̌ε(t) defined by

p̌ε(t) = p̌ε(0) +

∫ t

0

p̌ε(u)Qdu− 1

σ2

∫ t

0

α̌ε(u)p̌ε(u)Ǎε(u)du +
1

σ2

∫ t

0

p̌ε(u)Ǎε(u)dy̌ε(u), (20)

with initial p̌ε(0) = p01̃1, where

dy̌ε(t) = f(αε(t))dt + σdw(t), y̌ε(0) = 0,

α̌ε(t) =
l∑

i=1

f(i)p̌ε
i (t),

and

Ǎε(t) = diag(f(1), . . . , f(l))− α̌ε(t)I.

Step 1. We show that p̌ε(·) converges to p(·) weakly.

Recall that αε(·) → α(·) in distribution. By the Skorohod Representation Theorem, there

exists a probability space (Ω0,F0, P0) and processes αε
0(·) and α0(·) such that

P0(α
ε
0(·) ∈ ·) = P (αε(·) ∈ ·),

P0(α0(·) ∈ ·) = P (α(·) ∈ ·),

and αε
0(·) → α0(·) a.s. in D([0, T ];M), where M = {1, . . . , l}. Let (Ωw,Fw, Pw) be a

probability space upon which w(·) is a standard Brownian motion. Then, on the product

space (Ω0 × Ωw,F0 ×Fw, P0 × Pw),

p̌ε(·) → p(·) a.s. in D([0, T ];Rm).

Step 2. We show that, for each t, E|pε(t)− p̌ε(t)| → 0, as ε → 0.

Let ψ(t) = (ψ1(t), . . . , ψl(t)) = pε(t) − p̌ε(t). Then ψ(0) = 0. Moreover, in view of (14)

and (20) and by re-ordering terms, we have

dψ(t) = ψ(t)Qdt− 1

σ2
[ψ̌(t)pε(t)A

ε
(t) + α̌ε(t)ψ(t)A

ε
(t) + α̌ε(t)p̌ε(t)ψ̌(t)I]dt

+
1

σ2
[(ψ(t)A

ε
(t) + p̌ε(t)ψ̌(t))dyε(t) + p̌ε(t)ψ̌(t)(f(αε(t))− f(αε(t)))dt],

13



where ψ̌(t) = α̃ε(t)− α̌ε(t) =
∑l

i=1 f(i)ψi(t). Write

ψ(t) =

∫ t

0

G1(u)du +

∫ t

0

G2(u)dw(u) + H(t),

where

G1(t) =
1

σ2

[
ψ̌(t)pε(t)A

ε
(t) + α̌ε(t)ψ(t)A

ε
(t) + α̌ε(t)p̌ε(t)ψ̌(t)I + [ψ(t)A

ε
(t)

+p̌ε(t)ψ̌(t))]f(αε(t))
]
,

G2(t) =
1

σ
[ψ(t)A

ε
(t) + p̌ε(t)ψ̌(t)],

H(t) =
1

σ2

∫ t

0

p̌ε(u)ψ̌(u)(f(αε(u))− f(αε(u)))du.

It is easy to see that

|G1(t)| ≤ K|ψ(t)| and |G2(t)| ≤ K|ψ(t)|,

for some constant K. This implies that

E|ψ(t)|2 ≤ E|H(t)|2 + K

∫ t

0

E|ψ(u)|2du.

In view of Gronwall’s inequality, it suffices to show E|H(t)|2 → 0. Let

V (t) =

∫ t

0

(I{αε(u)=sij} − νi
jI{αε(u)=i})du.

Then (8) implies E|V (t)|2 → 0, as ε → 0. For a diffusion dg = g1dt + g2dw with bounded g1

and g2, let

H0(t) =

∫ t

0

g(u)(I{αε(u)=sij} − νi
jI{αε(u)=i})du.

Then, by integration by parts, we have

H0(t) = g(t)V (t)−
∫ t

0

g1(u)V (u)du−
∫ t

0

g2(u)V (u)dw(u).

It follows that

E|H0(t)|2 ≤ K|V (t)|2 + K

∫ t

0

E|V (u)|2du → 0.

Take g(t) = p̌ε(t)ψ̌(t) and write

f(αε(t))− f(αε(t)) =
l∑

i=1

mi∑
j=1

f(sij)(I{αε(t)=sij} − νi
jI{αε(t)=i})

14



to obtain E|H(t)|2 → 0.

Step 3. Finally, using Kushner’s tightness criterion [14, p. 47], it is easy to see that pε(·) is

tight. To complete the proof, it suffices to show the weak convergence of finite dimensional

distributions. To this end, note that following Steps 1 and 2, we have, for any f ∈ C2
b (the

space of functions whose second derivatives are bounded),

|Ef(a1p
ε(t1) + · · ·+ anpε(tn))− Ef(a1p(t1) + · · ·+ anp(tn))|

≤ |Ef(a1p
ε(t1) + · · ·+ anp

ε(tn))− Ef(a1p̌
ε(t1) + · · ·+ anp̌ε(tn))|

+|Ef(a1p̌
ε(t1) + · · ·+ anp̌ε(tn))− Ef(a1p(t1) + · · ·+ anp(tn))| → 0,

for any constants a1, . . . , an and t1, . . . , tn ∈ [0, T ]. This implies (pε(t1), . . . , p
ε(tn)) converges

to (p(t1), . . . , p(tn)).

Finally, note that both pε(·) and p(·) have continuous sample paths a.s., so the conver-

gence, in fact, takes place on the space C([0, T ];Rm).

Remark 3.3. The conditional probability vector pε(t) behaves similarly to a regular proba-

bility vector for αε(t) in the sense that itself is not tight and therefore does not converge in

the neighborhood of t = 0 due to a boundary layer near the origin. It takes a small amount

of time for pε(t) to correct if necessary from its initial pε(0).

Corollary 3.4.

(a) E

∫ T

0

|pε(t)− p̃ε(t)|2dt = O(ε).

(b) For any δ > 0, supt∈[δ,T ] E|pε(t)− p̃ε(t)|2 = O(ε).

(c) For each t > 0, pε(t) → p0(t) in distribution.

Proof. Parts (a) and (b) are immediate from Theorem 3.1. To see Part (c), note that for

all f ∈ C2
b , we have

|Ef(pε(t))− Ef(p0(t))| ≤ |Ef(pε(t))− Ef(p̃ε(t))|+ |Ef(p̃ε(t))− Ef(p0(t))| → 0.
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4 Numerical Examples

In this section, we consider a simple example involving a four state Markov chain. Let

Qε =
1

ε




−1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 −1




+




−1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 −1




.

The corresponding state space is M = M1 ∪ M2 = {s11, s12} ∪ {s21, s22}. In this case,

ν1 = ν2 = (1/2, 1/2).

Let (pε
11(t), p

ε
12(t), p

ε
21(t), p

ε
22(t)) denote the conditional probability vector and its approx-

imation by (p̃ε
11(t), p̃

ε
12(t), p̃

ε
21(t), p̃

ε
22(t)). Define the norm

||pε(·)− p̃ε(·)||2T

=E

∫ T

0

(|pε
11(t)− p̃ε

11(t)|2 + |pε
12(t)− p̃ε

12(t)|2 + |pε
21(t)− p̃ε

21(t)|2 + |pε
22(t)− p̃ε

22(t)|2
)
dt.

In this example, we take

f(s11) = 1, f(s12) = 1.5, f(s21) = −1.5, f(s22) = −1,

σ = 0.5, T = 5 and the discretization step size δ = 0.0005. A sample path of αε(·) (with

ε = 0.05) and the corresponding condition probabilities are given in the first 5 rows in

Figure 1. In Figure 1, the states are labelled as 1 = s11, 2 = s12, 3 = s21, and 4 = s22. The

differences between pε(·) and p̃ε(·) are plotted in the last 4 rows. As can be seen in Figure 1,

αε(·) stays in group M1 from t = 0.2 to 1.5, jumps to group M2 at t = 1.5, goes back to M1

at t = 3.4, then to M2, and finally landed in M1 from t = 4.4 to 5. The approximation filter

p̃ε
ij(t) tracks corresponding conditional probabilities pε(t) pretty well on these time intervals.

In addition, we vary ε and run 1000 samples for each ε. The results are recorded in Table

1.

As it can be seen in Table 1, the differences between the exact conditional probabilities

and their approximations p̃ε(·) are fairly small. The result validates the effectiveness of our

approach in this simple example.
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Figure 1: Sample paths of αε(t), pε(t), and p̃ε(t)− pε(t) with ε = 0.05.
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ε 0.5 0.1 0.05 0.01 0.005

||pε − p̃ε||2T 0.0335 0.0090 0.005 0.00117 0.00063

Table 1: Demonstration of error bounds.

5 Inclusion of Transient States

In the previous sections, we have concentrated on the case that the underlying Markov chain

consists of weakly irreducible classes only. This section takes up the issue that the underlying

Markov chain contains weakly irreducible classes as well as transient states. In this case, the

state space M is partitioned as:

M = M1 ∪ · · · ∪Ml ∪M∗

= {s11, . . . , s1m1} ∪ · · · ∪ {sl1, . . . , slml
} ∪ {s∗1, . . . , s∗m∗},

(21)

where M∗ = {s∗1, . . . , s∗m∗} is the collection of the transient states, and the generator is still

of the form (3), but

Q̃ =




Q̃1

Q̃2

. . .

Q̃l

Q̃1
∗ Q̃2

∗ · · · Q̃l
∗ Q̃∗




. (22)

To distinguish the transient states with that of the states in weakly irreducible classes, we

use ∗ as an index.

We assume that Q̃∗ is asymptotically stable, i.e., all of its eigenvalues belong to the left

half of the complex plane; To proceed, define

ν∗ = diag(ν, 0m∗×m∗),

and

1̃1∗ =




11m1

. . .

11ml

am1 . . . aml
0m∗×m∗


 . (23)

where 0m∗×m∗ is an m∗ ×m∗ zero matrix, and

ami
= −Q̃−1

∗ Q̃i
∗11mi

for i = 1, . . . , l.
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Let U be a random variable uniformly distributed on [0, 1] that is independent of αε(·). For

each j = 1, . . . , m∗, define an integer-valued random variable Uj by

Uj = I{0≤U≤am1,j} + 2I{am1,j<U≤am1,j+am2,j} + · · ·+ lI{am1,j+···+aml−1,j<U≤1}.

We proceed to define the aggregated process. Note, however, the aggregation is taken over

each weakly irreducible class only. Define

αε(t) =





i, if αε(t) ∈Mi,

Uj, if αε(t) = s∗j.

(24)

Using the partition

Q̂ =




Q̂11 Q̂12

Q̂21 Q̂22


 ,

where

Q̂11 ∈ R(m−m∗)×(m−m∗), Q̂12 ∈ R(m−m∗)×m∗ ,

Q̂21 ∈ Rm∗×(m−m∗), and Q̂22 ∈ Rm∗×m∗ ,

Write

Q = diag(ν1, . . . , ν l)(Q̂111̃1 + Q̂12(am1 , . . . , aml
)). (25)

Define

Q∗ = diag(Q, 0m∗×m∗).

We proved in [22, Theorem 4.3] that αε(·) converges weakly to α(·), a continuous-time

Markov chain generated by Q given in (25). We also obtained similar mean squares estimates

for the occupation measures as in the previous case. In fact,

sup
0≤t≤[0,T ]

E

(∫ t

0

[I{αε(s)=sij} − νi
jI{αε(s)∈Mi}]ds

)2

= O(ε) for i = 1, . . . , l, j = 1, . . . , mi,

sup
0≤t≤[0,T ]

E

(∫ t

0

I{αε(s)=sij}

)2

= O(ε2), for i = ∗, j = 1, . . . , m∗.

Moreover, let P ∗(t) = 1̃1∗(exp Q∗t)ν∗. Then

| exp(Qεt)− P ∗(t)| = O(ε + e−
κt
ε ).
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Define p(t) as follows:

p(t) = p(0) +

∫ t

0

p(u)Q∗du− 1

σ2

∫ t

0

α̃(u)p(u)A(u)du +
1

σ2

∫ t

0

p(u)A(u)dy(u),

with initial condition

p(0) = p01̃1∗.

Similarly, define pε(t) as above with y(t) replaced by yε(t).

We can prove the following results similarly to the proof of Theorem 3.1.

Theorem 5.1. Let p̃ε(t) = (pε(t)ν∗, 0m∗) where 0m∗ = (0, . . . , 0) ∈ R1×m∗. Then, we have

(a) sup
t∈[0,T ]

E|pε(t)− p̃ε(t)|2 = O
(
ε + e−

κt
ε

)
, for some κ > 0

(b) pε(·) converges to p(·) weakly on C([0, T ];Rm).

6 Concluding Remarks

In this paper, we developed approximate Wonham filters under the framework of two-time-

scale Markov chains. The advantage of this approach is the reduction of dimensionality

in the sense that the approach leads to a limit filter that is close to the original Wonham

filter but of much smaller dimension. Such a filtering scheme is desirable in state estimation

involving Markov chains with a large number of states such as in production planning of

stochastic manufacturing systems.

Recently, there has been resurgent interest in constructing robust filters following the

original work of Clark [5]. In [8], unnormalized densities are considered. It will be interesting

to see if the two-time-scale approach can be used to treat such problems. Nevertheless, care

must be taken, since although the counter part of pε(·) satisfies an ordinary differential

equation, it is not bounded. More work is required.

7 Appendix

For convenience of reference, we recall here the definition of irreducibility of Markov chains

[21] and Gronwall’s inequality [9, p. 36].
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Definition 7.1. The Markov chain or the generator Q is weakly irreducible if the system of

equations

νQ = 0, and
m∑

i=1

νi = 1

has a unique nonnegative solution. The nonnegative solution (row-vector-valued function)

ν = (ν1, . . . , νm) is termed a quasi-stationary distribution. In addition, if ν is strictly positive,

then we say the generator Q is irreducible.

Lemma 7.2 (Gronwall’s inequality.) Given a bounded measurable function c(t), if

0 ≤ h(t) ≤ c(t) + K

∫ t

0

h(u)du,

then

h(t) ≤ c(t) + K

∫ t

0

c(u)eK(t−u)du.
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